Significance of Hemodynamics Biomarkers, Tissue Biomechanics and Numerical Simulations in the Pathogenesis of Ascending Thoracic Aortic Aneurysms

Page: [1890 - 1898] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Guidelines for the treatment of aortic wall diseases are based on measurements of maximum aortic diameter. However, aortic rupture or dissections do occur for small aortic diameters. Growing scientific evidence underlines the importance of biomechanics and hemodynamics in aortic disease development and progression. Wall shear stress (WWS) is an important hemodynamics marker that depends on aortic wall morphology and on the aortic valve function. WSS could be helpful to interpret aortic wall remodeling and define personalized risk criteria. The complementarity of Computational Fluid Dynamics and 4D Magnetic Resonance Imaging as tools for WSS assessment is a promising reality. The potentiality of these innovative technologies will provide maps or atlases of hemodynamics biomarkers to predict aortic tissue dysfunction. Ongoing efforts should focus on the correlation between these non-invasive imaging biomarkers and clinico-pathologic situations for the implementation of personalized medicine in current clinical practice.

Keywords: Magnetic resonance imaging, computational fluid dynamics, ascending thoracic aorta aneurysms, vascular remodeling, wall shear stress, aortic dissection.

[1]
Erbel R, Aboyans V, Boileau C, et al. ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur Heart J 2014; 35(41): 2873-926.
[2]
Evangelista A, Isselbacher EM, Bossone E, et al. IRAD Investigators. Insights From the International Registry of Acute Aortic Dissection: A 20-Year Experience of Collaborative Clinical Research. Circulation 2018; 137(17): 1846-60.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.031264] [PMID: 29685932]
[3]
Elefteriades JA, Farkas EA. Thoracic aortic aneurysm clinically pertinent controversies and uncertainties. J Am Coll Cardiol 2010; 55(9): 841-57.
[http://dx.doi.org/10.1016/j.jacc.2009.08.084] [PMID: 20185035]
[4]
Schnell S, Markl M, Entezari P, et al. k-t GRAPPA accelerated four-dimensional flow MRI in the aorta: effect on scan time, image quality, and quantification of flow and wall shear stress. Magn Reson Med 2014; 72(2): 522-33.
[http://dx.doi.org/10.1002/mrm.24925] [PMID: 24006309]
[5]
Petersson S, Dyverfeldt P, Ebbers T. Assessment of the accuracy of MRI wall shear stress estimation using numerical simulations. J Magn Reson Imaging 2012; 36(1): 128-38.
[http://dx.doi.org/10.1002/jmri.23610] [PMID: 22336966]
[6]
Boussel L, Rayz V, Martin A, et al. Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics. Magn Reson Med 2009; 61(2): 409-17.
[http://dx.doi.org/10.1002/mrm.21861] [PMID: 19161132]
[7]
Sengupta PP, Pedrizzetti G, Kilner PJ, et al. Emerging trends in CV flow visualization. JACC Cardiovasc Imaging 2012; 5(3): 305-16.
[http://dx.doi.org/10.1016/j.jcmg.2012.01.003] [PMID: 22421178]
[8]
Hope MD, Hope TA, Meadows AK, et al. Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology 2010; 255: 53-61.
[http://dx.doi.org/10.1148/radiol.09091437]
[9]
Hope MD, Hope TA, Crook SES, et al. 4D flow CMR in assessment of valve-related ascending aortic disease. JACC Cardiovasc Imaging 2011; 4(7): 781-7.
[http://dx.doi.org/10.1016/j.jcmg.2011.05.004] [PMID: 21757170]
[10]
Erbel R, Alfonso F, Boileau C, et al. Task Force on Aortic Dissection, European Society of Cardiology. Diagnosis and management of aortic dissection. Eur Heart J 2001; 22(18): 1642-81.
[http://dx.doi.org/10.1053/euhj.2001.2782] [PMID: 11511117]
[11]
Golledge J, Eagle KA. Acute aortic dissection. Lancet 2008; 372(9632): 55-66.
[http://dx.doi.org/10.1016/S0140-6736(08)60994-0] [PMID: 18603160]
[12]
Debakey ME, Henly WS, Cooley DA, Morris GC Jr, Crawford ES, Beall AC Jr. Surgical Management Of Dissecting Aneurysms Of The Aorta. J Thorac Cardiovasc Surg 1965; 49: 130-49.
