Cell Wall Components of Bacillus pumilus SE5 Improved the Growth, Digestive and Immunity of Grouper (Epinephelus coioides)

Page: [231 - 239] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Probiotic cellular components could be an interesting alternative to live probiotics, which could potentially cause safety problems in open aquatic environments.

Objective: The cell wall (CW), peptidoglycan (PG) and lipoteichoic (LTA) were extracted from probiotic strain of Bacillus pumilus SE5, and these biomolecules were used to develop the possible application in fish aquaculture.

Methods: Grouper (Epinephelus coioides) juveniles were fed with either a basal control diet or the basal diet supplemented with CW, PG and LTA respectively for 60 days, and the growth performance, digestive enzymes activities, serum immune responses and immune genes expression in head kidney were determined.

Results: Dietary supplement PG and LTA significantly improved final body weight (FBW), weight gain rate (WGR), specific growth rate (SGR) and protein efficiency ratio (PER), while significantly decreased feed conversion ratio (FCR) was noticed in all the treatments compared with the control group. Dietary supplements of CW, PG and LTA enhanced the activities of trypsin, lipase and amylase in the liver. Serum complement C3 and IgM levels as well as, AKP, ACP and SOD activities elevated significantly in fish fed the PG and LTA containing diets. Furthermore, PG and LTA containing diets, significantly up-regulated expression of TLR2, NOD2, IL-8, IgM and three antibacterial peptides genes (epinecidin-1, hepcidin-1 and β-defensin) in the head kidney.

Conclusion: PG and LTA originated from probiotic B. pumilus SE5 could effectively enhance the growth performance, feed utilization, digestive ability and boost innate and adaptive immune system of E. coioides.

Keywords: Probiotics, Bacillus pumilus, peptidoglycan, lipoteichoic acid, growth, immunity, Epinephelus coioide.

