The Synthesis and Application of Functionalized Mesoporous Silica SBA-15 as Heterogeneous Catalyst in Organic Synthesis

Page: [361 - 387] Pages: 27

  • * (Excluding Mailing and Handling)

Abstract

Mesoporous silica nanomaterials provide an extraordinary advantage for making new and superior heterogeneous catalysts because of their surface silanol groups. The functionalized mesoporous SBA-15, such as acidic, basic, BrÖnsted, lewis acid, and chiral catalysts, are used for a wide range of organic syntheses. The importance of the chiral ligands, which were immobilized on the SBA-15, was mentioned in this review to achieve chiral products as valuable target molecules. Herein, their synthesis and application in different organic transformations are reviewed from 2016 till date 2020.

Keywords: Mesoporous silica, functionalized SBA-15, brönsted catalyst, lewis acid catalyst, basic catalysts, chiral catalysts.

Graphical Abstract

[1]
Bharadwaj, V.S.; Pecha, M.B.; Bu, L.; Dagle, V.L.; Dagle, R.A.; Ciesielski, P.N. Multi-scale simulation of reaction, transport and deactivation in a SBA-16 supported catalyst for the conversion of ethanol to butadiene. Catal. Today, 2019, 338, 141-151.
[http://dx.doi.org/10.1016/j.cattod.2019.05.042]
[2]
Singh, S.; Kumar, R.; Setiabudi, H.D.; Nanda, S.; Vo, D-V.N. Advanced synthesis strategies of mesoporous SBA-15 supported catalysts for catalytic reforming applications: a state-of-the-art review. Appl. Catal. A., 2018, 559, 57-74.
[http://dx.doi.org/10.1016/j.apcata.2018.04.015]
[3]
Zhang, Z.; Hu, X.; Zhang, L.; Yang, Y.; Li, Q.; Fan, H.; Liu, Q.; Wei, T.; Li, C-Z. Steam reforming of guaiacol over Ni/Al2O3 and Ni/SBA-15: impacts of support on catalytic behaviors of nickel and properties of coke. Fuel Process. Technol., 2019, 191, 138-151.
[http://dx.doi.org/10.1016/j.fuproc.2019.04.001]
[4]
Liu, M-H.; Chen, H-A.; Chen, C-S.; Wu, J-H.; Wu, H-C.; Yang, C-M. Tiny Ni particles dispersed in platelet SBA-15 materials induce high efficiency for CO2 methanation. Nanoscale, 2019, 11(43), 20741-20753.
[http://dx.doi.org/10.1039/C9NR06135E] [PMID: 31650145]
[5]
Feng, S.; Zhao, B.; Liang, Y.; Liu, L.; Dong, J. Improving selectivity to 1, 3-propanediol for glycerol hydrogenolysis using W-and Al-incorporated SBA-15 as support for Pt nanoparticles. Ind. Eng. Chem. Res., 2019, 58(8), 2661-2671.
[http://dx.doi.org/10.1021/acs.iecr.8b03982]
[6]
Kamble, M.; Salvi, H.; Yadav, G.D. Preparation of amino-functionalized silica supports for immobilization of epoxide hydrolase and cutinase: characterization and applications. J. Porous Mater., 2020, 27(5), 1559-1567.
[http://dx.doi.org/10.1007/s10934-020-00931-y]
[7]
Jin, M.; Guo, Z.; Lv, Z. Immobilization of tungsten chelate complexes on functionalized mesoporous silica SBA-15 as heterogeneous catalysts for oxidation of cyclopentene. J. Mater. Sci., 2019, 54(9), 6853-6866.
[http://dx.doi.org/10.1007/s10853-019-03361-7]
[8]
Yang, J.; Jia, Y.; Huang, B.; Li, X.; Guo, L.; Zheng, A.; Luque, R.; Sun, Y. Functionalized CeO2/SBA-15 materials as efficient catalysts for aqueous room temperature mono-dehydration of sugar alcohols. ACS Sustain. Chem.& Eng., 2020, 8(16), 6371-6380.
[http://dx.doi.org/10.1021/acssuschemeng.0c00494]
[9]
Gai, L.; Guo, L.; An, Q.; Xiao, Z.; Zhai, S.; Li, Z. Facile fabrication of SBA-15/polypyrrole composites with long-rod shape for enhanced electromagnetic wave absorption. Microporous Mesoporous Mater., 2019, 288109584
[http://dx.doi.org/10.1016/j.micromeso.2019.109584]
[10]
Soltani, R.; Dinari, M.; Mohammadnezhad, G. Ultrasonic-assisted synthesis of novel nanocomposite of poly(vinyl alcohol) and amino-modified MCM- 41: a green adsorbent for Cd(II) removal. Ultrason. Sonochem., 2018, 40(Pt A), 533-542..