[http://dx.doi.org/10.1016/S0022-5223(19)33323-9] [PMID: 14261867]
[13]
Scholl FG, Coady MA, Davies R, et al. Interval or permanent nonoperative management of acute type A aortic dissection. Arch Surg 1999; 134(4): 402-5.
[http://dx.doi.org/10.1001/archsurg.134.4.402] [PMID: 10199313]
[14]
Grewal N, Gittenberger-de Groot AC. Pathogenesis of aortic wall complications in Marfan syndrome. Cardiovasc Pathol 2018; 33: 62-9.
[http://dx.doi.org/10.1016/j.carpath.2018.01.005] [PMID: 29433109]
[15]
Michel J-B. Biology of Vascular Wall Dilation and Rupture. Oxford, UK: Oxford University Press 2017.
[http://dx.doi.org/10.1093/med/9780198755777.003.0016]
[16]
Lacolley P, Regnault V, Nicoletti A, et al. The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc Res 2012; 95: 194-204.
[http://dx.doi.org/10.1093/cvr/cvs135]
[17]
Michel JB, Jondeau G, Milewicz DM. From genetics to response to injury: vascular smooth muscle cells in aneurysms and dissections of the ascending aorta. Cardiovasc Res 2018; 114(4): 578-89.
[http://dx.doi.org/10.1093/cvr/cvy006] [PMID: 29360940]
[18]
Sakai LY, Keene DR, Renard M, De Backer J. FBN1: The disease-causing gene for Marfan syndrome and other genetic disorders. Gene 2016; 591(1): 279-91.
[http://dx.doi.org/10.1016/j.gene.2016.07.033] [PMID: 27437668]
[19]
Brownstein AJ, Ziganshin BA, Kuivaniemi H, Body SC, Bale AE, Elefteriades JA. Genes associated with thoracic aortic aneurysm and dissection: an update and clinical implications. Aorta (Stamford) 2017; 5(1): 11-20.
[http://dx.doi.org/10.12945/j.aorta.2017.17.003] [PMID: 28868310]
[20]
Humphrey JD, Schwartz MA, Tellides G, Milewicz DM. Role of mechanotransduction in vascular biology: focus on thoracic aortic aneurysms and dissections. Circ Res 2015; 116(8): 1448-61.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.304936] [PMID: 25858068]
[21]
Wagenseil JE. Bio-chemo-mechanics of thoracic aortic aneurysms. Curr Opin Biomed Eng 2018; 5: 50-7.
[http://dx.doi.org/10.1016/j.cobme.2018.01.002] [PMID: 29911202]
[22]
Davies HA, Caamaño-Gutiérrez E, Chim YH, et al. Idiopathic degenerative thoracic aneurysms are associated with increased aortic medial amyloid. Amyloid 2019; 26(3): 148-55.
[http://dx.doi.org/10.1080/13506129.2019.1625323] [PMID: 31210552]
[23]
Ruiz-Ortega M, Rodríguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J. TGF-beta signaling in vascular fibrosis. Cardiovasc Res 2007; 74(2): 196-206.
[http://dx.doi.org/10.1016/j.cardiores.2007.02.008] [PMID: 17376414]
[24]
Trachet B, Piersigilli A, Fraga-Silva RA, et al. Ascending aortic aneurysm in angiotensin II infused mice: formation, progression, and the role of focal dissections. Arterioscler Thromb Vasc Biol 2016; 36(4): 673-81.
[http://dx.doi.org/10.1161/ATVBAHA.116.307211] [PMID: 26891740]
[25]
Rateri DL, Davis FM, Balakrishnan A, et al. Angiotensin II induces region-specific medial disruption during evolution of ascending aortic aneurysms. Am J Pathol 2014; 184(9): 2586-95.
[http://dx.doi.org/10.1016/j.ajpath.2014.05.014] [PMID: 25038458]
[26]
Rodrigues Díez R, Rodrigues-Díez R, Lavoz C, et al. Statins inhibit angiotensin II/Smad pathway and related vascular fibrosis, by a TGF-β-independent process. PLoS One 2010; 5(11): e14145.
[http://dx.doi.org/10.1371/journal.pone.0014145] [PMID: 21152444]
[27]
Milleron O, Arnoult F, Ropers J, et al. Marfan Sartan: a randomized, double-blind, placebo-controlled trial. Eur Heart J 2015; 36(32): 2160-6.