Graphical Abstract

[1]
Rimmer, M.A.; Glamuzina, B. A review of grouper (Family Serranidae: Subfamily Epinephelinae) aquaculture from a sustainability science perspective. Rev. Aquacult., 2019, 11, 58-87.
[http://dx.doi.org/10.1111/raq.12226]
[2]
Wang, A.R.; Ran, C.; Ringø, E.; Zhou, Z.G. Progress in fish gastrointestinal microbiota research. Rev. Aquacult., 2018, 10, 626-640.
[http://dx.doi.org/10.1111/raq.12191]
[3]
Ringø, E.; Hoseinifar, S.H.; Ghosh, K.; Doan, H.V.; Beck, B.R.; Song, S.K. Lactic acid bacteria in finfish-an update. Front. Microbiol., 2018, 9, 1818.
[http://dx.doi.org/10.3389/fmicb.2018.01818] [PMID: 30147679]
[4]
Ferguson, R.M.W.; Merrifield, D.L.; Harper, G.M.; Rawling, M.D.; Mustafa, S.; Picchietti, S.; Balcázar, J.L.; Davies, S.J. The effect of Pediococcus acidilactici on the gut microbiota and immune status of on-growing red tilapia (Oreochromis niloticus). J. Appl. Microbiol., 2010, 109(3), 851-862.
[http://dx.doi.org/10.1111/j.1365-2672.2010.04713.x] [PMID: 20353430]
[5]
Lazado, C.C.; Caipang, C.M.; Estante, E.G. Prospects of host-associated microorganisms in fish and penaeids as probiotics with immunomodulatory functions. Fish Shellfish Immunol., 2015, 45(1), 2-12.
[http://dx.doi.org/10.1016/j.fsi.2015.02.023] [PMID: 25703713]
[6]
Wang, A.; Ran, C.; Wang, Y.; Zhang, Z.; Ding, Q.; Yang, Y.; Olsen, R.E.; Ringø, E.; Bindelle, J.; Zhou, Z. Use of probiotics in aquaculture of China-a review of the past decade. Fish Shellfish Immunol., 2019, 86, 734-755.
[http://dx.doi.org/10.1016/j.fsi.2018.12.026] [PMID: 30553887]
[7]
Merrifield, D.L.; Dimitroglou, A.; Foey, A.; Davies, S.J.; Baker, R.T.M.; Bøgwald, J.; Castex, M.; Ringø, E. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 2010, 302, 1-18.
[http://dx.doi.org/10.1016/j.aquaculture.2010.02.007]
[8]
Lazado, C.C.; Caipang, C.M.A. Atlantic cod in the dynamic probiotics research in aquaculture. Aquaculture, 2014, 424-425, 53-62.
[http://dx.doi.org/10.1016/j.aquaculture.2013.12.040]
[9]
Sun, Y.Z.; Yang, H.L.; Ma, R.L.; Lin, W.Y. Probiotic applications of two dominant gut Bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper Epinephelus coioides. Fish Shellfish Immunol., 2010, 29(5), 803-809.
[http://dx.doi.org/10.1016/j.fsi.2010.07.018] [PMID: 20637875]
[10]
Sharifuzzaman, S.M.; Abbass, A.; Tinsley, J.W.; Austin, B. Subcellular components of probiotics Kocuria SM1 and Rhodococcus SM2 induce protective immunity in rainbow trout (Oncorhynchus mykiss, Walbaum) against Vibrio anguillarum. Fish Shellfish Immunol., 2011, 30(1), 347-353.
[http://dx.doi.org/10.1016/j.fsi.2010.11.005] [PMID: 21078398]
[11]
Ramesh, D.; Vinothkanna, A.; Rai, A.K.; Vignesh, V.S. Isolation of potential probiotic Bacillus spp. and assessment of their subcellular components to induce immune responses in Labeo rohita against Aeromonas hydrophila. Fish Shellfish Immunol., 2015, 45(2), 268-276.
[http://dx.doi.org/10.1016/j.fsi.2015.04.018] [PMID: 25917974]
[12]
Yang, H.L.; Xia, H.Q.; Ye, Y.D.; Zou, W.C.; Sun, Y.Z. Probiotic Bacillus pumilus SE5 shapes the intestinal microbiota and mucosal immunity in grouper Epinephelus coioides. Dis. Aquat. Organ., 2014, 111(2), 119-127.
[http://dx.doi.org/10.3354/dao02772] [PMID: 25266899]
[13]
Yan, Y.Y.; Xia, H.Q.; Yang, H.L.; Hoseinifar, S.H.; Sun, Y.Z. Effects of dietary live or heat-inactivated autochthonous Bacillus pumilus SE5 on growth performance, immune responses and immune genes expression in grouper Epinephelus coioides. Aquacult. Nutr., 2016, 22, 698-707.
[http://dx.doi.org/10.1111/anu.12297]
[14]
Yang, H.L.; Sun, Y.Z.; Hu, X.; Ye, J.D.; Lu, K.L.; Hu, L.H.; Zhang, J.J. Bacillus pumilus SE5 originated PG and LTA tuned the intestinal TLRs/MyD88 signaling and microbiota in grouper (Epinephelus coioides). Fish Shellfish Immunol., 2019, 88, 266-271.
[http://dx.doi.org/10.1016/j.fsi.2019.03.005] [PMID: 30849499]
[15]
