[1]
Robin Poole A. Osteoarthritis as a whole joint disease. HSS J 2012; 8(1): 4-6.
[2]
Pang J, Li P, Qiu M, Chen W. Automatic articular cartilage segmentation based on pattern recognition from knee MRI images. J Digit Imaging 2015; 28(6): 695-703.
[3]
Culvenor AG, Øiestad BE, Hart HF, Stefanik JJ, Guermazi A. Prevalence of knee osteoarthritis features on magnetic resonance imaging in asymptomatic uninjured adults: a systematic review and meta-analysis. Br J Sports Med 2019; 53(20): 1268-78.
[5]
Nagai K, Nakamura T, Fu FH. The diagnosis of early osteoarthritis of the knee using magnetic resonance imaging. Ann Joint 2018; 3: 110.
[9]
Hossain MB, Pingguan-Murphy B, Chai HY, et al. Improved ultrasound imaging for knee osteoarthritis detection. medical imaging technology. Springer 2015; pp. 1-40.
[10]
Lee S, Park SH, Shim H, Yun ID, Lee SUK. Optimization of local shape and appearance probabilities for segmentation of knee cartilage in 3-D MR images. Comput Vis Image Underst 2011; 115(12): 1710-20.
[11]
Folkesson J, Dam EB, Olsen OF, Pettersen PC. Segmenting articular cartilage automatically using a voxel classification approach. IEEE Trans Med Imaging 2007; 26(1): 106-5.
[14]
Tiulpin A, Thevenot J, Rahtu E, Lehenkari P. Automatic knee osteoarthritis diagnosis from plain radiographs: A deep learning-based approach. Sci Rep 2018; 8(1): 1727.
[16]
Salih AAM, Hasikin K, Isa ANAM. Adaptive fuzzy exposure local contrast enhancement. IEEE Access 2018; 6: 58794-806.
[20]
Long J, Shelhamer E, Darrell T, Eds. Fully convolutional networks for semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition. Boston, MA, USA.
[21]
Nair V, Hinton GE, Eds. Rectified linear units improve restricted boltzmann machines.
Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel 2010.
[22]
Huang G, Liu Z, Van Der Maaten L, Weinberger KQ, Eds. Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition. Honolulu, HI, USA.
[24]
Chaurasia A, Culurciello E, Eds. Linknet: Exploiting encoder representations for efficient semantic segmentation. 2017 IEEE Visual Communications and Image Processing (VCIP) 2017. St. Petersburg, FL, USA.
[25]
Glorot X, Bengio Y, Eds. Understanding the difficulty of training deep feedforward neural networks. Proceedings of the thirteenth international conference on artificial intelligence and statistics PMLR. 9: 249-56.
[27]
Iglovikov V. Ternausnet: U-net with vgg11 encoder pre-trained on imagenet for image segmentation. arXiv:180105746 [csCV] 2018.
[28]
Shvets AA, Iglovikov VI, Rakhlin A, Kalinin AA. Angiodysplasia detection and localization using deep convolutional neural networks. 2018 17th IEEE international conference on machine learning and applications (icmla). Orlando, FL, USA.
[29]
Simonyan K. Very deep convolutional networks for large-scale image recognition. 2014. arXiv:1409.1556 [cs.CV].
[30]
He K, Zhang X, Ren S, Sun J, Eds. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas, NV, USA.
[32]
Bahdanau D, Cho K. Neural machine translation by jointly learning to align and translate. 2014. arXiv:1409.0473 [cs.CL].
[33]
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Eds. Attention is all you need. 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA 2017.
[34]
Jetley S, Lord NA, Lee N, Torr PH. Learn to pay attention. 2018. arXiv:1804.02391 [cs.CV].
[35]
Veličković P, Cucurull G, Casanova A, Romero A, Lio P. Graph attention networks. 2017. arXiv:1710.10903 [stat.ML].
[36]
Oktay O, Schlemper J, Folgoc LL, et al. Attention U-net: Learning where to look for the pancreas. 2018. arXiv:1804.03999 [cs.CV].
[37]
Alom MZ, Hasan M, Yakopcic C, Taha TM. Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. 2018. arXiv:1802.06955 [cs.CV].
[38]
Jin Q, Meng Z, Sun C, Wei L. RA-UNet: A hybrid deep attention-aware network to extract liver and tumor in CT scans. 2018. arXiv:1811.01328 [cs.CV].
[39]
Zhuang J. Laddernet: Multi-path networks based on u-net for medical image segmentation. 2018. arXiv:1810.07810 [cs.CV].