[http://dx.doi.org/10.1016/j.ultsonch.2017.07.045] [PMID: 28946455]
[11]
Wu, S-H.; Hung, Y.; Mou, C-Y. Mesoporous silica nanoparticles as nanocarriers. Chem. Commun. (Camb.), 2011, 47(36), 9972-9985.
[http://dx.doi.org/10.1039/c1cc11760b] [PMID: 21716992]
[12]
Abboud, M.; Sahlabji, T.; Haija, M.A.; El-Zahhar, A.A.; Bondock, S.; Ismail, I.; Keshk, S.M. Synthesis and characterization of lignosulfonate/amino-functionalized SBA-15 nanocomposites for the adsorption of methylene blue from wastewater. New J. Chem., 2020, 44(6), 2291-2302.
[http://dx.doi.org/10.1039/D0NJ00076K]
[13]
Zheng, X.; Song, Z.; Liu, E.; Zhang, Y.; Li, Z. Preparation of phosphoric acid-functionalized SBA-15 and its high efficient selective adsorption separation of lanthanum ions. J. Chem. Eng. Data, 2020, 65(2), 746-756.
[http://dx.doi.org/10.1021/acs.jced.9b00976]
[14]
Song, Y.; Yang, L-Y.; Wang, Y.G.; Yu, D.; Shen, J.; Ouyang, X.K. Highly efficient adsorption of Pb(II) from aqueous solution using amino-functionalized SBA-15/calcium alginate microspheres as adsorbent. Int. J. Biol. Macromol., 2019, 125, 808-819.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.112] [PMID: 30562520]
[15]
Zhou, H.; Gao, S.; Zhang, W.; An, Z.; Chen, D. Dynamic adsorption of toluene on amino-functionalized SBA-15 type spherical mesoporous silica. RSC Adv, 2019, 9(13), 7196-7202.
[http://dx.doi.org/10.1039/C8RA08605B]
[16]
Lashgari, N.; Badiei, A.; Ziarani, G.M. A novel functionalized nanoporous SBA-15 as a selective fluorescent sensor for the detection of multianalytes (Fe3+ and Cr2O72−) in water. J. Phys. Chem. Solids, 2017, 103, 238-248.
[http://dx.doi.org/10.1016/j.jpcs.2016.11.021]
[17]
Goldooz, H.; Badiei, A.; Shiravand, G.; Ghasemi, J.B.; Mohammadi Ziarani, G. A highly selective Ag+ sensor based on 8-hydroxyquinoline functionalized graphene oxide-silica nanosheet and its logic gate behaviour. J. Mater. Sci. Mater. Electron., 2019, 30(19), 17693-17705.
[http://dx.doi.org/10.1007/s10854-019-02119-w]
[18]
Abu-Zied, B.M.; Alam, M.; Asiri, A.M.; Schwieger, W.; Rahman, M.M. Fabrication of 1, 2-dichlorobenzene sensor based on mesoporous MCM-41 material. Colloids Surf. A Physicochem. Eng. Asp., 2019, 562, 161-169.
[http://dx.doi.org/10.1016/j.colsurfa.2018.11.024]
[19]
Ganjali, M.R.; Gupta, V.K.; Hosseini, M.; Rafiei-Sarmazdeh, Z.; Faridbod, F.; Goldooz, H.; Badiei, A.R.; Norouzi, P. A novel permanganate-sensitive fluorescent nano-chemosensor assembled with a new 8-hydroxyquinoline-functionalized SBA-15. Talanta, 2012, 88, 684-688.
[http://dx.doi.org/10.1016/j.talanta.2011.11.065] [PMID: 22265558]
[20]
Wang, Y.; Li, B.; Zhang, L.; Liu, L.; Zuo, Q.; Li, P. A highly selective regenerable optical sensor for detection of mercury (II) ion in water using organic–inorganic hybrid nanomaterials containing pyrene. New J. Chem., 2010, 34(9), 1946-1953.
[http://dx.doi.org/10.1039/c0nj00039f]
[21]
Huang, J.; Liu, H-B.; Wang, J. Functionalized mesoporous silica as a fluorescence sensor for selective detection of Hg2+ in aqueous medium. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 246118974
[http://dx.doi.org/10.1016/j.saa.2020.118974] [PMID: 33010539]
[22]
Buonomenna, M.G.; Golemme, G.; Tone, C.M.; De Santo, M.P.; Ciuchi, F.; Perrotta, E. Amine-functionalized SBA-15 in poly (styrene-b-butadiene-b-styrene)(SBS) yields permeable and selective nanostructured membranes for gas separation. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(38), 11853-11866.
