Coronavirus Pandemic: Role of Bats And Zoonotic Transmission in Humans

Article ID: e140721189086 Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: In the past two decades, the human coronavirus (HCoV) outbreaks have gripped the international communities almost six times in different forms [HCoV-OC43 (2001); HCoV-NL63 (2004); SARS-CoV (2003); HCoV HKU1 (2005); MERS- CoV (2012); SARS-CoV- -2 (2019)]. These emerging pathogens have been proven very challenging from medical perspectives, economic conditions, and psychological impact on human society.

Introduction: SARS-CoV-2, a novel coronavirus, has evidenced a historic yet troublesome pandemic across the globe. In humans, its clinical manifestations may range from asymptomatic, severe pneumonia to mortality. Bats are the natural reservoirs of a variety of viruses belonging to the family Coronaviridae. Most of the bats harboring coronaviruses mainly reside in Asian and African regions.

Objective: The objective was to describe the various characteristic features of all coronaviruses, clinical manifestations, and complications associated with SARS-CoV-2. The major goal was to highlight the involvement of the strong immune system of bats in the cross-species transmission of coronaviruses in intermediate hosts and, finally, zoonotic transmission in humans.

Methodology: A systematic literature search was conducted for high quality research and review articles. We searched the databases for articles published between the year 1972 to 2020 with search terms zoonosis, coronaviruses, zoonotic transmissions, clinical manifestations, and the immune system of bats.

Conclusion: The domestic and non-domestic animals come in closer contact with humans. Some requisite measures should be taken to decrease the contact with livestock to prevent further threatening viral transmissions. Furthermore, the remarkable immune system of bats is required to inquire thoroughly to develop novel therapeutics to conquer the evolving coronaviruses in the future.

Keywords: COVID-19, zoonosis, bats, coronoviridae, SARS, MERS, coronavirus, chinese horse-shoe bat.

Graphical Abstract

[1]
Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D. Viruses: Structure, function, and uses. In: Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Eds. Molecular Cell Biology. 4th edition. New York: WH Freeman 2000.
[2]
Green VA, Munshi SU, Marakalala MJ, Mourão MM. Molecular mechanisms of viral infection and propagation: an overview of the second advanced summer school in Africa. IUBMB Life 2010; 62(8): 573-83.
[http://dx.doi.org/10.1002/iub.364] [PMID: 20681023]
[3]
World Health Organization. Report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19). Available from: https://www.who.int/publications-detail-redirect/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-(covid-19)
[4]
Ye ZW, Yuan S, Yuen KS, Fung SY, Chan CP, Jin DY. Zoonotic origins of human coronaviruses. Int J Biol Sci 2020; 16(10): 1686-97.
[http://dx.doi.org/10.7150/ijbs.45472] [PMID: 32226286]
[5]
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[6]
Khot WY, Nadkar MY. The 2019 novel coronavirus outbreak-A global threat. J Assoc Physicians India 2020; 68(3): 67-71.
[PMID: 32138488]
[7]
Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016; 3(1): 237-61.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[8]
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17(3): 181-92.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[9]
Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM, Al-Nasser AD. SARS-CoV-2 and coronavirus disease 2019: What we know so far. Pathogens 2020; 9(3): 231.
[http://dx.doi.org/10.3390/pathogens9030231] [PMID: 32245083]
[10]
Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 2009; 7(6): 439-50.
[http://dx.doi.org/10.1038/nrmicro2147] [PMID: 19430490]
[11]
Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res 2020; 24: 91-8.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[12]
Arshad Ali S, Baloch M, Ahmed N, Arshad Ali A, Iqbal A. The outbreak of Coronavirus Disease 2019 (COVID-19)-An emerging global health threat. J Infect Public Health 2020; 13(4): 644-6.
[http://dx.doi.org/10.1016/j.jiph.2020.02.033] [PMID: 32199792]
[13]
Fung TS, Liu DX. Human coronavirus: host-pathogen interaction. Annu Rev Microbiol 2019; 73: 529-57.
[http://dx.doi.org/10.1146/annurev-micro-020518-115759] [PMID: 31226023]
[14]
Vassilara F, Spyridaki A, Pothitos G, Deliveliotou A, Papadopoulos A. A rare case of human coronavirus 229E associated with acute respiratory distress syndrome in a healthy adult. Case Rep Infect Dis 2018; 2018: 6796839.
