Advances in the Use of Graphene Nanocomposites for the Electrochemical Determination of Glucose: A Review

Page: [14 - 23] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Glucose detection is of great significance in biomedicine. In clinical medicine, diabetes seriously endangers human health. By accurately measuring the blood glucose content of diabetic patients, diabetes can be effectively monitored and treated. At present, there are many methods for measuring glucose content, such as chromatography, spectroscopy, and electrochemical methods. Among them, electrochemical glucose sensors are widely used because of their high reliability, low cost, and easy operation.

Methods: Combining graphene with other nanomaterials (including graphene, metal oxides, semiconductor nanoparticles, polymers, dye molecules, ionic liquids and biomolecules) is an effective way to expand or enhance the sensing performance.

Results: The composite of graphene and nanomaterials is an effective way to enhance the functionality of the electrochemical sensor. Graphene can accelerate electron transfer and realize direct electrochemistry and biological sensing. At the same time, graphene derivatives with rich composition and structure provide the possibility to further regulate their electrochemical performance. These graphene composite-based biosensors have shown excellent sensitivity and selectivity for glucose detection.

Conclusion: Electrochemical glucose sensors based on graphene composite have received extensive attention. Although these materials have made significant progress in improving the sensitivity, lowering the detection limit and broadening the linear range, there are still facing challenges that require further study.

Keywords: Electrochemical sensors, glucose, glucose oxidase, graphene composite, nonenzymatic glucose sensor.

Graphical Abstract

[1]
Fang, L.; Zhu, Q.; Cai, Y.; Liang, B.; Ye, X. 3D Porous structured polyaniline/reduced graphene oxide/copper oxide decorated electrode for high performance nonenzymatic glucose detection. J. Electroanal. Chem. (Lausanne Switz.), 2019, 841, 1-9.
[http://dx.doi.org/10.1016/j.jelechem.2019.04.032]
[2]
Yoon, H.; Nah, J.; Kim, H.; Ko, S.; Sharifuzzaman, M.; Barman, S.C.; Xuan, X.; Kim, J.; Park, J.Y. A chemically modified laser-induced porous graphene based flexible and ultrasensitive electrochemical biosensor for sweat glucose detection. Sens. Actuators B Chem., 2020, 311, 127866.
[http://dx.doi.org/10.1016/j.snb.2020.127866]
[3]
Rahsepar, M.; Foroughi, F.; Kim, H. A new enzyme-free biosensor based on nitrogen-doped graphene with high sensing performance for electrochemical detection of glucose at biological PH value. Sens. Actuators B Chem., 2019, 282, 322-330.
[http://dx.doi.org/10.1016/j.snb.2018.11.078]
[4]
Zhang, D.; Chen, X.; Ma, W.; Yang, T.; Li, D.; Dai, B.; Zhang, Y. Direct electrochemistry of glucose oxidase based on one step electrodeposition of reduced graphene oxide incorporating polymerized l-lysine and its application in glucose sensing. Mater. Sci. Eng. C, 2019, 104, 109880.
[http://dx.doi.org/10.1016/j.msec.2019.109880] [PMID: 31500020]
[5]
Li, Z.; Xie, C.; Wang, J.; Meng, A.; Zhang, F. Direct electrochemistry of cholesterol oxidase immobilized on chitosan–graphene and cholesterol sensing. Sens. Actuators B Chem., 2015, 208, 505-511.
[http://dx.doi.org/10.1016/j.snb.2014.11.054]
[6]
Bairagi, P.K.; Verma, N. Electro-polymerized polyacrylamide nano film grown on a ni-reduced graphene oxide- polymer composite: a highly selective non-enzymatic electrochemical recognition element for glucose. Sens. Actuators B Chem., 2019, 289, 216-225.
[http://dx.doi.org/10.1016/j.snb.2019.03.057]
[7]
Wang, Y.; Yang, X.; Hou, C.; Zhao, M.; Li, Z.; Meng, Q.; Liang, C. Fabrication of MnOx/Ni(OH)2 electro-deposited sulfonated polyimides/graphene nano-sheets membrane and used for electrochemical sensing of glucose. J. Electroanal. Chem. (Lausanne Switz.), 2019, 837, 95-102.
[http://dx.doi.org/10.1016/j.jelechem.2019.02.016]
[8]
Dilmac, Y.; Guler, M. Fabrication of non-enzymatic glucose sensor dependent upon au nanoparticles deposited on carboxylated graphene oxide. J. Electroanal. Chem. (Lausanne Switz.), 2020, 864, 114091.
[http://dx.doi.org/10.1016/j.jelechem.2020.114091]
[9]
Scandurra, A.; Ruffino, F.; Sanzaro, S.; Grimaldi, M.G. Laser and thermal dewetting of gold layer onto graphene paper for non-enzymatic electrochemical detection of glucose and fructose. Sens. Actuators B Chem., 2019, 301, 127113.