[http://dx.doi.org/10.1093/eurheartj/ehv151] [PMID: 25935877]
[28]
Bersi MR, Khosravi R, Wujciak AJ, Harrison DG, Humphrey JD. Differential cell-matrix mechanoadaptations and inflammation drive regional propensities to aortic fibrosis, aneurysm or dissection in hypertension. J R Soc Interface 2017; 14(136): 54.
[http://dx.doi.org/10.1098/rsif.2017.0327] [PMID: 29118111]
[29]
Bachmann M, Kukkurainen S, Hytönen VP, Wehrle-Haller B. Cell Adhesion by Integrins. Physiol Rev 2019; 99(4): 1655-99.
[http://dx.doi.org/10.1152/physrev.00036.2018] [PMID: 31313981]
[30]
Conway JRW, Jacquemet G. Cell matrix adhesion in cell migration. Essays Biochem 2019; 63(5): 535-51.
[http://dx.doi.org/10.1042/EBC20190012] [PMID: 31444228]
[31]
Maguire EM, Pearce SWA, Xiao R, Oo AY, Xiao Q. Matrix Metalloproteinase in Abdominal Aortic Aneurysm and Aortic Dissection. Pharmaceuticals (Basel) 2019; 12(3): E118.
[http://dx.doi.org/10.3390/ph12030118] [PMID: 31390798]
[32]
Nissinen L, Kähäri VM. Matrix metalloproteinases in inflammation. Biochim Biophys Acta 2014; 1840(8): 2571-80.
[http://dx.doi.org/10.1016/j.bbagen.2014.03.007] [PMID: 24631662]
[33]
An Z, Liu Y, Song ZG, Tang H, Yuan Y, Xu ZY. Mechanisms of aortic dissection smooth muscle cell phenotype switch. J Thorac Cardiovasc Surg 2017; 154(5): 1511-1521.e6.
[http://dx.doi.org/10.1016/j.jtcvs.2017.05.066] [PMID: 28625769]
[34]
Ikonomidis JS, Nadeau EK, Akerman AW, Stroud RE, Mukherjee R, Jones JA. Regulation of membrane type-1 matrix metalloproteinase activity and intracellular localization in clinical thoracic aortic aneurysms. J Thorac Cardiovasc Surg 2017; 153(3): 537-46.
[http://dx.doi.org/10.1016/j.jtcvs.2016.10.065] [PMID: 27923483]
[35]
Liu C, Zhang C, Jia L, et al. Interleukin-3 stimulates matrix metalloproteinase 12 production from macrophages promoting thoracic aortic aneurysm/dissection. Clin Sci (Lond) 2018; 132(6): 655-68.
[http://dx.doi.org/10.1042/CS20171529] [PMID: 29523595]
[36]
Pearce WH, Shively VP. Abdominal aortic aneurysm as a complex multifactorial disease: interactions of polymorphisms of inflammatory genes, features of autoimmunity, and current status of MMPs. Ann N Y Acad Sci 2006; 1085: 117-32.
[http://dx.doi.org/10.1196/annals.1383.025] [PMID: 17182928]
[37]
Benjamin MM, Khalil RA. Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. Exp Suppl 2012; 103: 209-79.
[http://dx.doi.org/10.1007/978-3-0348-0364-9_7] [PMID: 22642194]
[38]
Suzuki T, Distante A, Eagle K. Biomarker-assisted diagnosis of acute aortic dissection: how far we have come and what to expect. Curr Opin Cardiol 2010; 25(6): 541-5.
[http://dx.doi.org/10.1097/HCO.0b013e32833e6e13] [PMID: 20717014]
[39]
Botta DM Jr. Biomarkers for diagnosis in thoracic aortic disease: PRO. Cardiol Clin 2010; 28(2): 207-11.
[http://dx.doi.org/10.1016/j.ccl.2010.01.009] [PMID: 20452529]
[40]
Suzuki T, Distante A, Zizza A, et al. IRAD-Bio Investigators. Diagnosis of acute aortic dissection by D-dimer: the International Registry of Acute Aortic Dissection Substudy on Biomarkers (IRAD-Bio) experience. Circulation 2009; 119(20): 2702-7.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.833004] [PMID: 19433758]
[41]
Trescher K, Thometich B, Demyanets S, et al. Type A dissection and chronic dilatation: tenascin-C as a key factor in destabilization of the aortic wall. Interact Cardiovasc Thorac Surg 2013; 17(2): 365-70.