[http://dx.doi.org/10.1155/2018/6796839] [PMID: 29850307]
[15]
Vabret A, Mourez T, Gouarin S, Petitjean J, Freymuth F. An outbreak of coronavirus OC43 respiratory infection in Normandy, France. Clin Infect Dis 2003; 36(8): 985-9.
[http://dx.doi.org/10.1086/374222] [PMID: 12684910]
[16]
Gaunt ER, Hardie A, Claas EC, Simmonds P, Templeton KE. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol 2010; 48(8): 2940-7.
[http://dx.doi.org/10.1128/JCM.00636-10] [PMID: 20554810]
[17]
Abdul-Rasool S, Fielding BC. Understanding human coronavirus HCoV-NL63. Open Virol J 2010; 4: 76-84.
[http://dx.doi.org/10.2174/1874357901004010076] [PMID: 20700397]
[18]
van der Hoek L, Berkhout B. Questions concerning the New Haven coronavirus. J Infect Dis 2005; 192(2): 350-1.
[http://dx.doi.org/10.1086/430795] [PMID: 15962232]
[19]
Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013; 495(7440): 251-4.
[http://dx.doi.org/10.1038/nature12005] [PMID: 23486063]
[20]
Contini C, Di Nuzzo M, Barp N, et al. The novel zoonotic COVID-19 pandemic: An expected global health concern. J Infect Dev Ctries 2020; 14(3): 254-64.
[http://dx.doi.org/10.3855/jidc.12671] [PMID: 32235085]
[21]
Yang M, Li CK, Li K, et al. Hematological findings in SARS patients and possible mechanisms (review). Int J Mol Med 2004; 14(2): 311-5.
[http://dx.doi.org/10.3892/ijmm.14.2.311] [PMID: 15254784]
[22]
Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS- CoV-2 associated with the COVID-19 outbreak. Curr Biol 2020; 30(7): 1346-1351.e2.
[http://dx.doi.org/10.1016/j.cub.2020.03.022] [PMID: 32197085]
[23]
Corman VM, Muth D, Niemeyer D, Drosten C. Hosts and sources of endemic human coronaviruses. Adv Virus Res 2018; 100: 163-88.
[http://dx.doi.org/10.1016/bs.aivir.2018.01.001] [PMID: 29551135]
[24]
Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci USA 2009; 106(14): 5871-6.
[http://dx.doi.org/10.1073/pnas.0809524106] [PMID: 19321428]
[25]
Bertram S, Dijkman R, Habjan M, et al. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J Virol 2013; 87(11): 6150-60.
[http://dx.doi.org/10.1128/JVI.03372-12] [PMID: 23536651]
[26]
Bosch BJ, Bartelink W, Rottier PJ. Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide. J Virol 2008; 82(17): 8887-90.
[http://dx.doi.org/10.1128/JVI.00415-08] [PMID: 18562523]
[27]
Hamming I, Timens W, Bulthuis ML, Lely AT, Navis GV, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203: 631-7.
[http://dx.doi.org/10.1002/path.1570]
[28]
Jia HP, Look DC, Shi L, et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol 2005; 79(23): 14614-21.
[http://dx.doi.org/10.1128/JVI.79.23.14614-14621.2005] [PMID: 16282461]
[29]
Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis 2020; 30: 1346-51.
[http://dx.doi.org/10.1016/j.ijid.2020.03.017]
[30]
Ather A, Patel B, Ruparel NB, Diogenes A, Hargreaves KM. Coronavirus Disease 19 (COVID-19): Implications for clinical dental care. J Endod 2020; 46(5): 584-95.
[http://dx.doi.org/10.1016/j.joen.2020.03.008] [PMID: 32273156]
[31]
Musa S. Hepatic and gastrointestinal involvement in coronavirus disease 2019 (COVID-19): What do we know till now? Arab J Gastroenterol 2020; 21(1): 3-8.
[http://dx.doi.org/10.1016/j.ajg.2020.03.002] [PMID: 32253172]
[32]
Guan WJ, Liang WH, Zhao Y, et al. China medical treatment expert group for COVID-19. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J 2020; 55(5): 547-603.
[http://dx.doi.org/10.1183/13993003.00547-2020] [PMID: 32217650]
[33]
Parrish CR, Holmes EC, Morens DM, et al. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol Mol Biol Rev 2008; 72(3): 457-70.