[http://dx.doi.org/10.1016/j.snb.2019.127113]
[10]
Yuan, Y.; Wang, Y.; Wang, H.; Hou, S. Gold nanoparticles decorated on single layer graphene applied for electrochemical ultrasensitive glucose biosensor. J. Electroanal. Chem. (Lausanne Switz.), 2019, 855, 113495.
[http://dx.doi.org/10.1016/j.jelechem.2019.113495]
[11]
Mascagni, D.B.T.; Miyazaki, C.M.; da Cruz, N.C.; de Moraes, M.L.; Riul, A., Jr; Ferreira, M. Layer-by-layer assembly of functionalized reduced graphene oxide for direct electrochemistry and glucose detection. Mater. Sci. Eng. C, 2016, 68, 739-745.
[http://dx.doi.org/10.1016/j.msec.2016.06.001] [PMID: 27524075]
[12]
Ruiyi, L.; Juanjuan, Z.; Zhouping, W.; Zaijun, L.; Junkang, L.; Zhiguo, G.; Guangli, W. Novel graphene-gold nanohybrid with excellent electrocatalytic performance for the electrochemical detection of glucose. Sens. Actuators B Chem., 2015, 208, 421-428.
[http://dx.doi.org/10.1016/j.snb.2014.11.004]
[13]
Clark, L.C., Jr; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci., 1962, 102(1), 29-45.
[http://dx.doi.org/10.1111/j.1749-6632.1962.tb13623.x] [PMID: 14021529]
[14]
Karyakin, A.A.; Gitelmacher, O.V.; Karyakina, E.E. Prussian blue-based first-generation biosensor. a sensitive amperometric electrode for glucose. Anal. Chem., 1995, 67(14), 2419-2423.
[http://dx.doi.org/10.1021/ac00110a016]
[15]
Vago, J.M.; Dall’Orto, V.C.; Forzani, E.; Hurst, J.; Rezzano, I.N. New bimetallic porphyrin film: an electrocatalytic transducer for hydrogen peroxide reduction, applicable to first-generation oxidase-based biosensors. Sens. Actuators B Chem., 2003, 96(1–2), 407-412.
[http://dx.doi.org/10.1016/S0925-4005(03)00575-6]
[16]
Guler, M.; Dilmac, Y. Palladium nanoparticles decorated (3-aminopropyl)triethoxysilane functionalized reduced graphene oxide for electrochemical determination of glucose and hydrogen peroxide.Palladium nanoparticles decorated (3-aminopropyl)triethoxysilane functionalized reduced graphene oxide for electrochemical determination of glucose and hydrogen peroxide. J. Electroanal. Chem. (Lausanne Switz.), 2019, 834, 49-55.
[http://dx.doi.org/10.1016/j.jelechem.2018.12.052]
[17]
Luo, Y.; Kong, F-Y.; Li, C.; Shi, J-J.; Lv, W-X.; Wang, W. One-pot preparation of reduced graphene oxide-carbon nanotube decorated with au nanoparticles based on protein for non-enzymatic electrochemical sensing of glucose. Sens. Actuators B Chem., 2016, 234, 625-632.
[http://dx.doi.org/10.1016/j.snb.2016.05.046]
[18]
Zhou, F.; Jing, W.; Xu, Y.; Chen, Z.; Jiang, Z.; Wei, Z. Performance enhancement of ZnO nanorod-based enzymatic glucose sensor via reduced graphene oxide deposition and UV irradiation. Sens. Actuators B Chem., 2019, 284, 377-385.
[http://dx.doi.org/10.1016/j.snb.2018.12.141]
[19]
Xu, J.; Cao, X.; Xia, J.; Gong, S.; Wang, Z.; Lu, L. Phosphomolybdic acid functionalized graphene loading copper nanoparticles modified electrodes for non-enzymatic electrochemical sensing of glucose. Anal. Chim. Acta, 2016, 934, 44-51.
[http://dx.doi.org/10.1016/j.aca.2016.06.033] [PMID: 27506342]
[20]
Sun, S.; Tang, Y.; Wu, C.; Wan, C. Phytic acid functionalized ZIF-67 decorated graphene nanosheets with remarkably boosted electrochemical sensing performance. Anal. Chim. Acta, 2020, 1107, 55-62.
[http://dx.doi.org/10.1016/j.aca.2020.02.014] [PMID: 32200902]
[21]
He, W.; Sun, Y.; Xi, J.; Abdurhman, A.A.M.; Ren, J.; Duan, H. Printing graphene-carbon nanotube-ionic liquid gel on graphene paper: Towards flexible electrodes with efficient loading of PtAu alloy nanoparticles for electrochemical sensing of blood glucose. Anal. Chim. Acta, 2016, 903, 61-68.
[http://dx.doi.org/10.1016/j.aca.2015.11.019] [PMID: 26709299]
[22]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor. Compos., Part B Eng., 2019, 172, 666-670.
[http://dx.doi.org/10.1016/j.compositesb.2019.05.065]
[23]
Fu, L.; Wang, A.; Lai, G.; Lin, C-T.; Yu, J.; Yu, A.; Liu, Z.; Xie, K.; Su, W. A glassy carbon electrode modified with N-doped carbon dots for improved detection of hydrogen peroxide and paracetamol. Mikrochim. Acta, 2018, 185(2), 87.
