Recent Advances in Hydrophobic Modification of Nanocellulose

Page: [417 - 436] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

As a kind of renewable nanomaterial, nanocellulose displays excellent performances and exhibits wide application potentials. In general, nanocellulose has strong hydrophilicity due to the presence of abundant hydroxyl groups or the hydrophilic functional groups introduced during the preparation process. Although these hydrophilic groups benefit the nanocellulose with great application potential that is used in aqueous media (e.g., rheology modifier, hydrogels), they do hinder the performance of nanocellulose used as reinforcing agents for hydrophobic polymers and reduce the stability of the self-assembled nanostructure (e.g., nanopaper, aerogel) in a high-humidity environment. Thus, this review aims to summarize recent advances in the hydrophobic modification of nanocellulose, mainly in three aspects: physical adsorption, surface chemical modification (e.g., silylation, alkanoylation, esterification), and polymer graft copolymerization. In addition, the current limitations and future prospects of hydrophobic modification of nanocellulose are proposed.

Keywords: Nanocellulose, hydrophobic modification, reinforcing agent, cellulose nanopaper, aerogel, rheology.

Graphical Abstract

[1]
Du, H.; Liu, W.; Zhang, M.; Si, C.; Zhang, X.; Li, B. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr. Polym., 2019, 209, 130-144.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.020] [PMID: 30732792]
[2]
Liu, H.; Liu, K.; Han, X.; Xie, H.; Si, C.; Liu, W.; Bae, Y. Cellulose nanofibrils-based hydrogels for biomedical applications: progresses and challenges. Curr. Med. Chem., 2020, 27(28), 4622-4646.
[http://dx.doi.org/10.2174/0929867327666200303102859] [PMID: 32124687]
[3]
Huang, C.; Lin, W.; Lai, C.; Li, X.; Jin, Y.; Yong, Q. Coupling the post-extraction process to remove residual lignin and alter the recalcitrant structures for improving the enzymatic digestibility of acid-pretreated bamboo residues. Bioresour. Technol., 2019, 285121355
[http://dx.doi.org/10.1016/j.biortech.2019.121355] [PMID: 31004950]
[4]
Habibi, Y. Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev., 2014, 43(5), 1519-1542.
[http://dx.doi.org/10.1039/C3CS60204D] [PMID: 24316693]
[5]
Huang, C.; Sun, R.; Chang, H.M.; Yong, Q.; Jameel, H.; Phillips, R. Production of dissolving grade pulp from tobacco stalk through SO2-ethanol-water fractionation, alkaline extraction, and bleaching processes. BioResources, 2019, 14(3), 5544-5558.
[6]
Lu, J.; Zhu, W.; Dai, L.; Si, C.; Ni, Y. Fabrication of thermo- and pH-sensitive cellulose nanofibrils-reinforced hydrogel with biomass nanoparticles. Carbohydr. Polym., 2019, 215, 289-295.
[http://dx.doi.org/10.1016/j.carbpol.2019.03.100] [PMID: 30981356]
[7]
Jin, H.; Zhou, W.; Cao, J.; Stoyanov, S.D.; Blijdenstein, T.B.J.; de Groot, P.W.N.; Pelan, E.G. Super stable foams stabilized by colloidal ethyl cellulose particles. Soft Matter, 2012, 8(7), 2194-2205.
[http://dx.doi.org/10.1039/C1SM06518A]
[8]
Pääkkö, M.; Ankerfors, M.; Kosonen, H.; Nykänen, A.; Ahola, S.; Österberg, M.; Ruokolainen, J.; Laine, J.; Larsson, P.T.; Ikkala, O.; Lindström, T. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 2007, 8(6), 1934-1941.
[http://dx.doi.org/10.1021/bm061215p] [PMID: 17474776]
[9]
Liu, R.; Dai, L.; Si, C. Mussel-inspired cellulose-based nanocomposite fibers for adsorption and photocatalytic degradation. ACS Sustain. Chem.& Eng., 2018, 6, 15756-15763.
[http://dx.doi.org/10.1021/acssuschemeng.8b04320]
[10]
Si, C.; Xu, J. Recent advances in bio-medicinal and pharmaceutical applications of bio-based materials. Curr. Med. Chem., 2020, 27(28), 4581-4583.
[http://dx.doi.org/10.2174/092986732728200621210700] [PMID: 32571198]
[11]
Xie, H.; Zou, Z.; Du, H.; Zhang, X.; Wang, X.; Yang, X.; Wang, H.; Li, G.; Li, L.; Si, C. Preparation of thermally stable and surface-functionalized cellulose nanocrystals via mixed H2SO4/Oxalic acid hydrolysis. Carbohydr. Polym., 2019, 223, 115-116.
[http://dx.doi.org/10.1016/j.carbpol.2019.115116] [PMID: 31427005]
[12]
Dai, L.; Si, C. Recent advances on cellulose-based nano-drug delivery systems: design of prodrugs and nanoparticles. Curr. Med. Chem., 2019, 26(14), 2410-2429.
[http://dx.doi.org/10.2174/0929867324666170711131353] [PMID: 28699504]
[13]
Si, C. The development of lignocellulosic biomass in medicinal applications. Curr. Med. Chem., 2019, 26(14), 2408-2409.
[http://dx.doi.org/10.2174/092986732614190724160641] [PMID: 31453775]
[14]
Mukhopadhyay, A.; Cheng, Z.; Natan, A.; Ma, Y.; Yang, Y.; Cao, D.; Wang, W.; Zhu, H. Stable and highly ion selective membrane made from cellulose nanocrystal for aqueous redox flow batteries. Nano Lett., 2019, 19(12), 8979-8989.
[http://dx.doi.org/10.1021/acs.nanolett.9b03964] [PMID: 31702931]
[15]
Li, K.; Jin, S.; Chen, H.; Li, J. Bioinspired interface engineering of gelatin/cellulose nanofibrils nanocomposites with high mechanical performance and antibacterial properties for active packaging. Compos., Part B Eng., 2019, 171, 222-234.