[http://dx.doi.org/10.1128/MMBR.00004-08] [PMID: 18772285]
[34]
Tomley FM, Shirley MW. Livestock infectious diseases and zoonoses. Philos Trans R Soc Lond B Biol Sci 2009; 364(1530): 2637-42.
[http://dx.doi.org/10.1098/rstb.2009.0133] [PMID: 19687034]
[35]
Eaton BT, Broder CC, Middleton D, Wang LF. Hendra and Nipah viruses: different and dangerous. Nat Rev Microbiol 2006; 4(1): 23-35.
[http://dx.doi.org/10.1038/nrmicro1323] [PMID: 16357858]
[36]
Taylor LH, Latham SM, Woolhouse ME. Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 2001; 356(1411): 983-9.
[http://dx.doi.org/10.1098/rstb.2001.0888] [PMID: 11516376]
[37]
Jones KE, Patel NG, Levy MA, et al. Global trends in emerging infectious diseases. Nature 2008; 451(7181): 990-3.
[http://dx.doi.org/10.1038/nature06536] [PMID: 18288193]
[38]
King DA, Peckham C, Waage JK, Brownlie J, Woolhouse ME. Epidemiology. Infectious diseases: preparing for the future. Science 2006; 313(5792): 1392-3.
[http://dx.doi.org/10.1126/science.1129134] [PMID: 16959992]
[39]
Pulliam JR, Dushoff J. Ability to replicate in the cytoplasm predicts zoonotic transmission of livestock viruses. J Infect Dis 2009; 199(4): 565-8.
[http://dx.doi.org/10.1086/596510] [PMID: 19281304]
[40]
Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T. Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev 2006; 19(3): 531-45.
[http://dx.doi.org/10.1128/CMR.00017-06] [PMID: 16847084]
[41]
Hu B, Ge X, Wang LF, Shi Z. Bat origin of human coronaviruses. Virol J 2015; 12: 221.
[http://dx.doi.org/10.1186/s12985-015-0422-1] [PMID: 26689940]
[42]
Campbell CAR. Bats, mosquitoes and dollars. Boston, Mass: The Stratford Co. 1925.
[43]
Hill JE, Smith JD. Bats: A natural history. Austin: University of Texas Press 1984.
[44]
Kunz TH, Fenton MB. Bat ecology. Chicago III: University of Chicago Press 2003.
[45]
Lau SK, Li KS, Tsang AK, et al. Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault’s rousettes to pomona leaf-nosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders. J Virol 2012; 86(21): 11906-18.
[http://dx.doi.org/10.1128/JVI.01305-12] [PMID: 22933277]
[46]
Tao Y, Shi M, Chommanard C, et al. Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history. J Virol 2017; 91(5): e01953-16.
[http://dx.doi.org/10.1128/JVI.01953-16] [PMID: 28077633]
[47]
Chu DKW, Poon LLM, Chan KH, et al. Coronaviruses in bent-winged bats (Miniopterus spp.). J Gen Virol 2006; 87(Pt 9): 2461-6.
[http://dx.doi.org/10.1099/vir.0.82203-0] [PMID: 16894183]
[48]
Lau SK, Woo PC, Li KS, et al. Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome. Virology 2007; 367(2): 428-39.
[http://dx.doi.org/10.1016/j.virol.2007.06.009] [PMID: 17617433]
[49]
Mao X, He G, Zhang J, Rossiter SJ, Zhang S. Lineage divergence and historical gene flow in the Chinese horseshoe bat (Rhinolophus sinicus). PLoS One 2013; 8(2): e56786.
[http://dx.doi.org/10.1371/journal.pone.0056786] [PMID: 23451086]
[50]
Chen YN, Hsu HC, Wang SW, Lien HC, Lu HT, Peng SK. Entry of Scotophilus bat coronavirus-512 and severe acute respiratory syndrome coronavirus in human and multiple animal cells. Pathogens 2019; 8(4): 259.
[http://dx.doi.org/10.3390/pathogens8040259] [PMID: 31766704]
[51]
Poon LL, Chu DK, Chan KH, et al. Identification of a novel coronavirus in bats. J Virol 2005; 79(4): 2001-9.
[http://dx.doi.org/10.1128/JVI.79.4.2001-2009.2005] [PMID: 15681402]
[52]
Dominguez SR, O’Shea TJ, Oko LM, Holmes KV. Detection of group 1 coronaviruses in bats in North America. Emerg Infect Dis 2007; 13(9): 1295-300.