[http://dx.doi.org/10.1007/s00604-017-2646-9] [PMID: 29594682]
[24]
Doménech-Carbó, A.; Doménech-Carbó, M.T.; Moya-Moreno, M.; Gimeno-Adelantado, J.V.; Bosch-Reig, F. Identification of inorganic pigments from paintings and polychromed sculptures immobilized into polymer film electrodes by stripping differential pulse voltammetry. Anal. Chim. Acta, 2000, 407(1), 275-289.
[http://dx.doi.org/10.1016/S0003-2670(99)00781-3]
[25]
Mulaba-Bafubiandi, A.F.; Karimi-Maleh, H.; Karimi, F.; Rezapour, M. A voltammetric carbon paste sensor modified with NiO nanoparticle and ionic liquid for fast analysis of p-nitrophenol in water samples. J. Mol. Liq., 2019, 285, 430-435.
[http://dx.doi.org/10.1016/j.molliq.2019.04.084]
[26]
Pletcher, D. Electrocatalysis: present and future. J. Appl. Electrochem., 1984, 14(4), 403-415.
[http://dx.doi.org/10.1007/BF00610805]
[27]
Burke, L. Premonolayer oxidation and its role in electrocatalysis. Electrochim. Acta, 1994, 39(11–12), 1841-1848.
[http://dx.doi.org/10.1016/0013-4686(94)85173-5]
[28]
Lahcen, A.A.; Errayess, S.A.; Amine, A. Voltammetric determination of sulfonamides using paste electrodes based on various carbon nanomaterials. Mikrochim. Acta, 2016, 183(7), 2169-2176.
[http://dx.doi.org/10.1007/s00604-016-1850-3]
[29]
Zhou, J.; Wu, M.; Xu, Y.; Li, Z.; Yao, Y.; Fu, L. 2D pattern recognition of white spirit based on the electrochemical profile recorded by screen-printed electrode. Int. J. Electrochem. Sci., 2020, 15, 5793-5802.
[http://dx.doi.org/10.20964/2020.06.27]
[30]
Yadav, S.K.; Choubey, P.K.; Agrawal, B.; Goyal, R.N. Carbon nanotube embedded poly 1,5-diaminonapthalene modified pyrolytic graphite sensor for the determination of sulfacetamide in pharmaceutical formulations. Talanta, 2014, 118, 96-103.
[http://dx.doi.org/10.1016/j.talanta.2013.09.061] [PMID: 24274275]
[31]
Chasta, H.; Goyal, R.N. A Simple and sensitive poly-1,5-diaminonaphthalene modified sensor for the determination of sulfamethoxazole in biological samples. Electroanalysis, 2015, 27(5), 1229-1237.
[http://dx.doi.org/10.1002/elan.201400688]
[32]
Fu, L.; Xie, K.; Wang, A.; Lyu, F.; Ge, J.; Zhang, L.; Zhang, H.; Su, W.; Hou, Y-L.; Zhou, C.; Wang, C.; Ruan, S. High selective detection of mercury (II) ions by thioether side groups on metal-organic frameworks. Anal. Chim. Acta, 2019, 1081, 51-58.
[http://dx.doi.org/10.1016/j.aca.2019.06.055] [PMID: 31446963]
[33]
Zhang, M.; Pan, B.; Wang, Y.; Du, X.; Fu, L.; Zheng, Y.; Chen, F.; Wu, W.; Zhou, Q.; Ding, S. Recording the electrochemical profile of pueraria leaves for polyphyly analysis. ChemistrySelect, 2020, 5(17), 5035-5040.
[http://dx.doi.org/10.1002/slct.202001100]
[34]
Chen, S.; Wang, C.; Zhang, M.; Zhang, W.; Qi, J.; Sun, X.; Wang, L.; Li, J. N-doped Cu-MOFs for efficient electrochemical determination of dopamine and sulfanilamide. J. Hazard. Mater., 2020, 390, 122157.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122157] [PMID: 31999959]
[35]
Balasubramanian, P.; Settu, R.; Chen, S-M.; Chen, T-W. Voltammetric sensing of sulfamethoxazole using a glassy carbon electrode modified with a graphitic carbon nitride and zinc oxide nanocomposite. Mikrochim. Acta, 2018, 185(8), 396.
[http://dx.doi.org/10.1007/s00604-018-2934-z] [PMID: 30066186]
[36]
Shamsadin-Azad, Z.; Taher, M.A.; Cheraghi, S.; Karimi-Maleh, H. A Nanostructure voltammetric platform amplified with ionic liquid for determination of tert-butylhydroxyanisole in the presence kojic acid. J. Food Meas. Charact., 2019, 13(3), 1781-1787.
[http://dx.doi.org/10.1007/s11694-019-00096-6]
[37]
Karimi-Maleh, H.; Karimi, F.; Orooji, Y.; Mansouri, G.; Razmjou, A.; Aygun, A.; Sen, F. A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; a highly sensitive approach for determination of cysteamine in the presence of serotonin. Sci. Rep., 2020, 10(1), 11699.
