New Therapies to Modulate Post-Infarction Inflammatory Alterations in the Myocardium: State of the Art and Forthcoming Applications

Page: [273 - 299] Pages: 27

  • * (Excluding Mailing and Handling)

Abstract

Acute myocardial infarction (AMI) is a major cause of morbidity and mortality worldwide. AMI causes necrosis of cardiac cells and triggers a complex inflammatory response, affecting infarct size, cardiac function and clinical outcomes. This inflammatory response can be divided into 3 phases: 1) the pro-inflammatory phase, in which the release of damage-associated molecular patterns from necrotic cells triggers the secretion of pro-inflammatory mediators and attracts immune cells to clean the debris, further damaging viable myocardium, 2) the reparative phase, in which anti-inflammatory signals activate immune-modulating cells and trigger the production of a stable scar, 3) the maturation phase, in which inflammatory and fibrotic signals are suppressed, but may persist, leading to left ventricular adverse remodelling. Thus, the inflammatory response is an appealing therapeutic target to improve the outcomes of patients with AMI. Numerous anti-inflammatory therapies have shown potential in animal models, but the translation to human trials exhibited limited benefit. Glucocorticoids and non-steroidal anti-inflammatory drugs showed signals of harm due to their non-specific effects. Other broad inhibitors, e.g., methotrexate, cyclosporine, or colchicine, did not improve clinical outcomes as acute therapies for MI. Specific inhibitors of the complement cascade, adhesion molecules, or inflammatory mediators were mostly disappointing in humans. However, an interleukin-1 inhibitor (anakinra) and a matrix metalloproteinase inhibitor (doxycycline) improved clinical outcomes in patients with AMI. Promising RNAse1, anti-toll-like receptor 2 antibodies, and inflammasome inhibitors still need to be tested in humans. Finally, positive results should be replicated in large clinical trials before they can be implemented into the standard AMI therapy.

Keywords: Inflammation, myocardial infarction, anti-inflammatory, treatment, repair, remodelling, outcome.