[http://dx.doi.org/10.3201/eid1309.070491] [PMID: 18252098]
[53]
Eguren RE, McBee K. Tylonycteris pachypus (Chiroptera: Vespertilionidae). Mam Spe 2014; 46: 33-9.
[http://dx.doi.org/10.1644/910]
[54]
Goodman SM, Taylor PJ, Ratrimomanarivo F, Hoofer S. The genus Neoromicia (family Vespertilionidae) in Madagascar, with the description of a new species. Zootaxa 2012; 3250: 1-25.
[http://dx.doi.org/10.11646/zootaxa.3250.1.1]
[55]
Lau SK, Li KS, Tsang AK, et al. Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus. J Virol 2013; 87(15): 8638-50.
[http://dx.doi.org/10.1128/JVI.01055-13] [PMID: 23720729]
[56]
Lau SK, Poon RW, Wong BH, et al. Coexistence of different genotypes in the same bat and serological characterization of Rousettus bat coronavirus HKU9 belonging to a novel Betacoronavirus subgroup. J Virol 2010; 84(21): 11385-94.
[http://dx.doi.org/10.1128/JVI.01121-10] [PMID: 20702646]
[57]
Casais R, Thiel V, Siddell SG, Cavanagh D, Britton P. Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol 2001; 75(24): 12359-69.
[http://dx.doi.org/10.1128/JVI.75.24.12359-12369.2001] [PMID: 11711626]
[58]
Mihindukulasuriya KA, Wu G, St Leger J, Nordhausen RW, Wang D. Identification of a novel coronavirus from a beluga whale by using a panviral microarray. J Virol 2008; 82(10): 5084-8.
[http://dx.doi.org/10.1128/JVI.02722-07] [PMID: 18353961]
[59]
Woo PC, Lau SK, Lam CS, et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol 2012; 86(7): 3995-4008.
[http://dx.doi.org/10.1128/JVI.06540-11] [PMID: 22278237]
[60]
Woo PC, Lau SK, Li KS, et al. Molecular diversity of coronaviruses in bats. Virology 2006; 351(1): 180-7.
[http://dx.doi.org/10.1016/j.virol.2006.02.041] [PMID: 16647731]
[61]
Woo PC, Lau SK, Tsang CC, et al. Coronavirus HKU15 in respiratory tract of pigs and first discovery of coronavirus quasispecies in 5′-untranslated region. Emerg Microbes Infect 2017; 6(6): e53.
[http://dx.doi.org/10.1038/emi.2017.37] [PMID: 28634353]
[62]
Subudhi S, Rapin N, Misra V. Immune system modulation and viral persistence in bats: Understanding viral spillover. Viruses 2019; 11(2): 192.
[http://dx.doi.org/10.3390/v11020192] [PMID: 30813403]
[63]
Paul BN, Chakravarty AK. In vitro analysis of delayed immune response in a bat, Pteropus giganteus: process of con-A mediated activation. Dev Comp Immunol 1986; 10(1): 55-67.
[http://dx.doi.org/10.1016/0145-305X(86)90044-3] [PMID: 3699225]
[64]
Sarkar SK, Chakravarty AK. Analysis of immunocompetent cells in the bat, Pteropus giganteus: isolation and scanning electron microscopic characterization. Dev Comp Immunol 1991; 15(4): 423-30.
[http://dx.doi.org/10.1016/0145-305X(91)90034-V] [PMID: 1773865]
[65]
Schinnerl M, Aydinonat D, Schwarzenberger F, Voigt CC. Hematological survey of common neotropical bat species from Costa Rica. J Zoo Wildl Med 2011; 42(3): 382-91.
[http://dx.doi.org/10.1638/2010-0060.1] [PMID: 22950309]
[66]
Chakravarty AK, Paul BN. Analysis of suppressor factor in delayed immune responses of a bat, Pteropus giganteus. Dev Comp Immunol 1987; 11(3): 649-60.
[http://dx.doi.org/10.1016/0145-305X(87)90053-X] [PMID: 2960576]
[67]
Stockmaier S, Dechmann DK, Page RA, O’Mara MT. No fever and leucocytosis in response to a lipopolysaccharide challenge in an insectivorous bat. Biol Lett 2015; 11(9): 20150576.
[http://dx.doi.org/10.1098/rsbl.2015.0576] [PMID: 26333664]
[68]
Thomas SP, Suthers RA. The physiology and energetics of bat flight. J Exp Biol 1972; 57: 317-35.