[http://dx.doi.org/10.1016/j.compositesb.2019.04.043]
[16]
Liu, W.; Du, H.; Zhang, M.; Liu, K.; Liu, H.; Xie, H.; Si, C. Bacterial cellulose-based composite scaffolds for biomedical applications: a review. ACS Sustain. Chem.& Eng., 2020, 8, 7536-7562.
[http://dx.doi.org/10.1021/acssuschemeng.0c00125]
[17]
Wang, P.; Yin, B.; Dong, H.; Zhang, Y.; Zhang, Y.; Chen, R.; Yang, Z.; Huang, C.; Jiang, Q. Coupling biocompatible Au nanoclusters and cellulose nanofibrils to prepare the antibacterial nanocomposite films. Front. Bioeng. Biotechnol., 2020, 8, 986.
[http://dx.doi.org/10.3389/fbioe.2020.00986] [PMID: 32974314]
[18]
He, H.; Chen, R.; Zhang, L.; Williams, T.; Fang, X.; Shen, W. Fabrication of single-crystalline gold nanowires on cellulose nanofibers. J. Colloid Interface Sci., 2020, 562, 333-341.
[http://dx.doi.org/10.1016/j.jcis.2019.11.093] [PMID: 31855796]
[19]
Huang, C.; Dong, H.; Zhang, Z.; Bian, H.; Yong, Q. Procuring the nano-scale lignin in prehydrolyzate as ingredient to prepare cellulose nanofibril composite film with multiple functions. Cellulose, 2020, 2020, 1-16.
[http://dx.doi.org/10.1007/s10570-020-03427-9] [PMID: 33132545]
[20]
Du, H.; Liu, C.; Zhang, M.; Kong, Q.; Li, B.; Xian, M. Preparation and industrialization status of nanocellulose. Prog. Chem., 2018, 30(4), 448-462..
[http://dx.doi.org/10.7536/PC170830]
[21]
Moniri, M.; Boroumand Moghaddam, A.; Azizi, S.; Abdul Rahim, R.; Bin Ariff, A.; Zuhainis Saad, W.; Navaderi, M.; Mohamad, R. Production and status of bacterial cellulose in biomedical engineering. Nanomaterials (Basel), 2017, 7(9), 257.
[http://dx.doi.org/10.3390/nano7090257] [PMID: 32962322]
[22]
Bras, J.; Viet, D.; Bruzzese, C.; Dufresne, A. Correlation between stiffness of sheets prepared from cellulose whiskers and nanoparticles dimensions. Carbohydr. Polym., 2011, 84(1), 211-215.
[http://dx.doi.org/10.1016/j.carbpol.2010.11.022]
[23]
Nechyporchuk, O.; Belgacem, M.N.; Bras, J. Production of cellulose nanofibrils: a review of recent advances. Ind. Crops Prod., 2016, 93, 2-25.
[http://dx.doi.org/10.1016/j.indcrop.2016.02.016]
[24]
Xie, H.; Du, H.; Yang, X.; Si, C. Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int. J. Polym. Sci., 2018, 20187923068
[http://dx.doi.org/10.1155/2018/7923068]
[25]
Sun, B.; Zhang, M.; Hou, Q.; Liu, R.; Wu, T.; Si, C. Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers. Cellulose, 2015, 23(1), 439-450.
[http://dx.doi.org/10.1007/s10570-015-0803-z]
[26]
Liu, W.; Du, H.; Liu, H.; Xie, H.; Zhang, X.; Si, C. Highly efficient and green preparation of carboxylic and thermostable cellulose nanocrystals via FeCl3-catalyzed innocuous citric acid hydrolysis. ACS Sustain. Chem.& Eng., 2020, 8, 16691-16700.
[http://dx.doi.org/10.1021/acssuschemeng.0c06561]
[27]
Xu, J.T.; Chen, X.Q. Preparation and characterization of spherical cellulose nanocrystals with high purity by the composite enzymolysis of pulp fibers. Bioresour. Technol., 2019, 291121842
[http://dx.doi.org/10.1016/j.biortech.2019.121842] [PMID: 31377505]
[28]
Lin, W.; Xing, S.; Jin, Y.; Lu, X.; Huang, C.; Yong, Q. Insight into understanding the performance of deep eutectic solvent pretreatment on improving enzymatic digestibility of bamboo residues. Bioresour. Technol., 2020, 306123163
[http://dx.doi.org/10.1016/j.biortech.2020.123163] [PMID: 32182471]
[29]
Lalanne-Tisné, M.; Mees, M.A.; Eyley, S.; Zinck, P.; Thielemans, W. Organocatalyzed ring opening polymerization of lactide from the surface of cellulose nanofibrils. Carbohydr. Polym., 2020, 250116974
[http://dx.doi.org/10.1016/j.carbpol.2020.116974] [PMID: 33049866]
[30]
Bian, H.; Dong, M.; Chen, L.; Zhou, X.; Ni, S.; Fang, G.; Dai, H. Comparison of mixed enzymatic pretreatment and post-treatment for enhancing the cellulose nanofibrillation efficiency. Bioresour. Technol., 2019, 293122171
[http://dx.doi.org/10.1016/j.biortech.2019.122171] [PMID: 31558340]
[31]
Bian, H.; Gao, Y.; Yang, Y.; Fang, G.; Dai, H. Improving cellulose nanofibrillation of waste wheat straw using the combined methods of prewashing, p-toluenesulfonic acid hydrolysis, disk grinding, and endoglucanase post-treatment. Bioresour. Technol., 2018, 256, 321-327.
[http://dx.doi.org/10.1016/j.biortech.2018.02.038] [PMID: 29459318]
[32]
Bian, H.; Luo, J.; Wang, R.; Zhou, X.; Ni, S.; Shi, R.; Dai, H. Recyclable and reusable maleic acid for efficient production of cellulose nanofibrils with stable performance. ACS Sustain. Chem.& Eng., 2019, 7(24), 20022-20031.