Yu, D.; Gong, S.; Yua, Y.; Lin, Y. Effects of replacing fish meal with soybean meal on growth, body composition and digestive enzyme activities of juvenile Chinese sucker, Myxocyprinus asiaticus. Aquacult. Nutr., 2013, 19, 84-90.
[http://dx.doi.org/10.1111/j.1365-2095.2012.00945.x]
[16]
Deng, J.; Kang, B.; Tao, L.; Rong, H.; Zhang, X. Effects of dietary cholesterol on antioxidant capacity, non-specific immune response, and resistance to Aeromonas hydrophila in rainbow trout (Oncorhynchus mykiss) fed soybean meal-based diets. Fish Shellfish Immunol., 2013, 34(1), 324-331.
[http://dx.doi.org/10.1016/j.fsi.2012.11.008] [PMID: 23207478]
[17]
Liu, W.; Ren, P.; He, S.; Xu, L.; Yang, Y.; Gu, Z.; Zhou, Z. Comparison of adhesive gut bacteria composition, immunity, and disease resistance in juvenile hybrid tilapia fed two different Lactobacillus strains. Fish Shellfish Immunol., 2013, 35(1), 54-62.
[http://dx.doi.org/10.1016/j.fsi.2013.04.010] [PMID: 23608032]
[18]
Suzer, C.; Çoban, D.; Kamaci, H.O.; Saka, Ş.; Firat, K.; Otgucuoğlu, Ö.; Küçüksari, H. Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae: Effects on growth performance and digestive enzyme activities. Aquaculture, 2008, 280, 140-145.
[http://dx.doi.org/10.1016/j.aquaculture.2008.04.020]
[19]
Gao, Q.; Gao, Q.; Min, M.; Zhang, C.; Peng, S.; Shi, Z. Ability of Lactobacillus plantarum lipoteichoic acid to inhibit Vibrio anguillarum-induced inflammation and apoptosis in silvery pomfret (Pampus argenteus) intestinal epithelial cells. Fish Shellfish Immunol., 2016, 54, 573-579.
[http://dx.doi.org/10.1016/j.fsi.2016.05.013] [PMID: 27179425]
[20]
Koch, B.E.V.; Yang, S.; Lamers, G.; Stougaard, J.; Spaink, H.P. Intestinal microbiome adjusts the innate immune setpoint during colonization through negative regulation of MyD88. Nat. Commun., 2018, 9(1), 4099.
[http://dx.doi.org/10.1038/s41467-018-06658-4] [PMID: 30291253]
[21]
Gao, Q.; Yue, Y.; Min, M.; Peng, S.; Shi, Z.; Sheng, W.; Zhang, T. Characterization of TLR5 and TLR9 from silver pomfret (Pampus argenteus) and expression profiling in response to bacterial components. Fish Shellfish Immunol., 2018, 80, 241-249.
[http://dx.doi.org/10.1016/j.fsi.2018.06.014] [PMID: 29890218]
[22]
MacKenzie, S.A.; Roher, N.; Boltaña, S.; Goetz, F.W. Peptidoglycan, not endotoxin, is the key mediator of cytokine gene expression induced in rainbow trout macrophages by crude LPS. Mol. Immunol., 2010, 47(7-8), 1450-1457.
[http://dx.doi.org/10.1016/j.molimm.2010.02.009] [PMID: 20304498]
[23]
Zhou, J.; Song, X.L.; Huang, J.; Wang, X.H. Effects of dietary supplementation of A3a-peptidoglycan on innate immune responses and defense activity of Japanese flounder (Paralichthys olivaceus). Aquaculture, 2006, 251, 172-181.
[http://dx.doi.org/10.1016/j.aquaculture.2005.06.015]
[24]
Ribeiro, C.M.S.; Hermsen, T.; Taverne-Thiele, A.J.; Savelkoul, H.F.J.; Wiegertjes, G.F. Evolution of recognition of ligands from Gram-positive bacteria: similarities and differences in the TLR2-mediated response between mammalian vertebrates and teleost fish. J. Immunol., 2010, 184(5), 2355-2368.
[http://dx.doi.org/10.4049/jimmunol.0900990] [PMID: 20118281]
[25]
Rajanbabu, V.; Chen, J.Y. Applications of antimicrobial peptides from fish and perspectives for the future. Peptides, 2011, 32(2), 415-420.
[http://dx.doi.org/10.1016/j.peptides.2010.11.005] [PMID: 21093512]
[26]
Ye, J.; Kaattari, I.M.; Ma, C.; Kaattari, S. The teleost humoral immune response. Fish Shellfish Immunol., 2013, 35(6), 1719-1728.
[http://dx.doi.org/10.1016/j.fsi.2013.10.015] [PMID: 24436975]
[27]
Salinas, I.; Abelli, L.; Bertoni, F.; Picchietti, S.; Roque, A.; Furones, D.; Cuesta, A.; Meseguer, J.; Esteban, M.Á. Monospecies and multispecies probiotic formulations produce different systemic and local immunostimulatory effects in the gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol., 2008, 25(1-2), 114-123.
[http://dx.doi.org/10.1016/j.fsi.2008.03.011] [PMID: 18442923]