[http://dx.doi.org/10.1093/icvts/ivt204] [PMID: 23656926]
[42]
McCormick ML, Gavrila D, Weintraub NL. Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 2007; 27(3): 461-9.
[http://dx.doi.org/10.1161/01.ATV.0000257552.94483.14] [PMID: 17218601]
[43]
van Andel MM, Groenink M, Zwinderman AH, Mulder BJM, de Waard V. The Potential Beneficial Effects of Resveratrol on Cardiovascular Complications in Marfan Syndrome Patients−Insights from Rodent-Based Animal Studies. Int J Mol Sci 2019; 20(5): E1122.
[http://dx.doi.org/10.3390/ijms20051122] [PMID: 30841577]
[44]
Huynh DTN, Heo KS. Therapeutic targets for endothelial dysfunction in vascular diseases. Arch Pharm Res 2019; 42(10): 848-61.
[45]
Youssefi P, Sharma R, Figueroa CA, Jahangiri M. Functional assessment of thoracic aortic aneurysms - the future of risk prediction? Br Med Bull 2017; 121(1): 61-71.
[http://dx.doi.org/10.1093/bmb/ldw049] [PMID: 27989994]
[46]
Lo RC, Lu B, Fokkema MT, et al. Vascular Study Group of New England. Relative importance of aneurysm diameter and body size for predicting abdominal aortic aneurysm rupture in men and women. J Vasc Surg 2014; 59(5): 1209-16.
[http://dx.doi.org/10.1016/j.jvs.2013.10.104] [PMID: 24388278]
[47]
Fillinger MF, Raghavan ML, Marra SP, Cronenwett JL, Kennedy FE. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J Vasc Surg 2002; 36(3): 589-97.
[http://dx.doi.org/10.1067/mva.2002.125478] [PMID: 12218986]
[48]
Pol JA, Truijers M, van der Vliet JA, et al. Impact of dynamic computed tomographic angiography on endograft sizing for endovascular aneurysm repair. J Endovasc Ther 2009; 16(5): 546-51.
[http://dx.doi.org/10.1583/09-2775.1] [PMID: 19842723]
[49]
Suckow BD, Goodney PP, Columbo JA, et al. National trends in open surgical, endovascular, and branched-fenestrated endovascular aortic aneurysm repair in Medicare patients. J Vasc Surg 2018; 67(6): 1690-1697.e1.
[http://dx.doi.org/10.1016/j.jvs.2017.09.046] [PMID: 29290495]
[50]
Les AS, Shadden SC, Figueroa CA, et al. Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann Biomed Eng 2010; 38(4): 1288-313.
[http://dx.doi.org/10.1007/s10439-010-9949-x] [PMID: 20143263]
[51]
Suh GY, Les AS, Tenforde AS, et al. Quantification of particle residence time in abdominal aortic aneurysms using magnetic resonance imaging and computational fluid dynamics. Ann Biomed Eng 2011; 39(2): 864-83.
[http://dx.doi.org/10.1007/s10439-010-0202-4] [PMID: 21103933]
[52]
Lee JW, Hur JH, Yang DH, et al. Guidelines for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging-Part 2: Interpretation of Cine, Flow, and Angiography Data. Korean J Radiol 2019; 20(11): 1477-90.
[http://dx.doi.org/10.3348/kjr.2019.0407] [PMID: 31606953]
[53]
Zhao DL, Liu XD, Zhao CL, et al. Multislice spiral CT angiography for evaluation of acute aortic syndrome. Echocardiography 2017; 34(10): 1495-9.
[http://dx.doi.org/10.1111/echo.13663] [PMID: 28833419]
[54]
Renner J, Nadali Najafabadi H, Modin D, Länne T, Karlsson M. Subject-specific aortic wall shear stress estimations using semi-automatic segmentation. Clin Physiol Funct Imaging 2012; 32(6): 481-91.
[http://dx.doi.org/10.1111/j.1475-097X.2012.01146.x] [PMID: 23031070]
[55]
Madhavan S, Kemmerling EMC. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow. Biomed Eng Online 2018; 17(1): 66.
[http://dx.doi.org/10.1186/s12938-018-0497-1] [PMID: 29843730]
[56]
Pirola S, Cheng Z, Jarral OA, et al. On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics. J Biomech 2017; 60: 15-21.
[http://dx.doi.org/10.1016/j.jbiomech.2017.06.005] [PMID: 28673664]
[57]
Xu P, Liu X, Zhang H, et al. Assessment of boundary conditions for CFD simulation in human carotid artery. Biomech Model Mechanobiol 2018; 17(6): 1581-97.