[http://dx.doi.org/10.1021/acssuschemeng.9b05766]
[33]
Balquinta, M.L.; Andrés, S.C.; Cerrutti, P.; Califano, A.N.; Lorenzo, G. Effect of bacterial nanocellulose post-synthetic processing on powders and rehydrated suspensions characteristics. J. Food Eng., 2020, 2020109994
[http://dx.doi.org/10.1016/j.jfoodeng.2020.109994]
[34]
Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev., 2011, 40(7), 3941-3994.
[http://dx.doi.org/10.1039/c0cs00108b] [PMID: 21566801]
[35]
Naseri-Nosar, M.; Ziora, Z.M. Wound dressings from naturally-occurring polymers: a review on homopolysaccharide-based composites. Carbohydr. Polym., 2018, 189, 379-398.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.003] [PMID: 29580422]
[36]
Zinatloo-Ajabshir, S.; Salavati-Niasari, M. Effect of copper on improving the electrochemical storage of hydrogen in CeO2 nanostructure fabricated by a simple and surfactant-free sonochemical pathway. Ceram. Int., 2020, 46(17), 26548-26556.
[http://dx.doi.org/10.1016/j.ceramint.2020.07.121]
[37]
Zinatloo-Ajabshir, S.; Morassaei, M.S.; Salavati-Niasari, M. Simple approach for the synthesis of Dy2Sn2O7 nanostructures as a hydrogen storage material from banana juice. J. Clean. Prod., 2019, 222, 103-110.
[http://dx.doi.org/10.1016/j.jclepro.2019.03.023]
[38]
Zinatloo-Ajabshir, S.; Salehi, Z.; Amiri, O.; Salavati-Niasari, M. Simple fabrication of Pr2Ce2O7 nanostructures via a new and eco-friendly route; a potential electrochemical hydrogen storage material. J. Alloys Compd., 2019, 791, 792-799.
[http://dx.doi.org/10.1016/j.jallcom.2019.04.005]
[39]
Zinatloo-Ajabshir, S.; Salehi, Z.; Salavati-Niasari, M. Green synthesis and characterization of Dy2Ce2O7 nanostructures using Ananas comosus with high visible-light photocatalytic activity of organic contaminants. J. Alloys Compd., 2018, 763, 314-321.
[http://dx.doi.org/10.1016/j.jallcom.2018.05.311]
[40]
Zinatloo-Ajabshir, S.; Mortazavi-Derazkola, S.; Salavati-Niasari, M. Sonochemical synthesis, characterization and photodegradation of organic pollutant over Nd2O3 nanostructures prepared via a new simple route. Separ. Purif. Tech., 2017, 178, 138-146.
[http://dx.doi.org/10.1016/j.seppur.2017.01.034]
[41]
Chen, S.; Wang, G.; Sui, W.; Parvez, A.M.; Si, C. Synthesis of lignin-functionalized phenolic nanospheres supported Ag nanoparticles with excellent dispersion stability and catalytic performance. Green Chem., 2020, 22, 2879-2888.
[http://dx.doi.org/10.1039/C9GC04311J]
[42]
Zinatloo-Ajabshir, S.; Salehi, Z.; Salavati-Niasari, M. Green synthesis of Dy2Ce2O7 ceramic nanostructures using juice of Punica granatum and their efficient application as photocatalytic degradation of organic contaminants under visible light. Ceram. Int., 2018, 44(4), 3873-3883.
[http://dx.doi.org/10.1016/j.ceramint.2017.11.177]
[43]
Zinatloo-Ajabshir, S.; Morassaei, M.S.; Amiri, O.; Salavati-Niasari, M. Green synthesis of dysprosium stannate nanoparticles using Ficus carica extract as photocatalyst for the degradation of organic pollutants under visible irradiation. Ceram. Int., 2020, 46, 6095-6107.
[http://dx.doi.org/10.1016/j.ceramint.2019.11.072]
[44]
Heidari-Asil, S.A.; Zinatloo-Ajabshir, S.; Amiri, O.; Salavati-Niasari, M. Amino acid assisted-synthesis and characterization of magnetically retrievable ZnCo2O4–Co3O4 nanostructures as high activity visible-light-driven photocatalyst. Int. J. Hydrogen Energy, 2020, 45, 22761-22774.
[http://dx.doi.org/10.1016/j.ijhydene.2020.06.122]
[45]
Chen, L.; Wang, Q.; Hirth, K.; Baez, C.; Agarwal, U.P.; Zhu, J.Y. Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose, 2015, 22(3), 1753-1762.
[http://dx.doi.org/10.1007/s10570-015-0615-1]
[46]
Aroso, I.M.; Silva, J.C.; Mano, F.; Ferreira, A.S.D.; Dionísio, M.; Sá-Nogueira, I.; Barreiros, S.; Reis, R.L.; Paiva, A.; Duarte, A.R.C. Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems. Eur. J. Pharm. Biopharm., 2016, 98, 57-66.
[http://dx.doi.org/10.1016/j.ejpb.2015.11.002] [PMID: 26586342]
[47]
Parit, M.; Du, H.; Zhang, X.; Prather, C.; Adams, M.; Jiang, Z. Polypyrrole and cellulose nanofiber based composite films with improved physical and electrical properties for electromagnetic shielding applications. Carbohydr. Polym., 2020, 240116304
[http://dx.doi.org/10.1016/j.carbpol.2020.116304] [PMID: 32475575]
[48]
Pääkkö, M.; Vapaavuori, J.; Silvennoinen, R.; Kosonen, H.; Ankerfors, M.; Lindström, T.; Berglund, L.A.; Ikkala, O. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter, 2008, 4(12), 2492-2499.