[http://dx.doi.org/10.1039/c3ta12180a]
[23]
Wang, L.; Zhang, L.; Li, H.; Ma, Y.; Zhang, R. High selective production of 5-hydroxymethylfurfural from fructose by sulfonic acid functionalized SBA-15 catalyst. Compos., Part B Eng., 2019, 156, 88-94.
[http://dx.doi.org/10.1016/j.compositesb.2018.08.044]
[24]
Hiyoshi, N.; Yogo, K.; Yashima, T. Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous Mesoporous Mater., 2005, 84(1-3), 357-365.
[http://dx.doi.org/10.1016/j.micromeso.2005.06.010]
[25]
Mehmood, A.; Ghafar, H.; Yaqoob, S.; Gohar, U.F.; Ahmad, B. Mesoporous silica nanoparticles: a review. J. Dev. Drugs, 2017, 6(2), 1-14.
[http://dx.doi.org/10.4172/2329-6631.1000174]
[26]
Eslami, M.; Dekamin, M.G.; Motlagh, L.; Maleki, A. MCM-41 mesoporous silica: a highly efficient and recoverable catalyst for rapid synthesis of α-aminonitriles and imines. Green Chem. Lett. Rev., 2018, 11(1), 36-46.
[http://dx.doi.org/10.1080/17518253.2017.1421269]
[27]
Chaudhary, V.; Sharma, S. An overview of ordered mesoporous material SBA-15: synthesis, functionalization and application in oxidation reactions. J. Porous Mater., 2017, 24(3), 741-749.
[http://dx.doi.org/10.1007/s10934-016-0311-z]
[28]
Huirache-Acuña, R.; Nava, R.; Peza-Ledesma, C.L.; Lara-Romero, J.; Alonso-Núez, G.; Pawelec, B.; Rivera-Muñoz, E.M. SBA-15 mesoporous silica as catalytic support for hydrodesulfurization catalysts. Materials (Basel), 2013, 6(9), 4139-4167.
[http://dx.doi.org/10.3390/ma6094139] [PMID: 28788323]
[29]
Jadach, B.; Feliczak-Guzik, A.; Nowak, I.; Milanowski, B.; Piotrowska-Kempisty, H.; Murias, M.; Lulek, J. Modifying release of poorly soluble active pharmaceutical ingredients with the amine functionalized SBA-16 type mesoporous materials. J. Biomater. Appl., 2019, 33(9), 1214-1231.
[http://dx.doi.org/10.1177/0885328219830823] [PMID: 30791849]
[30]
Huang, M-Y.; Han, X-X.; Hung, C-T.; Lin, J-C.; Wu, P-H.; Wu, J-C.; Liu, S-B. Heteropolyacid-based ionic liquids as efficient homogeneous catalysts for acetylation of glycerol. J. Catal., 2014, 320, 42-51.
[http://dx.doi.org/10.1016/j.jcat.2014.09.022]
[31]
Balaraju, M.; Nikhitha, P.; Jagadeeswaraiah, K.; Srilatha, K.; Prasad, P.S.; Lingaiah, N. Acetylation of glycerol to synthesize bioadditives over niobic acid supported tungstophosphoric acid catalysts. Fuel Process. Technol., 2010, 91(2), 249-253.
[http://dx.doi.org/10.1016/j.fuproc.2009.10.005]
[32]
Yang, L.; Qi, Y.; Yuan, X.; Shen, J.; Kim, J. Direct synthesis, characterization and catalytic application of SBA-15 containing heteropolyacid H3PW12O40. J. Mol. Catal. Chem., 2005, 229(1-2), 199-205.
[http://dx.doi.org/10.1016/j.molcata.2004.11.024]
[33]
Ziarani, G.M.; Lashgari, N.; Badiei, A. Application of organoamine-functionalized mesoporous silica (SBA-Pr-NH2) as a nano base catalyst in organic reactions. Curr. Org. Chem., 2017, 21(8), 674-687.
[http://dx.doi.org/10.2174/1385272820666160525123600]
[34]
Wu, S-H.; Mou, C-Y.; Lin, H-P. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev., 2013, 42(9), 3862-3875.
[http://dx.doi.org/10.1039/c3cs35405a] [PMID: 23403864]
[35]
Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350), 548-552.
[36]
Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B.F.; Stucky, G.D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc., 1998, 120(24), 6024-6036.
[http://dx.doi.org/10.1021/ja974025i]
[37]
Choi, Y.; Sinha, A.; Im, J.; Jung, H.; Kim, J. Hierarchically porous composite scaffold composed of SBA-15 microrods and reduced graphene oxide functionalized with cyclodextrin for water purification. ACS Appl. Mater. Interfaces, 2019, 11(17), 15764-15772.