[http://dx.doi.org/10.1038/s41598-020-68663-2] [PMID: 32678156]
[38]
Karimi-Maleh, H.; Karimi, F.; Malekmohammadi, S.; Zakariae, N.; Esmaeili, R.; Rostamnia, S.; Yola, M.L.; Atar, N.; Movagharnezhad, S.; Rajendran, S. An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of n-hydroxysuccinimide in water samples. J. Mol. Liq., 2020, 310, 113185.
[http://dx.doi.org/10.1016/j.molliq.2020.113185]
[39]
Karimi-Maleh, H.; Cellat, K.; Arıkan, K.; Savk, A.; Karimi, F.; Şen, F. Palladium–nickel nanoparticles decorated on functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater. Chem. Phys., 2020, 250, 123042.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123042]
[40]
Fu, L.; Zheng, Y.; Zhang, P.; Zhang, H.; Wu, M.; Zhang, H.; Wang, A.; Su, W.; Chen, F.; Yu, J.; Cai, W.; Lin, C-T. An electrochemical method for plant species determination and classification based on fingerprinting petal tissue. Bioelectrochemistry, 2019, 129, 199-205.
[http://dx.doi.org/10.1016/j.bioelechem.2019.06.001] [PMID: 31200249]
[41]
Ghoreishi, S.M.; Behpour, M.; Khoobi, A.; Moghadam, Z. Determination of trace amounts of sulfamethizole using a multi-walled carbon nanotube modified electrode: application of experimental design in voltammetric studies. Anal. Lett., 2013, 46(2), 323-339.
[http://dx.doi.org/10.1080/00032719.2012.718831]
[42]
Fu, L.; Wang, A.; Xie, K.; Zhu, J.; Chen, F.; Wang, H.; Zhang, H.; Su, W.; Wang, Z.; Zhou, C.; Ruan, S. Electrochemical detection of silver ions by using sulfur quantum dots modified gold electrode. Sens. Actuators B Chem., 2020, 304, 127390.
[http://dx.doi.org/10.1016/j.snb.2019.127390]
[43]
Fotouhi, L.; Hashkavayi, A.B.; Heravi, M.M. Electrochemical behaviour and voltammetric determination of sulphadiazine using a multi-walled carbon nanotube composite film-Glassy carbon electrode. J. Exp. Nanosci., 2013, 8(7–8), 947-956.
[http://dx.doi.org/10.1080/17458080.2011.624554]
[44]
Zabihpour, T.; Shahidi, S-A.; Karimi-Maleh, H. Ghorbani-HasanSaraei, A. An ultrasensitive electroanalytical sensor based on MgO/SWCNTs- 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide paste electrode for the determination of ferulic acid in the presence sulfite in food samples. Microchem. J., 2020, 154, 104572.
[http://dx.doi.org/10.1016/j.microc.2019.104572]
[45]
Karimi-Maleh, H.; Karimi, F.; Rezapour, M.; Bijad, M.; Farsi, M.; Beheshti, A.; Shahidi, S-A. Carbon paste modified electrode as powerful sensor approach determination of food contaminants, drug ingredients, and environmental pollutants: a review. Curr. Anal. Chem., 2019, 15(4), 410-422.
[http://dx.doi.org/10.2174/1573411014666181026100037]
[46]
Fotouhi, L.; Zabeti, M. Electrochemical oxidation of sulfamethazine on multi-walled nanotube film coated glassy carbon electrode. J. Nanostructures, 2014, 4(2), 161-166.
[47]
Fu, L.; Wang, A.; Lai, G.; Su, W.; Malherbe, F.; Yu, J.; Lin, C-T.; Yu, A. Defects regulating of graphene ink for electrochemical determination of ascorbic acid, dopamine and uric acid. Talanta, 2018, 180, 248-253.
[http://dx.doi.org/10.1016/j.talanta.2017.12.058] [PMID: 29332806]
[48]
Yari, A.; Shams, A. Silver-filled MWCNT nanocomposite as a sensing element for voltammetric determination of sulfamethoxazole. Anal. Chim. Acta, 2018, 1039, 51-58.
[http://dx.doi.org/10.1016/j.aca.2018.07.061] [PMID: 30322552]
[49]
Hosseini, F.; Ebrahimi, M.; Karimi-Maleh, H. Electrochemical determination of mycophenolate mofetil in drug samples using carbon paste electrode modified with 1-methyl-3-butylimidazolium bromide and NiO/SWCNTs nanocomposite. Curr. Anal. Chem., 2019, 15(2), 177-182.
[http://dx.doi.org/10.2174/1573411014666180326114345]
[50]
Alamgholiloo, H.; Rostamnia, S.; Hassankhani, A.; Liu, X.; Eftekhari, A.; Hasanzadeh, A.; Zhang, K.; Karimi-Maleh, H.; Khaksar, S.; Varma, R.S.; Shokouhimehr, M. Formation and stabilization of colloidal ultra-small palladium nanoparticles on diamine-modified Cr-MIL-101: Synergic boost to hydrogen production from formic acid. J. Colloid Interface Sci., 2020, 567, 126-135.