[http://dx.doi.org/10.1039/b810371b]
[49]
Saito, T.; Uematsu, T.; Kimura, S.; Enomae, T.; Isogai, A. Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter, 2011, 7(19), 8804-8809.
[http://dx.doi.org/10.1039/c1sm06050c]
[50]
Yang, X.; Cranston, E.D. Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem. Mater., 2014, 26(20), 6016-6025.
[http://dx.doi.org/10.1021/cm502873c]
[51]
Pei, W.; Chen, Z.S.; Chan, H.Y.E.; Zheng, L.; Liang, C.; Huang, C. Isolation and identification of a novel anti-protein aggregation activity of lignin-carbohydrate complex from Chionanthus retusus leaves. Front. Bioeng. Biotechnol., 2020, 8573991
[http://dx.doi.org/10.3389/fbioe.2020.573991] [PMID: 33102457]
[52]
Razi, F.; Zinatloo-Ajabshir, S.; Salavati-Niasari, M. Preparation, characterization and photocatalytic properties of Ag2ZnI4/AgI nanocomposites via a new simple hydrothermal approach. J. Mol. Liq., 2017, 225, 645-651.
[http://dx.doi.org/10.1016/j.molliq.2016.11.028]
[53]
Pei, W.; Shang, W.; Liang, C.; Jiang, X.; Huang, C.; Yong, Q. Using lignin as the precursor to synthesize Fe3O4@lignin composite for preparing electromagnetic wave absorbing lignin-phenol-formaldehyde adhesive. Ind. Crops Prod., 2020, 154112638
[http://dx.doi.org/10.1016/j.indcrop.2020.112638]
[54]
Tian, X.X.; Gholamrezaei, S.; Amiri, O.; Ghanbari, M.; Dashtbozorg, A.; Salavati-Niasari, M. Zn2MnO4/ZnO nanocomposites: One step sonochemical fabrication and demonstration as a novel catalyst in water splitting reaction. Ceram. Int., 2020, 46, 26548-26556.
[http://dx.doi.org/10.1016/j.ceramint.2020.07.058]
[55]
Dong, H.; Zheng, L.; Yu, P.; Jiang, Q.; Wu, Y.; Huang, C.; Yin, B. Characterization and application of lignin-carbohydrate complexes from lignocellulosic materials as antioxidants for scavenging in vitro and in vivo reactive oxygen species. ACS Sustain. Chem.& Eng., 2020, 8(1), 256-266.
[http://dx.doi.org/10.1021/acssuschemeng.9b05290]
[56]
Liu, R.; Dai, L.; Si, C.; Zeng, Z. Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers. Carbohydr. Polym., 2018, 195, 63-70.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.085] [PMID: 29805020]
[57]
Liang, Y.; Zhu, H.; Wang, L.; He, H.; Wang, S. Biocompatible smart cellulose nanofibres for sustained drug release via pH and temperature dual-responsive mechanism. Carbohydr. Polym., 2020, 249116876
[http://dx.doi.org/10.1016/j.carbpol.2020.116876] [PMID: 32933696]
[58]
Farahani, H.; Barati, A.; Arjomandzadegan, M.; Vatankhah, E. Nanofibrous cellulose acetate/gelatin wound dressing endowed with antibacterial and healing efficacy using nanoemulsion of Zataria multiflora. Int. J. Biol. Macromol., 2020, 162, 762-773.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.175] [PMID: 32590085]
[59]
Dong, H.; Li, M.; Jin, Y.; Wu, Y.; Huang, C.; Yang, J. Preparation of graphene-like porous carbons with enhanced thermal conductivities from lignin nano-particles by combining hydrothermal carbonization and pyrolysis. Front. Energy Res., 2020, 8, 148.
[http://dx.doi.org/10.3389/fenrg.2020.00148]
[60]
Lu, J.; Han, X.; Dai, L.; Li, C.; Wang, J.; Zhong, Y.; Yu, F.; Si, C. Conductive cellulose nanofibrils-reinforced hydrogels with synergetic strength, toughness, self-adhesion, flexibility and adjustable strain responsiveness. Carbohydr. Polym., 2020, 250117010
[http://dx.doi.org/10.1016/j.carbpol.2020.117010] [PMID: 33049871]
[61]
Huang, W.; Tang, X.; Qiu, Z.; Zhu, W.; Wang, Y.; Zhu, Y.L.; Xiao, Z.; Wang, H.; Liang, D.; Li, J.; Xie, Y. Cellulose-based superhydrophobic surface decorated with functional groups showing distinct wetting abilities to manipulate water harvesting. ACS Appl. Mater. Interfaces, 2020, 12(36), 40968-40978.
[http://dx.doi.org/10.1021/acsami.0c12504] [PMID: 32805840]
[62]
Nascimento, D.M.; Nunes, Y.L.; Figueirêdo, M.C.B.; de Azeredo, H.M.C.; Aouada, F.A.; Feitosa, J.P.A.; Rosa, M.F.; Dufresne, A. Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chem., 2018, 20(11), 2428-2448.
[http://dx.doi.org/10.1039/C8GC00205C]
[63]
Zheng, T.; Clemons, C.M.; Pilla, S. Comparative study of direct compounding, coupling agent-aided and initiator-aided reactive extrusion to prepare cellulose nanocrystal/PHBV (CNC/PHBV) nanocomposite. ACS Sustain. Chem.& Eng., 2019, 8(2), 814-822.
[http://dx.doi.org/10.1021/acssuschemeng.9b04867]
[64]
Soeta, H.; Fujisawa, S.; Saito, T.; Isogai, A. Controlling miscibility of the interphase in polymer-grafted nanocellulose/cellulose triacetate nanocomposites. ACS Omega, 2020, 5(37), 23755-23761.