[http://dx.doi.org/10.1021/acsami.9b01845] [PMID: 30986031]
[38]
Björk, E.M. Synthesizing and characterizing mesoporous silica SBA-15: a hands-on laboratory experiment for undergraduates using various instrumental techniques. J. Chem. Educ., 2017, 94(1), 91-94.
[http://dx.doi.org/10.1021/acs.jchemed.5b01033]
[39]
Mohammadi, M.; Ghorbani-Choghamarani, A. L-Methionine–Pd complex supported on hercynite as a highly efficient and reusable nanocatalyst for C–C cross-coupling reactions. New J. Chem., 2020, 44(7), 2919-2929.
[http://dx.doi.org/10.1039/C9NJ05325E]
[40]
Arab, R.; Hajiaghababaei, L.; Badiei, A.; Karimi, M.; Ganjali, M.R.; Mohammadi Ziarani, G. 8-Hydroxyquinoline grafted nanoporous SBA-15 as a novel solid phase extractor for preconcentration of trace amount of Copper. Int. J. Nanodimens., 2019, 10(4), 340-349.
[41]
Qin, Y.; Wang, Y.; Wang, H.; Gao, J.; Qu, Z. Effect of morphology and pore structure of SBA-15 on toluene dynamic adsorption/desorption performance. Procedia Environ. Sci., 2013, 18, 366-371.
[http://dx.doi.org/10.1016/j.proenv.2013.04.048]
[42]
Wang, L.; He, H.; Zhang, C.; Sun, L.; Liu, S.; Yue, R. Excellent antimicrobial properties of silver-loaded mesoporous silica SBA-15. J. Appl. Microbiol., 2014, 116(5), 1106-1118.
[http://dx.doi.org/10.1111/jam.12443] [PMID: 24779579]
[43]
Yu, C.; Wei, C.; Lv, J.; Liu, H.; Meng, L. Preparation and thermal properties of mesoporous silica/phenolic resin nanocomposites via in situ polymerization. Meng. Express Polym., 2012, 6(10), 783-793.
[http://dx.doi.org/10.3144/expresspolymlett.2012.84]
[44]
Mondal, J.; Borah, P.; Modak, A.; Zhao, Y.; Bhaumik, A. Cu-grafted functionalized mesoporous SBA-15: a novel heterogeneous catalyst for facile one-pot three-component C–S cross-coupling reaction of aryl halides in water. Org. Process Res. Dev., 2014, 18(1), 257-265.
[http://dx.doi.org/10.1021/op4000994]
[45]
Ghorbani-Choghamarani, A.; Mohammadi, M.; Tamoradi, T.; Ghadermazi, M. Covalent immobilization of Co complex on the surface of SBA-15: Green, novel and efficient catalyst for the oxidation of sulfides and synthesis of polyhydroquinoline derivatives in green condition. Polyhedron, 2019, 158, 25-35.
[http://dx.doi.org/10.1016/j.poly.2018.10.054]
[46]
Chen, Z.; Nasr, S.M.; Kazemi, M.; Mohammadi, M. A mini-review: achievements in the thiolysis of epoxides. Mini Rev. Org. Chem., 2020, 17(4), 352-362.
[http://dx.doi.org/10.2174/1570193X16666190723111746]
[47]
Alvarez-Casao, Y.; Marques-Lopez, E.; Herrera, R.P. Organocatalytic enantioselective Henry reactions. Symmetry (Basel), 2011, 3(2), 220-245.
[http://dx.doi.org/10.3390/sym3020220]
[48]
Tsubogo, T.; Ishiwata, T.; Kobayashi, S. Asymmetric carbon-carbon bond formation under continuous-flow conditions with chiral heterogeneous catalysts. Angew. Chem. Int. Ed. Engl., 2013, 52(26), 6590-6604.
[http://dx.doi.org/10.1002/anie.201210066] [PMID: 23720303]
[49]
Bae, S.J.; Kim, S-W.; Hyeon, T.; Kim, B.M. New chiral heterogeneous catalysts based on mesoporous silica: asymmetric diethylzinc addition to benzaldehyde. ChemComm, 2000, 2000, 31-32.
[50]
Van der Voort, P.; Esquivel, D.; De Canck, E.; Goethals, F.; Van Driessche, I.; Romero-Salguero, F.J. Periodic mesoporous organosilicas: from simple to complex bridges; a comprehensive overview of functions, morphologies and applications. Chem. Soc. Rev., 2013, 42(9), 3913-3955.
[http://dx.doi.org/10.1039/C2CS35222B] [PMID: 23081688]
[51]
Moradi, R.; Mohammadi Ziarani, G.; Mohajer, F.; Badiei, A. Synthesis and characterization of mesoporous organosilica supported palladium (SBA-Pr-NCQ-Pd) as an efficient nanocatalyst in Mizoroki-Heck coupling reaction. Appl. Organomet. Chem., 2020, 47520190238
[http://dx.doi.org/10.1002/aoc.5916]
[52]
Mohammadi Ziarani, G.; Mohajer, F.; Moradi, R.; Mofatehnia, P. The molecular diversity scope of urazole in the synthesis of organic compounds. Curr. Org. Synth., 2019, 16(7), 953-967.