[http://dx.doi.org/10.1016/j.jcis.2020.01.087] [PMID: 32044541]
[51]
He, B.; Chen, W. Carboxyl multiwalled carbon nanotubes through ultrasonic dispersing in dimethylfomamide modified electrode as a sensitive amperometric sensor for detection of sulfonamide. Int. J. Electrochem. Sci., 2015, 10, 4335-4345.
[52]
Yuan, Q.; Liu, Y.; Ye, C.; Sun, H.; Dai, D.; Wei, Q.; Lai, G.; Wu, T.; Yu, A.; Fu, L.; Chee, K.W.A.; Lin, C-T. Highly stable and regenerative graphene-diamond hybrid electrochemical biosensor for fouling target dopamine detection. Biosens. Bioelectron., 2018, 111, 117-123.
[http://dx.doi.org/10.1016/j.bios.2018.04.006] [PMID: 29660582]
[53]
Karimi-Maleh, H.; Karimi, F. FallahShojaei, A.; Tabatabaeian, K.; Arshadi, M.; Rezapour, M. Metal-based nanoparticles as conductive mediators in electrochemical sensors: a mini review. Curr. Anal. Chem., 2019, 15(2), 136-142.
[http://dx.doi.org/10.2174/1573411014666180319152126]
[54]
Afshar, S.; Zamani, H.A.; Karimi-Maleh, H. NiO/SWCNTs coupled with an ionic liquid composite for amplified carbon paste electrode; A feasible approach for improving sensing ability of adrenalone and folic acid in dosage form. J. Pharm. Biomed. Anal., 2020, 188, 113393.
[http://dx.doi.org/10.1016/j.jpba.2020.113393] [PMID: 32504973]
[55]
Vanoni, C.R.; Winiarski, J.P.; Nagurniak, G.R.; Magosso, H.A.; Jost, C.L. A novel electrochemical sensor based on silsesquioxane/nickel (II) phthalocyanine for the determination of sulfanilamide in clinical and drug samples. Electroanalysis, 2019, 31(5), 867-875.
[http://dx.doi.org/10.1002/elan.201800832]
[56]
Sumaryada, T.; Sandy Gunawan, M.; Perdana, S.; Arjo, S.; Maddu, A. A molecular interaction analysis reveals the possible roles of graphene oxide in a glucose biosensor. Biosensors, 2019, 9(1), 18.
[57]
Fu, L.; Fu, Z. Plectranthus amboinicus leaf extract–assisted biosynthesis of zno nanoparticles and their photocatalytic activity. Ceram. Int., 2015, 41(2, Part A), 2492-2496.
[http://dx.doi.org/10.1016/j.ceramint.2014.10.069]
[58]
Li, H.; Kuang, X.; Shen, X.; Zhu, J.; Zhang, B.; Li, H. Improvement of voltammetric detection of sulfanilamide with a nanodiamond− modified glassy carbon electrode. Int. J. Electrochem. Sci., 2019, 14, 7858-7870.
[http://dx.doi.org/10.20964/2019.08.47]
[59]
Hong, X-P.; Ma, J-Y. Electrochemical study of sulfadiazine on a novel phthalocyanine-containing chemically modified electrode. Chin. Chem. Lett., 2013, 24(4), 329-331.
[http://dx.doi.org/10.1016/j.cclet.2013.02.010]
[60]
Tavana, T.; Rezvani, A.R.; Karimi-Maleh, H. Pt-Pd-doped NiO nanoparticle decorated at single-wall carbon nanotubes: An excellent, powerful electrocatalyst for the fabrication of An electrochemical sensor to determine nalbuphine in the presence of tramadol as two opioid analgesic drugs. J. Pharm. Biomed. Anal., 2020, 189, 113397.
[http://dx.doi.org/10.1016/j.jpba.2020.113397] [PMID: 32563934]
[61]
Wang, A.; Wang, C.; Fu, L.; Wong-Ng, W.; Lan, Y. Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett., 2017, 9(4), 47.
[http://dx.doi.org/10.1007/s40820-017-0148-2] [PMID: 30393742]
[62]
Karimi-Maleh, H.; Shafieizadeh, M.; Taher, M.A.; Opoku, F.; Kiarii, E.M.; Govender, P.P.; Ranjbari, S.; Rezapour, M.; Orooji, Y. The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J. Mol. Liq., 2020, 298, 112040.
[http://dx.doi.org/10.1016/j.molliq.2019.112040]
[63]
Cesarino, I.; Cesarino, V.; Lanza, M.R.V. Carbon nanotubes modified with antimony nanoparticles in a paraffin composite electrode: simultaneous determination of sulfamethoxazole and trimethoprim. Sens. Actuators B Chem., 2013, 188, 1293-1299.
[http://dx.doi.org/10.1016/j.snb.2013.08.047]
[64]
Karimi-Maleh, H.; Fakude, C.T.; Mabuba, N.; Peleyeju, G.M.; Arotiba, O.A. The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J. Colloid Interface Sci., 2019, 554, 603-610.