[http://dx.doi.org/10.1021/acsomega.0c02772] [PMID: 32984694]
[65]
Chen, Q.; Shi, Y.; Chen, G.; Cai, M. Enhanced mechanical and hydrophobic properties of composite cassava starch films with stearic acid modified MCC (microcrystalline cellulose)/NCC (nanocellulose) as strength agent. Int. J. Biol. Macromol., 2020, 142, 846-854.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.024] [PMID: 31622700]
[66]
Vatansever, E.; Arslan, D.; Nofar, M. Polylactide cellulose-based nanocomposites. Int. J. Biol. Macromol., 2019, 137, 912-938.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.205] [PMID: 31284009]
[67]
Kargarzadeh, H.; Mariano, M.; Gopakumar, D.; Ahmad, I.; Thomas, S.; Dufresne, A.; Huang, J.; Lin, N. Advances in cellulose nanomaterials. Cellulose, 2018, 25(4), 2151-2189.
[http://dx.doi.org/10.1007/s10570-018-1723-5]
[68]
Lucenius, J.; Parikka, K.; Österberg, M. Nanocomposite films based on cellulose nanofibrils and water-soluble polysaccharides. React. Funct. Polym., 2014, 85, 167-174.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2014.08.001]
[69]
Li, M.C.; Mei, C.; Xu, X.; Lee, S.; Wu, Q. Cationic surface modification of cellulose nanocrystals: toward tailoring dispersion and interface in carboxymethyl cellulose films. Polymer (Guildf.), 2016, 107, 200-210.
[http://dx.doi.org/10.1016/j.polymer.2016.11.022]
[70]
Dai, L.; Zhu, W.Y.; Lu, J.; Kong, F.; Si, C. A novel lignin-containing cellulose hydrogel for lignin fractionation. Green Chem., 2019, 21, 5222-5230.
[http://dx.doi.org/10.1039/C9GC01975H]
[71]
Qing, W.; Wang, Y.; Wang, Y.; Zhao, D.; Liu, X.; Zhu, J. The modified nanocrystalline cellulose for hydrophobic drug delivery. Appl. Surf. Sci., 2016, 366, 404-409.
[http://dx.doi.org/10.1016/j.apsusc.2016.01.133]
[72]
Prathapan, R.; Thapa, R.; Garnier, G.; Tabor, R.F. Modulating the zeta potential of cellulose nanocrystals using salts and surfactants. Colloids Surf. A Physicochem. Eng. Asp., 2016, 509, 11-18.
[http://dx.doi.org/10.1016/j.colsurfa.2016.08.075]
[73]
Pan, Y.; Xiao, H.; Cai, P.; Colpitts, M. Cellulose fibers modified with nano-sized antimicrobial polymer latex for pathogen deactivation. Carbohydr. Polym., 2016, 135(135), 94-100.
[http://dx.doi.org/10.1016/j.carbpol.2015.08.046] [PMID: 26453856]
[74]
Gupta, R.D.; Raghav, N. Differential effect of surfactants tetra-n-butyl ammonium bromide and N-Cetyl-N, N, N-trimethyl ammonium bromide bound to nano-cellulose on binding and sustained release of some non-steroidal anti-inflammatory drugs. Int. J. Biol. Macromol., 2020, 164, 2745-2752.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.091] [PMID: 32800952]
[75]
Hu, D.; Zhang, Z.; Liu, M.; Lin, J.; Chen, X.; Ma, W. Multifunctional UV-shielding nanocellulose films modified with halloysite nanotubes-zinc oxide nanohybrid. Cellulose, 2019, 27(1), 401-413.
[http://dx.doi.org/10.1007/s10570-019-02796-0]
[76]
Wang, H.; Xie, H.; Du, H.; Wang, X.; Liu, W.; Duan, Y.; Zhang, X.; Sun, L.; Zhang, X.; Si, C. Highly efficient preparation of functional and thermostable cellulose nanocrystals via H2SO4 intensified acetic acid hydrolysis. Carbohydr. Polym., 2020, 239116233
[http://dx.doi.org/10.1016/j.carbpol.2020.116233] [PMID: 32414449]
[77]
Huang, D.; Yang, Q.; Jin, S.; Deng, Q.; Zhou, P. Self-assembly of cellulose nanoparticles as electrolyte additive for capillary electrophoresis separation. J. Chromatogr. A, 2014, 1367, 148-153.
[http://dx.doi.org/10.1016/j.chroma.2014.09.032] [PMID: 25262028]
[78]
Yin, Y.; Hong, Z.; Tian, X.; Zhu, Q.; Jiang, X.; Wang, H.; Gao, W. Cellulose nanocrystals modified with quaternary ammonium salts and its reinforcement of polystyrene. Polym. Bull., 2017, 75(5), 2151-2166.
[http://dx.doi.org/10.1007/s00289-017-2131-y]
[79]
Salajková, M.; Berglund, L.A.; Zhou, Q. Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J. Mater. Chem., 2012, 22(37), 19798-19805.
[http://dx.doi.org/10.1039/c2jm34355j]
[80]
Shimizu, M.; Saito, T.; Fukuzumi, H.; Isogai, A. Hydrophobic, ductile, and transparent nanocellulose films with quaternary alkylammonium carboxylates on nanofibril surfaces. Biomacromolecules, 2014, 15(11), 4320-4325.
[http://dx.doi.org/10.1021/bm501329v] [PMID: 25310181]
[81]
Kaldéus, T.; Träger, A.; Berglund, L.A.; Malmström, E.; Lo Re, G. Molecular engineering of the cellulose-poly (caprolactone) bio-nanocomposite interface by reactive amphiphilic copolymer nanoparticles. ACS Nano, 2019, 13(6), 6409-6420.
[http://dx.doi.org/10.1021/acsnano.8b08257] [PMID: 31083978]
[82]
Sakakibara, K.; Yano, H.; Tsujii, Y. Surface engineering of cellulose nanofiber by adsorption of diblock copolymer dispersant for green nanocomposite materials. ACS Appl. Mater. Interfaces, 2016, 8(37), 24893-24900.