[http://dx.doi.org/10.2174/1570179416666190925162215] [PMID: 31984879]
[53]
Mohammadi Ziarani, G.; Mofatehnia, P.; Mohajer, F.; Moradi, R. The synthesis of heterocyclic compounds based on 3-formylchromone via organic reactions. Heterocycles, 2020, 100(7), 993-1008.
[http://dx.doi.org/10.3987/REV-20-926]
[54]
Mohammadi Ziarani, G.; Gholamzadeh, P.; Badiei, A.; Vavsari, V.F. The role of pyruvic acid as starting material in some organic reactions in the presence of SBA-Pr-SO3H nanocatalyst. Res. Chem. Intermed., 2018, 44(1), 277-288.
[http://dx.doi.org/10.1007/s11164-017-3103-4]
[55]
Mohammadi Ziarani, G.; Lashgari, N.; Badiei, A. Sulfonic acid-functionalized mesoporous silica (SBA-Pr-SO3H) as solid acid catalyst in organic reactions. J. Mol. Catal. Chem., 2015, 397, 166-191.
[http://dx.doi.org/10.1016/j.molcata.2014.10.009]
[56]
Ziarani, G.M.; Moradi, R.; Lashgari, N.; Badiei, A.; Soorki, A.A. One-pot synthesis of spiro[chromeno[2,3-c]pyrazole-4,3′-indoline]-diones using sulfonic acid functionalized nanoporous silica SBA-Pr-SO3H and study of their antimicrobial properties. Polycycl. Aromat. Compd., 2018, 38(1), 66-74.
[http://dx.doi.org/10.1080/10406638.2016.1154579]
[57]
Mohammadi Ziarani, G.; Saidian, F.; Gholamzadeh, P.; Badiei, A.; Abolhasani Soorki, A. Green synthesis of pyrazol-chromeno[2,3-d]pyrimidinones using SBA-Pr-SO3H as an efficient nanocatalyst. Iran. J. Chem. Chem. Eng., 2017, 36(6), 39-48.
[58]
Fathi Vavsari, V.; Mohammadi Ziarani, G.; Balalaie, S.; Badiei, A.; Golmohammadi, F.; Ramezanpour, S.; Rominger, F. Unexpected synthesis of 1,3,4-oxadiazines using extraordinary effect of SBA-Pr-SO3H as the nano–catalyst. ChemistrySelect, 2017, 2(12), 3496-3499.
[http://dx.doi.org/10.1002/slct.201601862]
[59]
Dalla Costa, B.O.; Legnoverde, M.S.; Lago, C.; Decolatti, H.P.; Querini, C.A. Sulfonic functionalized SBA-15 catalysts in the gas phase glycerol dehydration. Thermal stability and catalyst deactivation. Microporous Mesoporous Mater., 2016, 230, 66-75.
[http://dx.doi.org/10.1016/j.micromeso.2016.04.035]
[60]
Tan, J.; Liu, X.; Yao, N.; Hu, Y.L.; Li, X.H. Novel and effective strategy of multifunctional titanium incorporated mesoporous material supported ionic liquid mediated reusable Hantzsch reaction. ChemistrySelect, 2019, 4(8), 2475-2479.
[http://dx.doi.org/10.1002/slct.201803739]
[61]
Azizi, N.; Edrisi, M.; Abbasi, F. Mesoporous silica SBA-15 functionalized with acidic deep eutectic solvent: a highly active heterogeneous N-formylation catalyst under solvent-free conditions. Appl. Organomet. Chem., 2018, 32(1)e3901
[http://dx.doi.org/10.1002/aoc.3901]
[62]
Ye, R.; Faucher, F.F.; Somorjai, G.A. Supported iron catalysts for Michael addition reactions. Mol. Catal., 2018, 447, 65-71.
[http://dx.doi.org/10.1016/j.mcat.2017.12.029]
[63]
Atashin, H.; Malakooti, R. Magnetic iron oxide nanoparticles embedded in SBA-15 silica wall as a green and recoverable catalyst for the oxidation of alcohols and sulfides. J. Saudi Chem. Soc., 2017, 21, S17-S24.
[http://dx.doi.org/10.1016/j.jscs.2013.09.007]
[64]
Samanta, P.K.; Ray, S.; Das, T.; Gage, S.H.; Nandi, M.; Richards, R.M.; Biswas, P. Palladium oxide nanoparticles intercalated mesoporous silica for solvent free acceptorless dehydrogenation reactions of alcohols. Microporous Mesoporous Mater., 2019, 284, 186-197.