[http://dx.doi.org/10.1016/j.jcis.2019.07.047] [PMID: 31330427]
[65]
Samadzadeh, A.; Sheikhshoaie, I.; Karimi-Maleh, H. Simultaneous determination of epinephrine and tyrosine using a glassy carbon electrode amplified with ZnO-Pt/CNTs nanocomposite. Curr. Anal. Chem., 2019, 15(2), 166-171.
[http://dx.doi.org/10.2174/1573411014666180313115001]
[66]
Meshki, M.; Behpour, M.; Masoum, S. Application of Fe doped ZnO nanorods-based modified sensor for determination of sulfamethoxazole and sulfamethizole using chemometric methods in voltammetric studies. J. Electroanal. Chem. (Lausanne Switz.), 2015, 740, 1-7.
[http://dx.doi.org/10.1016/j.jelechem.2014.12.008]
[67]
Baby, T.T.; Aravind, S.J.; Arockiadoss, T.; Rakhi, R.; Ramaprabhu, S. Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor. Sens. Actuators B Chem., 2010, 145(1), 71-77.
[http://dx.doi.org/10.1016/j.snb.2009.11.022]
[68]
Joseph, R.; Girish Kumar, K. Differential pulse voltammetric determination and catalytic oxidation of sulfamethoxazole using [5,10,15,20- tetrakis (3-methoxy-4-hydroxy phenyl) porphyrinato] Cu (II) modified carbon paste sensor. Drug Test. Anal., 2010, 2(6), 278-283.
[http://dx.doi.org/10.1002/dta.129] [PMID: 20564608]
[69]
Zeng, Q.; Cheng, J-S.; Liu, X-F.; Bai, H-T.; Jiang, J-H. Palladium nanoparticle/chitosan-grafted graphene nanocomposites for construction of a glucose biosensor. Biosens. Bioelectron., 2011, 26(8), 3456-3463.
[http://dx.doi.org/10.1016/j.bios.2011.01.024] [PMID: 21324668]
[70]
Xuan, X.; Yoon, H.S.; Park, J.Y. A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens. Bioelectron., 2018, 109, 75-82.
[http://dx.doi.org/10.1016/j.bios.2018.02.054] [PMID: 29529511]
[71]
Deng, Z-P.; Sun, Y.; Wang, Y-C.; Gao, J-D. A NiFe alloy reduced on graphene oxide for electrochemical nonenzymatic glucose sensing. Sensors (Basel), 2018, 18(11), 3972.
[http://dx.doi.org/10.3390/s18113972] [PMID: 30445786]
[72]
Wang, K.; Liu, Q.; Guan, Q-M.; Wu, J.; Li, H-N.; Yan, J-J. Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals. Biosens. Bioelectron., 2011, 26(5), 2252-2257.
[http://dx.doi.org/10.1016/j.bios.2010.09.043] [PMID: 20947324]
[73]
Xu, H.; Dai, H.; Chen, G. Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film. Talanta, 2010, 81(1-2), 334-338.
[http://dx.doi.org/10.1016/j.talanta.2009.12.006] [PMID: 20188928]
[74]
Zhang, S.; Tang, S.; Lei, J.; Dong, H.; Ju, H. Functionalization of graphene nanoribbons with porphyrin for electrocatalysis and amperometric biosensing. J. Electroanal. Chem. (Lausanne Switz.), 2011, 656(1–2), 285-288.
[http://dx.doi.org/10.1016/j.jelechem.2010.10.005]
[75]
Zhang, Y.; Sun, X.; Zhu, L.; Shen, H.; Jia, N. Electrochemical sensing based on graphene oxide/prussian blue hybrid film modified electrode. Electrochim. Acta, 2011, 56(3), 1239-1245.
[http://dx.doi.org/10.1016/j.electacta.2010.11.011]
[76]
Bharath, G.; Madhu, R.; Chen, S-M.; Veeramani, V.; Balamurugan, A.; Mangalaraj, D.; Viswanathan, C.; Ponpandian, N. Enzymatic electrochemical glucose biosensors by mesoporous 1D hydroxyapatite-on-2D reduced graphene oxide. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(7), 1360-1370.
[http://dx.doi.org/10.1039/C4TB01651C] [PMID: 32264487]
[77]
Ye, Y.; Wang, P.; Dai, E.; Liu, J.; Tian, Z.; Liang, C.; Shao, G. A novel reduction approach to fabricate quantum-sized SnO₂-conjugated reduced graphene oxide nanocomposites as non-enzymatic glucose sensors. Phys. Chem. Chem. Phys., 2014, 16(19), 8801-8807.
[http://dx.doi.org/10.1039/c4cp00554f] [PMID: 24699526]
[78]
Zhu, X.; Jiao, Q.; Zhang, C.; Zuo, X.; Xiao, X.; Liang, Y.; Nan, J. Amperometric nonenzymatic determination of glucose based on a glassy carbon electrode modified with nickel(ii) oxides and graphene. Mikrochim. Acta, 2013, 180(5), 477-483.