[http://dx.doi.org/10.1021/acsami.6b07769] [PMID: 27559606]
[83]
Yang, W.; Jiao, L.; Yu, Z.; Dai, H. Research progress of hydrophobic modification of nanocellulose membrane.Cellulose Science and Technology; John Wiley And Sons, 2017, pp. 60-68.
[84]
Goussé, C.; Chanzy, H.; Excoffier, G.; Soubeyrand, L.; Fleury, E. Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer (Guildf.), 2002, 43(9), 2645-2651.
[http://dx.doi.org/10.1016/S0032-3861(02)00051-4]
[85]
Qi, Y.; Zhang, H.; Xu, D.; He, Z.; Pan, X.; Gui, S.; Dai, X.; Fan, J.; Dong, X.; Li, Y. Screening of nanocellulose from different biomass resources and its integration for hydrophobic transparent nanopaper. Molecules, 2020, 25(1), 227.
[http://dx.doi.org/10.3390/molecules25010227] [PMID: 31935878]
[86]
Pacaphol, K.; Aht-Ong, D. The influences of silanes on interfacial adhesion and surface properties of nanocellulose film coating on glass and aluminum substrates. Surf. Coat. Tech., 2017, 320, 70-81.
[http://dx.doi.org/10.1016/j.surfcoat.2017.01.111]
[87]
Frank, B.P.; Durkin, D.P.; Caudill, E.; Zhu, L.; White, D.; Curry, M.L.; Pedersen, J.A.; Fairbrother, D.H. Impact of silanization on the structure, dispersion properties, and biodegradability of nanocellulose as a nanocomposite filler. ACS Appl. Nano Mater., 2018, 12(1), 7025-7038.
[http://dx.doi.org/10.1021/acsanm.8b01819]
[88]
Khanjanzadeh, H.; Behrooz, R.; Bahramifar, N.; Gindl-Altmutter, W.; Bacher, M.; Edler, M.; Griesser, T. Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane. Int. J. Biol. Macromol., 2018, 106, 1288-1296.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.136] [PMID: 28855133]
[89]
Lin, W.; Hu, X.; You, X.; Sun, Y.; Wen, Y.; Yang, W.; Zhang, X.; Li, Y.; Chen, H. Hydrophobic modification of nanocellulose via a two-step silanation method. Polymers (Basel), 2018, 10(9), 1035.
[http://dx.doi.org/10.3390/polym10091035] [PMID: 30960960]
[90]
Huang, J.; Wang, S.; Lyu, S.; Fu, F. Preparation of a robust cellulose nanocrystal superhydrophobic coating for self-cleaning and oil-water separation only by spraying. Ind. Crops Prod., 2018, 122, 438-447.
[http://dx.doi.org/10.1016/j.indcrop.2018.06.015]
[91]
Chen, S.; Song, Y.; Xu, F. Highly Transparent and hazy cellulose nanopaper simultaneously with a self-cleaning superhydrophobic surface. ACS Sustain. Chem.& Eng., 2018, 6(4), 5173-5181.
[http://dx.doi.org/10.1021/acssuschemeng.7b04814]
[92]
Han, S.; Yao, Q.; Jin, C.; Fan, B.; Zheng, H.; Sun, Q. Cellulose nanofibers from bamboo and their nanocomposites with polyvinyl alcohol: Preparation and characterization. Polym. Compos., 2016, 39(8), 2611-2619.
[http://dx.doi.org/10.1002/pc.24249]
[93]
Xu, Z.; Zhou, H.; Jiang, X.; Li, J.; Huang, F. Facile synthesis of reduced graphene oxide/trimethyl chlorosilane-coated cellulose nanofibres aerogel for oil absorption. IET Nanobiotechnol., 2017, 11(8), 929-934.
[http://dx.doi.org/10.1049/iet-nbt.2017.0063] [PMID: 29155391]
[94]
Liu, W.; Si, C.; Du, H.; Zhang, M.; Zhang, X.; Xie, H. Preparation of nanocellulose- based hydrogel and its application progress in the field of biomedicine. J. Eng., 2019, 4(5), 11-19..
[http://dx.doi.org/10.13360/j.issn.2096-1359.2019.05.002]
[95]
Mashkour, M.; Afra, E.; Resalati, H.; Mashkour, M. Moderate surface acetylation of nanofibrillated cellulose for the improvement of paper strength and barrier properties. RSC Advances, 2015, 5(74), 60179-60187.
[http://dx.doi.org/10.1039/C5RA08161K]
[96]
Zhang, Y.; Zhao, X.; Yang, W.; Jiang, W.; Chen, F.; Fu, Q. Enhancement of mechanical property and absorption capability of hydrophobically associated polyacrylamide hydrogels by adding cellulose nanofiber. Mater. Res. Express, 2020, 7(1), 15319.
[http://dx.doi.org/10.1088/2053-1591/ab6373]
[97]
Sun, X.; Tyagi, P.; Agate, S.; Lucia, L.; McCord, M.; Pal, L. Unique thermo-responsivity and tunable optical performance of poly(N-isopropylacrylamide)-cellulose nanocrystal hydrogel films. Carbohydr. Polym., 2019, 208, 495-503.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.067] [PMID: 30658828]
[98]
Wang, L.; Okada, K.; Sodenaga, M.; Hikima, Y.; Ohshima, M.; Sekiguchi, T.; Yano, H. Effect of surface modification on the dispersion, rheological behavior, crystallization kinetics, and foaming ability of polypropylene/cellulose nanofiber nanocomposites. Compos. Sci. Technol., 2018, 168, 412-419.
[http://dx.doi.org/10.1016/j.compscitech.2018.10.023]
[99]
Li, W.; Wang, S.; Qin, C.; Wu, M. Facile preparation of reactive hydrophobic cellulose nanofibril film for reducing Water Vapor Permeability (WVP) in packaging applications. Cellulose, 2019, 26(5), 3271-3284.
[http://dx.doi.org/10.1007/s10570-019-02270-x]
[100]
Roman, M.; Winter, W.T. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules, 2004, 5(5), 1671-1677.