[http://dx.doi.org/10.1007/s10237-018-1045-4] [PMID: 29982960]
[58]
Jayendiran R, Nour BM, Ruimi A. Dacron graft as replacement to dissected aorta: A three-dimensional fluid-structure-interaction analysis. J Mech Behav Biomed Mater 2018; 78: 329-41.
[http://dx.doi.org/10.1016/j.jmbbm.2017.11.029] [PMID: 29197751]
[59]
Lassila T, Manzoni A, Quarteroni A, Rozza G. A reduced computational and geometrical framework for inverse problems in hemodynamics. Int J Numer Methods Biomed Eng 2013; 29(7): 741-76.
[http://dx.doi.org/10.1002/cnm.2559] [PMID: 23798318]
[60]
Rodríguez-Palomares JF, Dux-Santoy L, Guala A, et al. Aortic flow patterns and wall shear stress maps by 4D-flow cardiovascular magnetic resonance in the assessment of aortic dilatation in bicuspid aortic valve disease. J Cardiovasc Magn Reson 2018; 20(1): 28.
[http://dx.doi.org/10.1186/s12968-018-0451-1] [PMID: 29695249]
[61]
Michael A. Day The no-slip condition of fluid dynamics Springer 1990; 33: 285-96.
[62]
Kleinstreuer C, Hyun S, Buchanan JR Jr, Longest PW, Archie JP Jr, Truskey GA. Hemodynamic Parameters and Early Intimal Thickening in Branching Blood Vessels. Crit Rev Biomed Eng 2017; 45(1-6): 319-82.
[http://dx.doi.org/10.1615/CritRevBiomedEng.v45.i1-6.140] [PMID: 29953383]
[63]
Riccardello GJ Jr, Shastri DN, Changa AR, et al. Influence of Relative Residence Time on Side-Wall Aneurysm Inception. Neurosurgery 2018; 83(3): 574-81.
[http://dx.doi.org/10.1093/neuros/nyx433] [PMID: 28945849]
[64]
Arzani A, Gambaruto AM, Chen G, Shadden SC. Wall shear stress exposure time: a Lagrangian measure of near-wall stagnation and concentration in cardiovascular flows. Biomech Model Mechanobiol 2017; 16(3): 787-803.
[http://dx.doi.org/10.1007/s10237-016-0853-7] [PMID: 27858174]
[65]
Sugiyama S, Niizuma K, Nakayama T, et al. Relative residence time prolongation in intracranial aneurysms: a possible association with atherosclerosis. Neurosurgery 2013; 73(5): 767-76.
[http://dx.doi.org/10.1227/NEU.0000000000000096] [PMID: 23863763]
[66]
Jayendiran Raja, Condemi Francesca, Campisi Salvatore, et al. Computational predction of hemodynamical and biomechanical alterations induced by aneurysm dilatation in patient-specific ascending thoracic aortas. Int J Numer Methods Biomed Eng 2020; 36(6): e3326.
[67]
Humphrey JD, Taylor CA. Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu Rev Biomed Eng 2008; 10: 221-46.
[http://dx.doi.org/10.1146/annurev.bioeng.10.061807.160439] [PMID: 18647115]
[68]
Chien S, Li S, Shyy YJ. Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 1998; 31(1 Pt 2): 162-9.
[http://dx.doi.org/10.1161/01.HYP.31.1.162] [PMID: 9453297]
[69]
Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 1995; 75(3): 519-60.
[http://dx.doi.org/10.1152/physrev.1995.75.3.519] [PMID: 7624393]
[70]
Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med 1994; 330(20): 1431-8.
[http://dx.doi.org/10.1056/NEJM199405193302008] [PMID: 8159199]
[71]
Langille BL. Arterial remodeling: relation to hemodynamics. Can J Physiol Pharmacol 1996; 74(7): 834-41.
[http://dx.doi.org/10.1139/y96-082] [PMID: 8946070]
[72]
Humphrey JD. Mechanisms of arterial remodeling in hypertension: coupled roles of wall shear and intramural stress. Hypertension 2008; 52(2): 195-200.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.103440] [PMID: 18541735]
[73]
Cebral JR, Vazquez M, Sforza DM, et al. Analysis of hemodynamics and wall mechanics at sites of cerebral aneurysm rupture. J Neurointerv Surg 2015; 7(7): 530-6.