[http://dx.doi.org/10.1016/j.micromeso.2019.04.034]
[65]
Tamoradi, T.; Ghorbani-Choghamarani, A.; Ghadermazi, M.; Veisi, H. SBA-15@Glycine-M (M= Ni and Cu): two green, novel and efficient catalysts for the one-pot synthesis of 5-substituted tetrazole and polyhydroquinoline derivatives. Solid State Sci., 2019, 91, 96-107.
[http://dx.doi.org/10.1016/j.solidstatesciences.2019.03.020]
[66]
Tayade, K.N.; Wang, L.; Shang, S.; Dai, W.; Mishra, M.; Gao, S. Zirconium triflate grafted on SBA-15 as a highly efficient solid acid catalyst for ring opening of epoxides by amines and alcohols. Chin. J. Catal., 2017, 38(4), 758-766.
[http://dx.doi.org/10.1016/S1872-2067(17)62794-3]
[67]
Robinson, M.W.; Davies, A.M.; Buckle, R.; Mabbett, I.; Taylor, S.H.; Graham, A.E. Epoxide ring-opening and Meinwald rearrangement reactions of epoxides catalyzed by mesoporous aluminosilicates. Org. Biomol. Chem., 2009, 7(12), 2559-2564.
[http://dx.doi.org/10.1039/b900719a] [PMID: 19503930]
[68]
Ganji, S.; Bukya, P.; Liu, Z.W.; Rao, K.S.R.; Burri, D.R. A carboxylic acid functionalized SBA-15 supported Pd nanocatalyst: an efficient catalyst for hydrogenation of nitrobenzene to aniline in water. New J. Chem., 2019, 43(30), 11871-11875.
[http://dx.doi.org/10.1039/C9NJ01743G]
[69]
Karimi, B.; Abedi, S.; Clark, J.H.; Budarin, V. Highly efficient aerobic oxidation of alcohols using a recoverable catalyst: the role of mesoporous channels of SBA-15 in stabilizing palladium nanoparticles. Angew. Chem. Int. Ed. Engl., 2006, 45(29), 4776-4779.
[http://dx.doi.org/10.1002/anie.200504359] [PMID: 16795094]
[70]
Rohani, S.; Mohammadi Ziarani, G.; Badiei, A.; Ziarati, A.; Jafari, M.; Shayesteh, A. Palladium-anchored multidentate SBA-15/di-urea nanoreactor: a highly active catalyst for Suzuki coupling reaction. Appl. Organomet. Chem., 2018, 32(8), 11.
[http://dx.doi.org/10.1002/aoc.4397]
[71]
Mohajer, F.; Mohammadi Ziarani, G.; Badiei, A. Decorated palladium nanoparticles on mesoporous organosilicate as an efficient catalyst for Sonogashira coupling reaction. J. Iran. Chem. Soc., 2020, 2020, 1-13.
[http://dx.doi.org/10.1007/s13738-020-02044-4]]
[72]
Mohajer, F.; Mohammadi Ziarani, G.; Badiei, A. The synthesis of SBA-Pr-3AP@ Pd and its application as a highly dynamic, eco-friendly heterogeneous catalyst for Suzuki-Miyaura cross-coupling reaction. Res. Chem. Intermed., 2020, 46(11), 4909-4922.
[http://dx.doi.org/10.1007/s11164-020-04218-4]
[73]
Matos, K.; Soderquist, J.A. Alkylboranes in the Suzuki-Miyaura coupling: Stereochemical and mechanistic studies. J. Org. Chem., 1998, 63(3), 461-470.
[http://dx.doi.org/10.1021/jo971681s] [PMID: 11672034]
[74]
Nikoorazm, M.; Khanmoradi, M.; Mohammadi, M. Guanine‐La complex supported onto SBA‐15: a novel efficient heterogeneous mesoporous nanocatalyst for one‐pot, multi‐component Tandem Knoevenagel condensation-Michael addition-cyclization reactions. Appl. Organomet. Chem., 2020, 34(4)e5504
[http://dx.doi.org/10.1002/aoc.5504]
[75]
Ghorbani-Choghamarani, A.; Mohammadi, M.; Shiri, L.; Taherinia, Z. Synthesis and characterization of spinel FeAl2O4 (hercynite) magnetic nanoparticles and their application in multicomponent reactions. Res. Chem. Intermed., 2019, 45(11), 5705-5723.
[http://dx.doi.org/10.1007/s11164-019-03930-0]
[76]
Kalhor, M.; Sajjadi, S.M.; Dadras, A. Cu/TCH-pr@ SBA-15 nano-composite: a new organometallic catalyst for facile three-component synthesis of 4-arylidene-isoxazolidinones. RSC Adv, 2020, 10(46), 27439-27446.