[http://dx.doi.org/10.1021/bm034519+] [PMID: 15360274]
[101]
Gu, J.; Catchmark, J.M.; Kaiser, E.Q.; Archibald, D.D. Quantification of cellulose nanowhiskers sulfate esterification levels. Carbohydr. Polym., 2013, 92(2), 1809-1816.
[http://dx.doi.org/10.1016/j.carbpol.2012.10.078] [PMID: 23399223]
[102]
Ni, C.; Wang, H.; Zhao, Q.; Liu, B.; Sun, Z.; Zhang, M.; Hu, W.; Liang, L. Crosslinking effect in nanocrystalline cellulose reinforced sulfonated poly (aryl ether ketone) proton exchange membranes. Solid State Ion., 2018, 323, 5-15.
[http://dx.doi.org/10.1016/j.ssi.2018.05.004]
[103]
Wang, Y.; Wang, X.; Xie, Y.; Zhang, K. Functional nanomaterials through esterification of cellulose: a review of chemistry and application. Cellulose, 2018, 25(7), 3703-3731.
[http://dx.doi.org/10.1007/s10570-018-1830-3]
[104]
Sethi, J.; Farooq, M.; Sain, S.; Sain, M.; Sirviö, J.A.; Illikainen, M.; Oksman, K. Water resistant nanopapers prepared by lactic acid modified cellulose nanofibers. Cellulose, 2017, 25(1), 259-268.
[http://dx.doi.org/10.1007/s10570-017-1540-2]
[105]
Geng, S.; Wei, J.; Aitomäki, Y.; Noël, M.; Oksman, K. Well-dispersed cellulose nanocrystals in hydrophobic polymers by in situ polymerization for synthesizing highly reinforced bio-nanocomposites. Nanoscale, 2018, 10(25), 11797-11807.
[http://dx.doi.org/10.1039/C7NR09080C] [PMID: 29675528]
[106]
Zhang, Z.; Zhang, B.; Grishkewich, N.; Berry, R.; Tam, K.C. Cinnamate-functionalized cellulose nanocrystals as UV-shielding nanofillers in sunscreen and transparent polymer films. Adv. Sust. Sys., 2019, 3(4)1800156
[http://dx.doi.org/10.1002/adsu.201800156]]
[107]
Germiniani, L.G.L.; da Silva, L.C.E.; Plivelic, T.S.; Gonçalves, M.C. Poly (ε-caprolactone)/cellulose nanocrystal nanocomposite mechanical reinforcement and morphology: the role of nanocrystal pre-dispersion. J. Mater. Sci., 2019, 54(1), 414-426.
[http://dx.doi.org/10.1007/s10853-018-2860-9]
[108]
Huang, P.; Wu, M.; Kuga, S.; Wang, D.; Wu, D.; Huang, Y. One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent. ChemSusChem, 2012, 5(12), 2319-2322.
[http://dx.doi.org/10.1002/cssc.201200492] [PMID: 23180637]
[109]
Huang, P.; Zhao, Y.; Kuga, S.; Wu, M.; Huang, Y. A versatile method for producing functionalized cellulose nanofibers and their application. Nanoscale, 2016, 8(6), 3753-3759.
[http://dx.doi.org/10.1039/C5NR08179C] [PMID: 26815658]
[110]
Spinella, S.; Re, G.L.; Liu, B.; Dorgan, J.; Habibi, Y.; Raquez, J.M.; Dubois, P.; Gross, R.A. Modification of cellulose nanocrystals with lactic acid for direct melt blending with PLA. Polymer (Guildf.), 2015, 2015, 1664.
[http://dx.doi.org/10.1063/1.4918454]]
[111]
Li, B.; Xu, W.; Kronlund, D.; Määttänen, A.; Liu, J.; Smått, J.H.; Peltonen, J.; Willför, S.; Mu, X.; Xu, C. Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation. Carbohydr. Polym., 2015, 133, 605-612.
[http://dx.doi.org/10.1016/j.carbpol.2015.07.033] [PMID: 26344319]
[112]
Du, H.; Liu, C.; Mu, X.; Gong, W.; Lv, D.; Hong, Y.; Si, C.; Li, B. Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose, 2016, 23(4), 2389-2407.
[http://dx.doi.org/10.1007/s10570-016-0963-5]
[113]
Du, H.; Liu, C.; Zhang, Y.; Yu, G.; Si, C.; Li, B. Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization. Ind. Crops Prod., 2016, 94, 736-745.
[http://dx.doi.org/10.1016/j.indcrop.2016.09.059]
[114]
Du, H.; Parit, M.; Wu, M.; Che, X.; Wang, Y.; Zhang, M.; Wang, R.; Zhang, X.; Jiang, Z.; Li, B. Sustainable valorization of paper mill sludge into cellulose nanofibrils and cellulose nanopaper. J. Hazard. Mater., 2020, 400123106
[http://dx.doi.org/10.1016/j.jhazmat.2020.123106] [PMID: 32580093]
[115]
Lv, D.; Du, H.; Che, X.; Wu, M.; Zhang, Y.; Liu, C.; Li, B. Tailored and integrated production of functional cellulose nanocrystals and cellulose nanofibrils via sustainable formic acid hydrolysis: kinetic study and characterization. ACS Sustain. Chem.& Eng., 2019, 7(10), 9449-9463.
[http://dx.doi.org/10.1021/acssuschemeng.9b00714]
[116]
Hu, L.; Du, H.; Liu, C.; Zhang, Y.; Yu, G.; Zhang, X.; Si, C.; Li, B.; Peng, H. Comparative evaluation of the efficient conversion of corn husk filament and corn husk powder to valuable materials via a sustainable and clean biorefinery process. ACS Sustain. Chem.& Eng., 2018, 7(1), 1327-1336.