[http://dx.doi.org/10.1007/s00604-013-0955-1]
[79]
Qiao, N.; Zheng, J. Nonenzymatic glucose sensor based on glassy carbon electrode modified with a nanocomposite composed of nickel hydroxide and graphene. Mikrochim. Acta, 2012, 177(1), 103-109.
[http://dx.doi.org/10.1007/s00604-011-0756-3]
[80]
Gajendiran, M.; Choi, J.; Kim, S-J.; Kim, K.; Shin, H.; Koo, H-J.; Kim, K. Conductive biomaterials for tissue engineering applications. J. Ind. Eng. Chem., 2017, 51, 12-26.
[http://dx.doi.org/10.1016/j.jiec.2017.02.031]
[81]
Li, S-J.; Du, J-M.; Chen, J.; Mao, N-N.; Zhang, M-J.; Pang, H. Electrodeposition of cobalt oxide nanoparticles on reduced graphene oxide: a two-dimensional hybrid for enzyme-free glucose sensing. J. Solid State Electrochem., 2014, 18(4), 1049-1056.
[http://dx.doi.org/10.1007/s10008-013-2354-2]
[82]
Yan, X.; Yang, J.; Ma, L.; Tong, X.; Wang, Y.; Jin, G.; Guo, X-Y. Size-controlled synthesis of Cu2O nanoparticles on reduced graphene oxide sheets and their application as non-enzymatic glucose sensor materials. J. Solid State Electrochem., 2015, 19(10), 3195-3199.
[http://dx.doi.org/10.1007/s10008-015-2911-y]
[83]
Luo, J.; Zhang, H.; Jiang, S.; Jiang, J.; Liu, X. Facile one-step electrochemical fabrication of a non-enzymatic glucose-selective glassy carbon electrode modified with copper nanoparticles and graphene. Mikrochim. Acta, 2012, 177(3), 485-490.
[http://dx.doi.org/10.1007/s00604-012-0795-4]
[84]
Ensafi, A.A.; Ahmadi, Z.; Jafari-Asl, M.; Rezaei, B. Graphene nanosheets functionalized with nile blue as a stable support for the oxidation of glucose and reduction of oxygen based on redox replacement of pd-nanoparticles via nickel oxide. Electrochim. Acta, 2015, 173, 619-629.
[http://dx.doi.org/10.1016/j.electacta.2015.05.109]
[85]
Dhara, K.; Ramachandran, T.; Nair, B.G.; Satheesh Babu, T.G. Single step synthesis of Au–CuO nanoparticles decorated reduced graphene oxide for high performance disposable nonenzymatic glucose sensor. J. Electroanal. Chem. (Lausanne Switz.), 2015, 743, 1-9.
[http://dx.doi.org/10.1016/j.jelechem.2015.02.005]
[86]
Dhara, K.; Thiagarajan, R.; Nair, B.G.; Thekkedath, G.S.B. Highly sensitive and wide-range nonenzymatic disposable glucose sensor based on a screen printed carbon electrode modified with reduced graphene oxide and Pd-CuO nanoparticles. Mikrochim. Acta, 2015, 182(13), 2183-2192.
[http://dx.doi.org/10.1007/s00604-015-1549-x]
[87]
Zhang, Q.; He, J.; Zhang, M.; Ni, P. A polyphosphoester-conjugated camptothecin prodrug with disulfide linkage for potent reduction-triggered drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(24), 4922-4932.
[http://dx.doi.org/10.1039/C5TB00623F] [PMID: 32262681]
[88]
Lu, L-M.; Li, H-B.; Qu, F.; Zhang, X-B.; Shen, G-L.; Yu, R-Q. In situ synthesis of palladium nanoparticle-graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosens. Bioelectron., 2011, 26(8), 3500-3504.
[http://dx.doi.org/10.1016/j.bios.2011.01.033] [PMID: 21342759]
[89]
Yang, J.; Yu, J-H.; Rudi Strickler, J.; Chang, W-J.; Gunasekaran, S. Nickel nanoparticle-chitosan-reduced graphene oxide-modified screen-printed electrodes for enzyme-free glucose sensing in portable microfluidic devices. Biosens. Bioelectron., 2013, 47, 530-538.
[http://dx.doi.org/10.1016/j.bios.2013.03.051] [PMID: 23644058]
[90]
Wang, Z.; Xia, J.; Qiang, X.; Xia, Y.; Shi, G.; Zhang, F.; Tang, J. Polymer-assisted in situ growth of copper nanoparticles on graphene surface for non-enzymatic electrochemical sensing of glucose. Int. J. Electrochem. Sci., 2013, 8, 6941-6950.
[91]
Wang, L.; Zheng, Y.; Lu, X.; Li, Z.; Sun, L.; Song, Y. Dendritic copper-cobalt nanostructures/reduced graphene oxide-chitosan modified glassy carbon electrode for glucose sensing. Sens. Actuators B Chem., 2014, 195, 1-7.