[http://dx.doi.org/10.1136/neurintsurg-2014-011247] [PMID: 24827066]
[74]
Gnasso A, Irace C, Carallo C, et al. In vivo association between low wall shear stress and plaque in subjects with asymmetrical carotid atherosclerosis. Stroke 1997; 28(5): 993-8.
[http://dx.doi.org/10.1161/01.STR.28.5.993] [PMID: 9158640]
[75]
Gnasso A, Carallo C, Irace C, et al. Association between intima-media thickness and wall shear stress in common carotid arteries in healthy male subjects. Circulation 1996; 94(12): 3257-62.
[http://dx.doi.org/10.1161/01.CIR.94.12.3257] [PMID: 8989138]
[76]
Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999; 282(21): 2035-42.
[http://dx.doi.org/10.1001/jama.282.21.2035] [PMID: 10591386]
[77]
Della Corte A, De Santo LS, Montagnani S, et al. Spatial patterns of matrix protein expression in dilated ascending aorta with aortic regurgitation: congenital bicuspid valve versus Marfan’s syndrome. J Heart Valve Dis 2006; 15(1): 20-7.
[PMID: 16480008]
[78]
Della Corte A, Quarto C, Bancone C, et al. Spatiotemporal patterns of smooth muscle cell changes in ascending aortic dilatation with bicuspid and tricuspid aortic valve stenosis: focus on cell-matrix signaling. J Thorac Cardiovasc Surg 135: 8-18.2008;
[http://dx.doi.org/ 10.1016/j.jtcvs.2007.09.009]
[79]
Guzzardi DG, Barker AJ, van Ooij P, et al. Valve-related hemodynamics mediate human bicuspid aortopathy: insights from wall shear stress mapping. J Am Coll Cardiol 2015; 66(8): 892-900.
[http://dx.doi.org/10.1016/j.jacc.2015.06.1310] [PMID: 26293758]
[80]
Michelena HI, Della Corte A, Prakash SK, Milewicz DM, Evangelista A, Enriquez-Sarano M. Bicuspid aortic valve aortopathy in adults: Incidence, etiology, and clinical significance. Int J Cardiol 2015; 201: 400-7.
[http://dx.doi.org/10.1016/j.ijcard.2015.08.106] [PMID: 26310986]
[81]
Michelena HI, Khanna AD, Mahoney D, et al. Incidence of aortic complications in patients with bicuspid aortic valves. JAMA 2011; 306(10): 1104-12.
[http://dx.doi.org/10.1001/jama.2011.1286] [PMID: 21917581]
[82]
Padang R, Bannon PG, Jeremy R, et al. The genetic and molecular basis of bicuspid aortic valve associated thoracic aortopathy: a link to phenotype heterogeneity. Ann Cardiothorac Surg 2013; 2(1): 83-91.
[PMID: 23977563]
[83]
Siu SC, Silversides CK. Bicuspid aortic valve disease. J Am Coll Cardiol 2010; 55(25): 2789-800.
[http://dx.doi.org/10.1016/j.jacc.2009.12.068] [PMID: 20579534]
[84]
Cripe L, Andelfinger G, Martin LJ, Shooner K, Benson DW. Bicuspid aortic valve is heritable. J Am Coll Cardiol 2004; 44(1): 138-43.
[http://dx.doi.org/10.1016/j.jacc.2004.03.050] [PMID: 15234422]
[85]
Vallely MP, Semsarian C, Bannon PG. Management of the ascending aorta in patients with bicuspid aortic valve disease. Heart Lung Circ 2008; 17(5): 357-63.
[http://dx.doi.org/10.1016/j.hlc.2008.01.007] [PMID: 18514024]
[86]
Ward C. Clinical significance of the bicuspid aortic valve. Heart 2000; 83(1): 81-5.
[http://dx.doi.org/10.1136/heart.83.1.81] [PMID: 10618341]
[87]
Barker AJ, Markl M, Bürk J, et al. Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imaging 2012; 5(4): 457-66.
[http://dx.doi.org/10.1161/CIRCIMAGING.112.973370] [PMID: 22730420]
[88]
Girdauskas E, Borger MA, Secknus MA, Girdauskas G, Kuntze T. Is aortopathy in bicuspid aortic valve disease a congenital defect or a result of abnormal hemodynamics? A critical reappraisal of a one-sided argument. Eur J Cardiothorac Surg 2011; 39(6): 809-14.