[http://dx.doi.org/10.1021/acssuschemeng.8b05017]
[117]
Liu, C.; Li, B.; Du, H.; Lv, D.; Zhang, Y.; Yu, G.; Mu, X.; Peng, H. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydr. Polym., 2016, 151, 716-724.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.025] [PMID: 27474618]
[118]
Du, H.; Liu, C.; Wang, D.; Zhang, Y.; Yu, G.; Si, C.; Li, B.; Mu, X.; Peng, H. Sustainable preparation and characterization of thermally stable and functional cellulose nanocrystals and nanofibrils via formic acid hydrolysis. J. Biores. Bioprod., 2017, 2(1), 10-15.
[119]
Wang, Q.; Du, H.; Zhang, F.; Zhang, Y.; Wu, M.; Yu, G.; Liu, C.; Li, B.; Peng, H. Flexible cellulose nanopaper with high wet tensile strength, high toughness and tunable ultraviolet blocking ability fabricated from tobacco stalk via a sustainable method. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(27), 13021-13030.
[http://dx.doi.org/10.1039/C8TA01986J]
[120]
Yang, X.; Xie, H.; Du, H.; Zhang, X.; Zou, Z.; Zou, Y.; Liu, W.; Lan, H.; Zhang, X.; Si, C. Facile extraction of thermally stable and dispersible cellulose nanocrystals with high yield via a green and recyclable FeCl3-catalyzed deep eutectic solvent system. ACS Sustain. Chem.& Eng., 2019, 7, 7200-7208.
[http://dx.doi.org/10.1021/acssuschemeng.9b00209]
[121]
Syverud, K.; Xhanari, K.; Chinga-Carrasco, G.; Yu, Y.; Stenius, P. Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy. J. Nanopart. Res., 2010, 13(2), 773-782.
[http://dx.doi.org/10.1007/s11051-010-0077-1]
[122]
Roy, D.; Semsarilar, M.; Guthrie, J.T.; Perrier, S. Cellulose modification by polymer grafting: a review. Chem. Soc. Rev., 2009, 38(7), 2046-2064.
[http://dx.doi.org/10.1039/b808639g] [PMID: 19551181]
[123]
Dufesne, A. Nanocellulose: a new ageless bionanomaterial. Mater. Today, 2013, 16(6), 220-227.
[http://dx.doi.org/10.1016/j.mattod.2013.06.004]
[124]
Kim, M.; Schmitt, S.; Choi, J.; Krutty, J.; Gopalan, P. From self-assembled monolayers to coatings: advances in the synthesis and nanobio applications of polymer brushes. Polymers (Basel), 2015, 7(7), 1346-1378.
[http://dx.doi.org/10.3390/polym7071346]
[125]
Rol, F.; Belgacem, M.N.; Gandini, A.; Bras, J. Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci., 2019, 88, 241-264.
[http://dx.doi.org/10.1016/j.progpolymsci.2018.09.002]
[126]
Li, Y.; Zhu, L.; Grishkewich, N.; Tam, K.C.; Yuan, J.; Mao, Z.; Sui, X. CO2-responsive cellulose nanofibers aerogels for switchable oil-water separation. ACS Appl. Mater. Interfaces, 2019, 11(9), 9367-9373.
[http://dx.doi.org/10.1021/acsami.8b22159] [PMID: 30735345]
[127]
Abushammala, H. Nano-brushes of alcohols grafted onto cellulose nanocrystals for reinforcing poly(butylene succinate): Impact of alcohol chain length on interfacial adhesion. Polymers (Basel), 2020, 12(1), 95.
[http://dx.doi.org/10.3390/polym12010095] [PMID: 31947910]
[128]
Li, M.; Liu, X.; Liu, N.; Guo, Z.; Singh, P.K.; Fu, S. Effect of surface wettability on the antibacterial activity of nanocellulose-based material with quaternary ammonium groups. Colloids Surf. A Physicochem. Eng. Asp., 2018, 554, 122-128.
[http://dx.doi.org/10.1016/j.colsurfa.2018.06.031]
[129]
Samadani, F.; Behzad, T.; Enayati, M.S. Facile strategy for improvement properties of whey protein isolate/walnut oil bio-packaging films: using modified cellulose nanofibers. Int. J. Biol. Macromol., 2019, 139, 858-866.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.042] [PMID: 31398405]
[130]
Pal, N.; Banerjee, S.; Roy, P.; Pal, K. Reduced graphene oxide and PEG-grafted TEMPO-oxidized cellulose nanocrystal reinforced poly-lactic acid nanocomposite film for biomedical application. Mater. Sci. Eng. C, 2019, 104109956
[http://dx.doi.org/10.1016/j.msec.2019.109956] [PMID: 31499971]
[131]
Song, Z.; Xiao, H.; Zhao, Y. Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering Water Vapor Transmission Rate (WVTR) of paper. Carbohydr. Polym., 2014, 111, 442-448.
[http://dx.doi.org/10.1016/j.carbpol.2014.04.049] [PMID: 25037373]
[132]
Lin, W.; Chen, D.; Yong, Q.; Huang, C.; Huang, S. Improving enzymatic hydrolysis of acid-pretreated bamboo residues using amphiphilic surfactant derived from dehydroabietic acid. Bioresour. Technol., 2019, 293122055
[http://dx.doi.org/10.1016/j.biortech.2019.122055] [PMID: 31472409]
[133]
Li, X.Y.; Xu, R.; Yang, J.X.; Nie, S.X.; Liu, D.; Liu, Y.; Si, C.L. Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation. Ind. Crops Prod., 2019, 130, 184-197.
[http://dx.doi.org/10.1016/j.indcrop.2018.12.082]
[134]
Zhou, L.; He, H.; Li, M.C.; Huang, S.; Mei, C.; Wu, Q. Grafting polycaprolactone diol onto cellulose nanocrystals via click chemistry: enhancing thermal stability and hydrophobic property. Carbohydr. Polym., 2018, 189, 331-341.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.039] [PMID: 29580417]