[http://dx.doi.org/10.1242/jeb.57.2.317]
[69]
Bundle MW, Hansen KS, Dial KP. Does the metabolic rate-flight speed relationship vary among geometrically similar birds of different mass? J Exp Biol 2007; 210(Pt 6): 1075-83.
[http://dx.doi.org/10.1242/jeb.02727] [PMID: 17337719]
[70]
Banerjee A, Baker ML, Kulcsar K, Misra V, Plowright R, Mossman K. Novel insights into immune systems of bats. Front Immunol 2020; 11: 26.
[http://dx.doi.org/10.3389/fimmu.2020.00026] [PMID: 32117225]
[71]
Baker ML, Schountz T, Wang LF. Antiviral immune responses of bats: a review. Zoonoses Public Health 2013; 60(1): 104-16.
[http://dx.doi.org/10.1111/j.1863-2378.2012.01528.x] [PMID: 23302292]
[72]
Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol 2001; 1(2): 135-45.
[http://dx.doi.org/10.1038/35100529] [PMID: 11905821]
[73]
Papenfuss AT, Baker ML, Feng ZP, et al. The immune gene repertoire of an important viral reservoir, the Australian black flying fox. BMC Genomics 2012; 13: 261.
[http://dx.doi.org/10.1186/1471-2164-13-261] [PMID: 22716473]
[74]
Banerjee A, Rapin N, Bollinger T, Misra V. Lack of inflammatory gene expression in bats: a unique role for a transcription repressor. Sci Rep 2017; 7(1): 2232.
[http://dx.doi.org/10.1038/s41598-017-01513-w] [PMID: 28533548]
[75]
Wack A, Terczyńska-Dyla E, Hartmann R. Guarding the frontiers: the biology of type III interferons. Nat Immunol 2015; 16(8): 802-9.
[http://dx.doi.org/10.1038/ni.3212] [PMID: 26194286]
[76]
Zhou P, Cowled C, Todd S, et al. Type III IFNs in pteropid bats: differential expression patterns provide evidence for distinct roles in antiviral immunity. J Immunol 2011; 186(5): 3138-47.
[http://dx.doi.org/10.4049/jimmunol.1003115] [PMID: 21278349]
[77]
Virtue ER, Marsh GA, Baker ML, Wang LF. Interferon production and signaling pathways are antagonized during henipavirus infection of fruit bat cell lines. PLoS One 2011; 6(7): e22488.
[http://dx.doi.org/10.1371/journal.pone.0022488] [PMID: 21811620]
[78]
Schoggins JW, Rice CM. Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 2011; 1(6): 519-25.
[http://dx.doi.org/10.1016/j.coviro.2011.10.008] [PMID: 22328912]
[79]
Thiel V, Weber F. Interferon and cytokine responses to SARS- coronavirus infection. Cytokine Growth Factor Rev 2008; 19(2): 121-32.
[http://dx.doi.org/10.1016/j.cytogfr.2008.01.001] [PMID: 18321765]
[80]
van Pesch V, Lanaya H, Renauld JC, Michiels T. Characterization of the murine alpha interferon gene family. J Virol 2004; 78(15): 8219-28.
[http://dx.doi.org/10.1128/JVI.78.15.8219-8228.2004] [PMID: 15254193]
[81]
Kepler TB, Sample C, Hudak K, et al. Chiropteran types I and II interferon genes inferred from genome sequencing traces by a statistical gene-family assembler. BMC Genomics 2010; 11: 444.
[http://dx.doi.org/10.1186/1471-2164-11-444] [PMID: 20663124]
[82]
Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev 2004; 202: 8-32.
[http://dx.doi.org/10.1111/j.0105-2896.2004.00204.x] [PMID: 15546383]
[83]
Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 2004; 75(2): 163-89.
[http://dx.doi.org/10.1189/jlb.0603252] [PMID: 14525967]
[84]
Hatten BA, Lutskus JH, Sulkin SE. A serologic comparison of bat complements. J Exp Zool 1973; 186(2): 193-206.
[http://dx.doi.org/10.1002/jez.1401860210] [PMID: 4201079]
[85]
Chakravarty AK, Sarkar SK. Immunofluorescence analysis of immunoglobulin bearing lymphocytes in the Indian fruit bat: Pteropus giganteus. Lymphology 1994; 27(2): 97-104.
[PMID: 8078365]
[86]
McMurray DN, Stroud J, Murphy JJ, Carlomagno MA, Greer DL. Role of immunoglobulin classes in experimental histoplasmosis in bats. Dev Comp Immunol 1982; 6(3): 557-67.