[http://dx.doi.org/10.1016/j.ejcts.2011.01.001] [PMID: 21342769]
[89]
Girdauskas E, Borger MA. Surgical threshold for bicuspid aortic valve-associated aortopathy: does the phenotype matter? JACC Cardiovasc Imaging 2014; 7(3): 318.
[http://dx.doi.org/10.1016/j.jcmg.2013.12.012] [PMID: 24651107]
[90]
Bissell MM, Hess AT, Biasiolli L, et al. Aortic dilation in bicuspid aortic valve disease: flow pattern is a major contributor and differs with valve fusion type. Circ Cardiovasc Imaging 2013; 6(4): 499-507.
[http://dx.doi.org/10.1161/CIRCIMAGING.113.000528] [PMID: 23771987]
[91]
Mahadevia R, Barker AJ, Schnell S, et al. Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy. Circulation 2014; 129(6): 673-82.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.003026] [PMID: 24345403]
[92]
Piatti F, Pirola S, Bissell M, et al. Towards the improved quantification of in vivo abnormal wall shear stresses in BAV-affected patients from 4D-flow imaging: Benchmarking and application to real data. J Biomech 2017; 50: 93-101.
[http://dx.doi.org/10.1016/j.jbiomech.2016.11.044] [PMID: 27863744]
[93]
Piatti F, Sturla F, Bissell MM, et al. 4D Flow Analysis of BAV-Related Fluid-Dynamic Alterations: Evidences of Wall Shear Stress Alterations in Absence of Clinically-Relevant Aortic Anatomical Remodeling. Front Physiol 2017; 8: 441.
[http://dx.doi.org/10.3389/fphys.2017.00441] [PMID: 28694784]
[94]
Fatehi Hassanabad A, Barker AJ, Guzzardi D, et al. Evolution of Precision Medicine and Surgical Strategies for Bicuspid Aortic Valve-Associated Aortopathy. Front Physiol 2017; 8: 475.
[http://dx.doi.org/10.3389/fphys.2017.00475] [PMID: 28740468]
[95]
Gülan U, Calen C, Duru F, Holzner M. Blood flow patterns and pressure loss in the ascending aorta: A comparative study on physiological and aneurysmal conditions. J Biomech 2018; 76: 152-9.
[http://dx.doi.org/10.1016/j.jbiomech.2018.05.033] [PMID: 29907330]
[96]
Condemi F, Campisi S, Viallon M, Croisille P, Fuzelier JF, Avril S. Ascending thoracic aorta aneurysm repair induces positive hemodynamic outcomes in a patient with unchanged bicuspid aortic valve. J Biomech 2018; 81: 145-8.
[http://dx.doi.org/10.1016/j.jbiomech.2018.09.022] [PMID: 30340762]
[97]
Youssefi P, Gomez A, He T, et al. Patient-specific computational fluid dynamics-assessment of aortic hemodynamics in a spectrum of aortic valve pathologies. J Thorac Cardiovasc Surg 2017; 153(1): 8-20.e3.
[http://dx.doi.org/10.1016/j.jtcvs.2016.09.040] [PMID: 27847162]
[98]
Condemi F, Campisi S, Viallon M, et al. Fluid- and Biomechanical Analysis of Ascending Thoracic Aorta Aneurysm with Concomitant Aortic Insufficiency. Ann Biomed Eng 2017; 45(12): 2921-32.
[http://dx.doi.org/10.1007/s10439-017-1913-6] [PMID: 28905268]
[99]
Lorenz R, Bock J, Barker AJ, et al. 4D flow magnetic resonance imaging in bicuspid aortic valve disease demonstrates altered distribution of aortic blood flow helicity. Magn Reson Med 2014; 71(4): 1542-53.
[http://dx.doi.org/10.1002/mrm.24802] [PMID: 23716466]
[100]
Campobasso R, Condemi F, Viallon M, Croisille P, Campisi S, Avril S. Evaluation of Peak Wall Stress in an Ascending Thoracic Aortic Aneurysm Using FSI Simulations: Effects of Aortic Stiffness and Peripheral Resistance. Cardiovasc Eng Technol 2018; 9(4): 707-22.
[http://dx.doi.org/10.1007/s13239-018-00385-z] [PMID: 30341731]
[101]
Borger MA, Fedak PWM, Stephens EH, et al. The American Association for Thoracic Surgery consensus guidelines on bicuspid aortic valve-related aortopathy: Full online-only version. J Thorac Cardiovasc Surg 2018; 156(2): e41-74.