[http://dx.doi.org/10.1039/D0RA01314E]
[77]
Jahanshahi, R.; Akhlaghinia, B. Cu(II)-grafted SBA-15 functionalized S-methylisothiourea aminated epibromohydrin (SBA-15/E-SMTU-CuII): A novel and efficient heterogeneous mesoporous catalyst. New J. Chem., 2017, 41(15), 7203-7219.
[http://dx.doi.org/10.1039/C7NJ00849J]
[78]
Bottomley, G.A.; Clark, I.J.; Creaser, I.I.; Engelhardt, L.M.; Geue, R.J.; Hagen, K.S.; Harrowfield, J.M.; Lawrance, G.A.; Lay, P.A.; Sargeson, A.M. The synthesis and structure of encapsulating ligands: properties of bicyclic hexamines. Aust. J. Chem., 1994, 47(1), 143-179.
[http://dx.doi.org/10.1071/CH9940143]
[79]
Work, J.; McReynolds, J.P. Tris (ethylenediamine) cobalt (III) chloride. Inorg. Synth., 1946, 2, 221-222.
[80]
Bardajee, G.R.; Mohammadi, M.; Kakavand, N. Copper(II)-diaminosarcophagine-functionalized SBA-15: a heterogeneous nanocatalyst for the synthesis of benzimidazole, benzoxazole and benzothiazole derivatives under solvent-free conditions. Appl. Organomet. Chem., 2016, 30(1), 51-58.
[http://dx.doi.org/10.1002/aoc.3400]
[81]
Lazar, A.; Vinod, C.P.; Singh, A.P. A simple, phosphine free, reusable Pd(II)-2,2′-dihydroxybenzophenone-SBA-15 catalyst for arylation and hydrogenation reactions of alkenes. New J. Chem., 2016, 40(3), 2423-2432.
[http://dx.doi.org/10.1039/C5NJ02686E]
[82]
Farahmand, S.; Ghiaci, M. Highly selective allylic oxidation of cyclohexene to 2-cyclohexen-1-one under mild conditions over vanadyl-porphyrin implanted onto the amino-functionalized SBA-15. Microporous Mesoporous Mater., 2019, 2019, 288.
[http://dx.doi.org/10.1016/j.micromeso.2019.06.022]
[83]
Sun, Z-C.; She, Y-B.; Zhou, Y.; Song, X-F.; Li, K. Synthesis, characterization and spectral properties of substituted tetraphenylporphyrin iron chloride complexes. Molecules, 2011, 16(4), 2960-2970.
[http://dx.doi.org/10.3390/molecules16042960] [PMID: 21471935]
[84]
Carvalho, P.A.; Comerford, J.W.; Lamb, K.J.; North, M.; Reiss, P.S. Influence of mesoporous silica properties on cyclic carbonate synthesis catalysed by supported aluminium (salen) complexes. Adv. Synth. Catal., 2019, 361(2), 345-354.
[http://dx.doi.org/10.1002/adsc.201801229]
[85]
Huo, Y.; Hu, J.; Lin, S.; Ju, X.; Wei, Y.; Huang, Z.; Hu, Y.; Tu, Y. Platinum (II) complexes bearing bulky Schiff base ligands anchored onto mesoporous SBA-15 supports as efficient catalysts for hydrosilylation. Appl. Organomet. Chem., 2019, 33(6)e4874
[http://dx.doi.org/10.1002/aoc.4874]
[86]
Vargas, D.X.M.; De La Rosa, J.R.; Iyoob, S.A.; Lucio-Ortiz, C.J.; Córdoba, F.J.C.; Garcia, C.D. Phenol oxidation by air using a Co(II) salen complex catalyst supported on nanoporous materials: synthesis, characterization and kinetic analysis. Appl. Catal. A, 2015, 506, 44-56.
[87]
Nuri, A.; Mansoori, Y.; Bezaatpour, A.; Shchukarev, A.; Mikkola, J.P. Magnetic mesoporous SBA‐15 functionalized with a NHC Pd (II) complex: an efficient and recoverable nanocatalyst for Hiyama reaction. ChemistrySelect, 2019, 4(5), 1820-1829.
[http://dx.doi.org/10.1002/slct.201803798]
[88]
Wanzlick, H.W.; Schönherr, H.J. Direct synthesis of a mercury salt‐carbene complex.Angew. Chem., Int, Ed, Eng, 1968, 7(2), 141-142..
[http://dx.doi.org/10.1002/anie.196801412]
[89]
Mansoori, Y.; Khodayari, A.; Banaei, A.; Mirzaeinejad, M.; Azizian-Kalandaragh, Y.; Pooresmaeil, M. Fe3O4–PVAc nanocomposites: surface modification of sonochemically prepared magnetite nanoparticles via chemical grafting of poly (vinyl acetate). RSC Adv, 2016, 6(54), 48676-48683.