[http://dx.doi.org/10.1016/S0145-305X(82)80042-6] [PMID: 6982182]
[87]
Chakraborty AK, Chakravarty AK. Antibody-mediated immune response in the bat, Pteropus giganteus. Dev Comp Immunol 1984; 8(2): 415-23.
[http://dx.doi.org/10.1016/0145-305X(84)90048-X] [PMID: 6376191]
[88]
McMurray DN, Thomas ME. Cell-mediated immunity in two species of bats. J Mammal 1979; 60: 576-81.
[http://dx.doi.org/10.2307/1380099]
[89]
Paul BN, Chakravarty AK. Phytohaemagglutinin mediated activation of bat (Pteropus giganteus) lymphocytes. Indian J Exp Biol 1987; 25(1): 1-4.
[PMID: 3610235]
[90]
Iha K, Omatsu T, Watanabe S, et al. Molecular cloning and expression analysis of bat toll-like receptors 3, 7 and 9. J Vet Med Sci 2010; 72(2): 217-20.
[http://dx.doi.org/10.1292/jvms.09-0050] [PMID: 19940393]
[91]
Escalera-Zamudio M, Zepeda-Mendoza ML, Loza-Rubio E, et al. The evolution of bat nucleic acid-sensing Toll-like receptors. Mol Ecol 2015; 24(23): 5899-909.
[http://dx.doi.org/10.1111/mec.13431] [PMID: 26503258]
[92]
Schountz T. Immunology of bats and their viruses: challenges and opportunities. Viruses 2014; 6(12): 4880-901.
[http://dx.doi.org/10.3390/v6124880] [PMID: 25494448]
[93]
Cowled C, Baker M, Tachedjian M, Zhou P, Bulach D, Wang LF. Molecular characterisation of Toll-like receptors in the black flying fox Pteropus alecto. Dev Comp Immunol 2011; 35(1): 7-18.
[http://dx.doi.org/10.1016/j.dci.2010.07.006] [PMID: 20692287]
[94]
Cowled C, Baker ML, Zhou P, Tachedjian M, Wang L-F. Molecular characterisation of RIG-I-like helicases in the black flying fox, Pteropus alecto. Dev Comp Immunol 2012; 36(4): 657-64.
[http://dx.doi.org/10.1016/j.dci.2011.11.008] [PMID: 22166340]
[95]
He X, Korytař T, Schatz J, Freuling CM, Müller T, Köllner B. Anti-lyssaviral activity of interferons κ and ω from the serotine bat, Eptesicus serotinus. J Virol 2014; 88(10): 5444-54.
[http://dx.doi.org/10.1128/JVI.03403-13] [PMID: 24574413]
[96]
Zhou P, Cowled C, Wang LF, Baker ML. Bat Mx1 and Oas1, but not Pkr are highly induced by bat interferon and viral infection. Dev Comp Immunol 2013; 40(3-4): 240-7.
[http://dx.doi.org/10.1016/j.dci.2013.03.006] [PMID: 23541614]
[97]
Schuh AJ, Amman BR, Sealy TK, Spengler JR, Nichol ST, Towner JS. Egyptian rousette bats maintain long-term protective immunity against Marburg virus infection despite diminished antibody levels. Sci Rep 2017; 7(1): 8763.
[http://dx.doi.org/10.1038/s41598-017-07824-2] [PMID: 28821722]
[98]
Schuh AJ, Amman BR, Sealy TK, et al. Antibody-mediated virus neutralization is not a universal mechanism of Marburg, Ebola, or Sosuga virus clearance in Egyptian rousette bats. J Infect Dis 2019; 219(11): 1716-21.
[http://dx.doi.org/10.1093/infdis/jiy733] [PMID: 30590775]
[99]
Periasamy P, Hutchinson PE, Chen J, et al. Studies on B cells in the fruit-eating black flying fox (Pteropus alecto). Front Immunol 2019; 10: 489.
[http://dx.doi.org/10.3389/fimmu.2019.00489] [PMID: 30930908]
[100]
Martínez Gómez JM, Periasamy P, Dutertre CA, et al. Phenotypic and functional characterization of the major lymphocyte populations in the fruit-eating bat Pteropus alecto. Sci Rep 2016; 6: 37796.
[http://dx.doi.org/10.1038/srep37796] [PMID: 27883085]