[http://dx.doi.org/10.1016/j.jtcvs.2018.02.115] [PMID: 30011777]
[102]
O’Rourke M, Farnsworth A, O’Rourke J. Aortic dimensions and stiffness in normal adults. JACC Cardiovasc Imaging 2008; 1(6): 749-51.
[http://dx.doi.org/10.1016/j.jcmg.2008.08.002] [PMID: 19356511]
[103]
O’Rourke MF, Hashimoto J. Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol 2007; 50(1): 1-13.
[http://dx.doi.org/10.1016/j.jacc.2006.12.050] [PMID: 17601538]
[104]
Mitchell GF, Hwang SJ, Vasan RS, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation 2010; 121(4): 505-11.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.886655] [PMID: 20083680]
[105]
Ohyama Y, Redheuil A, Kachenoura N, Ambale Venkatesh B, Lima JAC. Imaging Insights on the Aorta in Aging. Circ Cardiovasc Imaging 2018; 11(4): e005617.
[http://dx.doi.org/10.1161/CIRCIMAGING.117.005617] [PMID: 29653929]
[106]
Yanagisawa H, Wagenseil J. Elastic fibers and biomechanics of the aorta: Insights from mouse studies. Matrix Biol 2020; 85-86: 160-72.
[PMID: 30880160]
[107]
McEniery CM. Yasmin, Hall IR, Qasem A, Wilkinson IB, Cockcroft JR. ACCT Investigators. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol 2005; 46(9): 1753-60.
[http://dx.doi.org/10.1016/j.jacc.2005.07.037] [PMID: 16256881]
[108]
Kenyhercz WE, Raterman B, Illapani VS, et al. Quantification of aortic stiffness using magnetic resonance elastography: Measurement reproducibility, pulse wave velocity comparison, changes over cardiac cycle, and relationship with age. Magn Reson Med 2016; 75(5): 1920-6.
[http://dx.doi.org/10.1002/mrm.25719] [PMID: 26096227]
[109]
London GM, Guerin AP. Influence of arterial pulse and reflected waves on blood pressure and cardiac function. Am Heart J 1999; 138(3 Pt 2): 220-4.
[http://dx.doi.org/10.1016/S0002-8703(99)70313-3] [PMID: 10467216]
[110]
Kass DA. Ventricular arterial stiffening: integrating the pathophysiology. Hypertension 2005; 46(1): 185-93.
[http://dx.doi.org/10.1161/01.HYP.0000168053.34306.d4] [PMID: 15911741]
[111]
Safar ME, Levy BI, Struijker-Boudier H. Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation 2003; 107(22): 2864-9.
[http://dx.doi.org/10.1161/01.CIR.0000069826.36125.B4] [PMID: 12796414]
[112]
Boutouyrie P, Tropeano AI, Asmar R, et al. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension 2002; 39(1): 10-5.
[http://dx.doi.org/10.1161/hy0102.099031] [PMID: 11799071]
[113]
Redheuil A, Yu WC, Mousseaux E, et al. Age-related changes in aortic arch geometry: relationship with proximal aortic function and left ventricular mass and remodeling. J Am Coll Cardiol 2011; 58(12): 1262-70.
[http://dx.doi.org/10.1016/j.jacc.2011.06.012] [PMID: 21903061]
[114]
López-Guimet J, Peña-Pérez L, Bradley RS, et al. MicroCT imaging reveals differential 3D micro-scale remodelling of the murine aorta in ageing and Marfan syndrome. Theranostics 2018; 8(21): 6038-52.
[http://dx.doi.org/10.7150/thno.26598] [PMID: 30613281]
[115]
Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 2014; 15(12): 786-801.
[http://dx.doi.org/10.1038/nrm3904] [PMID: 25415508]
[116]
Gurovich AN, Braith RW. Pulse wave analysis and pulse wave velocity techniques: are they ready for the clinic? Hypertens Res 2011; 34(2): 166-9.
[http://dx.doi.org/10.1038/hr.2010.217] [PMID: 21107336]
[117]
Sherifova S, Holzapfel GA. Biomechanics of aortic wall failure with a focus on dissection and aneurysm: A review. Acta Biomater 2019; 99: 1-17.
[http://dx.doi.org/10.1016/j.actbio.2019.08.017] [PMID: 31419563]