[http://dx.doi.org/10.1039/C5RA26783H]
[90]
Wang, S.; Wang, K.; Dai, C.; Shi, H.; Li, J. Adsorption of Pb2+ on amino-functionalized core–shell magnetic mesoporous SBA-15 silica composite. Chem. Eng. J., 2015, 262, 897-903.
[http://dx.doi.org/10.1016/j.cej.2014.10.035]
[91]
Kruis, B.A.; Boersma, J. 28 Dimethylpalladium (II) and monomethylpalladium (II) reagents and. Organometallics, 1995, 14, 4213.
[92]
Nuri, A.; Mansoori, Y.; Bezaatpour, A. N‐heterocyclic carbine-palladium (II) complex supported on magnetic mesoporous silica for Heck cross‐coupling reaction. Appl. Organomet. Chem., 2019, 33(6)e4904
[http://dx.doi.org/10.1002/aoc.4904]
[93]
Jin, M.; Guo, Z.; Lv, Z. Synthesis of convertible PO4[WO3 ⇌ W(O)2(O2)]4-DMA16 in SBA-15 nanochannels and its catalytic oxidation activity. Catal. Lett., 2019, 149(10), 2794-2806.
[http://dx.doi.org/10.1007/s10562-019-02761-3]
[94]
Ahmadi, T.; Mohammadi Ziarani, G.; Bahar, S.; Badiei, A. Domino synthesis of quinoxaline derivatives using SBA-Pr-NH2 as a nanoreactor and their spectrophotometric complexation studies with some metals ions. J. Iran. Chem. Soc., 2018, 15(5), 1153-1161.
[http://dx.doi.org/10.1007/s13738-018-1312-4]
[95]
Sadjadi, S.; Heravi, M.M.; Zadsirjan, V.; Farzaneh, V. SBA-15/hydrotalcite nanocomposite as an efficient support for the immobilization of heteropolyacid: a triply-hybrid catalyst for the synthesis of 2-amino-4H-pyrans in water. Appl. Surf. Sci., 2017, 426, 881-889.
[http://dx.doi.org/10.1016/j.apsusc.2017.06.182]
[96]
Sadjadi, S.; Heravi, M.M.; Zadsirjan, V.; Farzaneh, V. A ternary hybrid system based on combination of mesoporous silica, heteropolyacid and double-layered clay: an efficient catalyst for the synthesis of 2,4-dihydro-3H-pyrazol-3-ones and pyranopyrazoles in aqueous medium: studying the effect of the synthetic procedure on the catalytic activity. Res. Chem. Intermed., 2018, 44(11), 6765-6785.
[http://dx.doi.org/10.1007/s11164-018-3521-y]
[97]
Samadi, S.; Ashouri, A.; Samadi, M. Synthesis of chiral allylic esters by using the new recyclable chiral heterogeneous oxazoline-based catalysts. ACS Omega, 2020, 5(35), 22367-22378.
[http://dx.doi.org/10.1021/acsomega.0c02764] [PMID: 32923794]
[98]
Islam, M.M.; Bhanja, P.; Halder, M.; Das, A.; Bhaumik, A.; Islam, S.M. Chiral Cr (III)-salen complex embedded over sulfonic acid functionalized mesoporous SBA-15 material as an efficient catalyst for the asymmetric Henry reaction. Mol. Catal., 2019, 475110489
[http://dx.doi.org/10.1016/j.mcat.2019.110489]
[99]
Kureshy, R.I.; Noor-ul, H.K.; Abdi, S.H.; Patel, S.T.; Iyer, P.K.; Subramanian, P.; Jasra, R.V. A highly potential analogue of jacobsen catalyst with in-built phase transfer capability in enantioselective epoxidation of nonfunctionalized alkenes. J. Catal., 2002, 209(1), 99-104.
[http://dx.doi.org/10.1006/jcat.2002.3558]
[100]
Kureshy, R.I.; Noor-ul, H.K.; Abdi, S.H.; Ahmad, I.; Singh, S.; Jasra, R.V. Dicationic chiral Mn (III) salen complex exchanged in the interlayers of montmorillonite clay: a heterogeneous enantioselective catalyst for epoxidation of nonfunctionalized alkenes. J. Catal., 2004, 221(1), 234-240.
[http://dx.doi.org/10.1016/j.jcat.2003.07.012]
[101]
Gök, Y.; Aykut, İ.T.; Gök, H.Z. Readily accessible mesoporous silica nanoparticles supported chiral urea-amine bifunctional catalysts for enantioselective reactions. Appl. Organomet. Chem., 2020, 2020e6015