[http://dx.doi.org/10.1016/j.snb.2014.01.007]
[92]
Liu, Z.; Guo, Y.; Dong, C. A high performance nonenzymatic electrochemical glucose sensor based on polyvinylpyrrolidone-graphene nanosheets-nickel nanoparticles-chitosan nanocomposite. Talanta, 2015, 137, 87-93.
[http://dx.doi.org/10.1016/j.talanta.2015.01.037] [PMID: 25770610]
[93]
Yang, Z.; Cao, Y.; Li, J.; Jian, Z.; Zhang, Y.; Hu, X. Platinum nanoparticles functionalized nitrogen doped graphene platform for sensitive electrochemical glucose biosensing. Anal. Chim. Acta, 2015, 871, 35-42.
[http://dx.doi.org/10.1016/j.aca.2015.02.029] [PMID: 25847159]
[94]
Jothi, L.; Jayakumar, N.; Jaganathan, S.K.; Nageswaran, G. Ultrasensitive and selective non-enzymatic electrochemical glucose sensor based on hybrid material of graphene nanosheets/graphene nanoribbons/nickel nanoparticle. Mater. Res. Bull., 2018, 98, 300-307.
[http://dx.doi.org/10.1016/j.materresbull.2017.10.020]
[95]
Naeim, H.; Kheiri, F.; Sirousazar, M.; Afghan, A. Ionic liquid/reduced graphene oxide/nickel-palladium nanoparticle hybrid synthesized for non-enzymatic electrochemical glucose sensing. Electrochim. Acta, 2018, 282, 137-146.
[http://dx.doi.org/10.1016/j.electacta.2018.05.204]
[96]
Zhang, Y.; Xu, J.; Xia, J.; Zhang, F.; Wang, Z. MOF-derived porous Ni2P/graphene composites with enhanced electrochemical properties for sensitive nonenzymatic glucose sensing. ACS Appl. Mater. Interfaces, 2018, 10(45), 39151-39160.
[http://dx.doi.org/10.1021/acsami.8b11867] [PMID: 30350939]
[97]
Shu, H.; Chang, G.; Su, J.; Cao, L.; Huang, Q.; Zhang, Y.; Xia, T.; He, Y. Single-step electrochemical deposition of high performance au-graphene nanocomposites for nonenzymatic glucose sensing. Sens. Actuators B Chem., 2015, 220, 331-339.
[http://dx.doi.org/10.1016/j.snb.2015.05.094]
[98]
Chaiyo, S.; Mehmeti, E.; Siangproh, W.; Hoang, T.L.; Nguyen, H.P.; Chailapakul, O.; Kalcher, K. Non-enzymatic electrochemical detection of glucose with a disposable paper-based sensor using a cobalt phthalocyanine-ionic liquid-graphene composite. Biosens. Bioelectron., 2018, 102, 113-120.
[http://dx.doi.org/10.1016/j.bios.2017.11.015] [PMID: 29128713]
[99]
Pakapongpan, S.; Poo-Arporn, R.P. Self-assembly of glucose oxidase on reduced graphene oxide-magnetic nanoparticles nanocomposite-based direct electrochemistry for reagentless glucose biosensor. Mater. Sci. Eng. C, 2017, 76, 398-405.
[http://dx.doi.org/10.1016/j.msec.2017.03.031] [PMID: 28482543]
[100]
Thanh, T.D.; Balamurugan, J.; Lee, S.H.; Kim, N.H.; Lee, J.H. Effective seed-assisted synthesis of gold nanoparticles anchored nitrogen-doped graphene for electrochemical detection of glucose and dopamine. Biosens. Bioelectron., 2016, 81, 259-267.
[http://dx.doi.org/10.1016/j.bios.2016.02.070] [PMID: 26967913]
[101]
Zhang, H.; Liu, S. Nanoparticles-assembled NiO nanosheets templated by graphene oxide film for highly sensitive non-enzymatic glucose sensing. Sens. Actuators B Chem., 2017, 238, 788-794.
[http://dx.doi.org/10.1016/j.snb.2016.07.126]
[102]
Li, S-J.; Xia, N.; Lv, X-L.; Zhao, M-M.; Yuan, B-Q.; Pang, H. A facile one-step electrochemical synthesis of graphene/NiO nanocomposites as efficient electrocatalyst for glucose and methanol. Sens. Actuators B Chem., 2014, 190, 809-817.
[http://dx.doi.org/10.1016/j.snb.2013.09.047]
[103]
Mijowska, E.; Onyszko, M.; Urbas, K.; Aleksandrzak, M.; Shi, X.; Moszyński, D.; Penkala, K.; Podolski, J.; El Fray, M. Palladium nanoparticles deposited on graphene and its electrochemical performance for glucose sensing. Appl. Surf. Sci., 2015, 355, 587-592.
[http://dx.doi.org/10.1016/j.apsusc.2015.07.150]
[104]
Zheng, W.; Hu, L.; Lee, L. Y. S.; Wong, K.-Y. Copper nanoparticles/polyaniline/graphene composite as a highly sensitive electrochemical glucose sensor. Spec. Issue Honor Chin. Acad. Prof Hong-Yuan Chen His 80th Birthd., 2016, 781, 155-160.