Graphical Abstract

[1]
Norrving, B., Ed.; World Health Organization, Global Atlas on Cardiovascular Disease Prevention and Control. Mendis, S.; Puska, P., 2011,
[2]
Bentzon, J.F.; Otsuka, F.; Virmani, R.; Falk, E. Mechanisms of plaque formation and rupture. Circ. Res., 2014, 114(12), 1852-1866.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302721] [PMID: 24902970]
[3]
Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; Jüni, P.; Kastrati, A.; Koller, A.; Kristensen, S.D.; Niebauer, J.; Richter, D.J.; Seferovic, P.M.; Sibbing, D.; Stefanini, G.G.; Windecker, S.; Yadav, R.; Zembala, M.O.; Group, E.S.C.S.D. ESC Scientific Document Group. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J., 2019, 40(2), 87-165.
[http://dx.doi.org/10.1093/eurheartj/ehy394] [PMID: 30165437]
[4]
Yellon, D.M.; Hausenloy, D.J. Myocardial reperfusion injury. N. Engl. J. Med., 2007, 357(11), 1121-1135.
[http://dx.doi.org/10.1056/NEJMra071667] [PMID: 17855673]
[5]
Ong, S.B.; Hernández-Reséndiz, S.; Crespo-Avilan, G.E.; Mukhametshina, R.T.; Kwek, X.Y.; Cabrera-Fuentes, H.A.; Hausenloy, D.J. Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol. Ther., 2018, 186, 73-87.
[http://dx.doi.org/10.1016/j.pharmthera.2018.01.001] [PMID: 29330085]
[6]
Huang, S.; Frangogiannis, N.G. Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges. Br. J. Pharmacol., 2018, 175(9), 1377-1400.
[http://dx.doi.org/10.1111/bph.14155] [PMID: 29394499]
[7]
Ruparelia, N.; Chai, J.T.; Fisher, E.A.; Choudhury, R.P. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat. Rev. Cardiol., 2017, 14(3), 133-144.
[http://dx.doi.org/10.1038/nrcardio.2016.185] [PMID: 27905474]
[8]
Saxena, A.; Russo, I.; Frangogiannis, N.G. Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges. Transl. Res., 2016, 167(1), 152-166.
[http://dx.doi.org/10.1016/j.trsl.2015.07.002] [PMID: 26241027]
[9]
Westman, P.C.; Lipinski, M.J.; Luger, D.; Waksman, R.; Bonow, R.O.; Wu, E.; Epstein, S.E. Inflammation as a Driver of Adverse Left Ventricular Remodeling After Acute Myocardial Infarction. J. Am. Coll. Cardiol., 2016, 67(17), 2050-2060.
[http://dx.doi.org/10.1016/j.jacc.2016.01.073] [PMID: 27126533]
[10]
Prabhu, S.D.; Frangogiannis, N.G. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis. Circ. Res., 2016, 119(1), 91-112.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303577] [PMID: 27340270]
[11]
Frangogiannis, N.G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol., 2014, 11(5), 255-265.
[http://dx.doi.org/10.1038/nrcardio.2014.28] [PMID: 24663091]
[12]
Seropian, I.M.; Toldo, S.; Van Tassell, B.W.; Abbate, A. Anti-inflammatory strategies for ventricular remodeling following ST-segment elevation acute myocardial infarction. J. Am. Coll. Cardiol., 2014, 63(16), 1593-1603.
[http://dx.doi.org/10.1016/j.jacc.2014.01.014] [PMID: 24530674]
[13]
Nguyen, M.T.; Fernando, S.; Schwarz, N.; Tan, J.T.; Bursill, C.A.; Psaltis, P.J. Inflammation as a Therapeutic Target in Atherosclerosis. J. Clin. Med., 2019, 8(8), E1109.
[http://dx.doi.org/10.3390/jcm8081109] [PMID: 31357404]
[14]
van Zuylen, V.L.; den Haan, M.C.; Geutskens, S.B.; Roelofs, H.; Fibbe, W.E.; Schalij, M.J.; Atsma, D.E. Post-myocardial infarct inflammation and the potential role of cell therapy. Cardiovasc. Drugs Ther., 2015, 29(1), 59-73.
[http://dx.doi.org/10.1007/s10557-014-6568-z] [PMID: 25583678]
[15]
Zhao, Z.Q.; Nakamura, M.; Wang, N.P.; Wilcox, J.N.; Shearer, S.; Ronson, R.S.; Guyton, R.A.; Vinten-Johansen, J. Reperfusion induces myocardial apoptotic cell death. Cardiovasc. Res., 2000, 45(3), 651-660.
[http://dx.doi.org/10.1016/S0008-6363(99)00354-5] [PMID: 10728386]
[16]
Zhao, Z.Q.; Velez, D.A.; Wang, N.P.; Hewan-Lowe, K.O.; Nakamura, M.; Guyton, R.A.; Vinten-Johansen, J. Progressively developed myocardial apoptotic cell death during late phase of reperfusion. Apoptosis, 2001, 6(4), 279-290.
[http://dx.doi.org/10.1023/A:1011335525219] [PMID: 11445670]
[17]
Timmers, L.; Pasterkamp, G.; de Hoog, V.C.; Arslan, F.; Appelman, Y.; de Kleijn, D.P. The innate immune response in reperfused myocardium. Cardiovasc. Res., 2012, 94(2), 276-283.
[http://dx.doi.org/10.1093/cvr/cvs018] [PMID: 22266751]
[18]
van Hout, G.P.; Arslan, F.; Pasterkamp, G.; Hoefer, I.E. Targeting danger-associated molecular patterns after myocardial infarction. Expert Opin. Ther. Targets, 2016, 20(2), 223-239.
[http://dx.doi.org/10.1517/14728222.2016.1088005] [PMID: 26420647]
[19]
Mariathasan, S.; Weiss, D.S.; Newton, K.; McBride, J.; O’Rourke, K.; Roose-Girma, M.; Lee, W.P.; Weinrauch, Y.; Monack, D.M.; Dixit, V.M. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature, 2006, 440(7081), 228-232.
[http://dx.doi.org/10.1038/nature04515] [PMID: 16407890]
[20]
Iyer, S.S.; He, Q.; Janczy, J.R.; Elliott, E.I.; Zhong, Z.; Olivier, A.K.; Sadler, J.J.; Knepper-Adrian, V.; Han, R.; Qiao, L.; Eisenbarth, S.C.; Nauseef, W.M.; Cassel, S.L.; Sutterwala, F.S. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity, 2013, 39(2), 311-323.
[http://dx.doi.org/10.1016/j.immuni.2013.08.001] [PMID: 23954133]
[21]
Bliksøen, M.; Mariero, L.H.; Ohm, I.K.; Haugen, F.; Yndestad, A.; Solheim, S.; Seljeflot, I.; Ranheim, T.; Andersen, G.O.; Aukrust, P.; Valen, G.; Vinge, L.E. Increased circulating mitochondrial DNA after myocardial infarction. Int. J. Cardiol., 2012, 158(1), 132-134.
[http://dx.doi.org/10.1016/j.ijcard.2012.04.047] [PMID: 22578950]
[22]
Zhang, Q.; Raoof, M.; Chen, Y.; Sumi, Y.; Sursal, T.; Junger, W.; Brohi, K.; Itagaki, K.; Hauser, C.J. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature, 2010, 464(7285), 104-107.
[http://dx.doi.org/10.1038/nature08780] [PMID: 20203610]
[23]
Cabrera-Fuentes, H.A.; Ruiz-Meana, M.; Simsekyilmaz, S.; Kostin, S.; Inserte, J.; Saffarzadeh, M.; Galuska, S.P.; Vijayan, V.; Barba, I.; Barreto, G.; Fischer, S.; Lochnit, G.; Ilinskaya, O.N.; Baumgart-Vogt, E.; Böning, A.; Lecour, S.; Hausenloy, D.J.; Liehn, E.A.; Garcia-Dorado, D.; Schlüter, K.D.; Preissner, K.T. RNase1 prevents the damaging interplay between extracellular RNA and tumour necrosis factor-α in cardiac ischaemia/reperfusion injury. Thromb. Haemost., 2014, 112(6), 1110-1119.
[http://dx.doi.org/10.1160/th14-08-0703] [PMID: 25354936]
[24]
Zernecke, A.; Preissner, K.T. Extracellular Ribonucleic Acids (RNA) Enter the Stage in Cardiovascular Disease. Circ. Res., 2016, 118(3), 469-479.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.307961] [PMID: 26846641]
[25]
Stieger, P.; Daniel, J.M.; Thölen, C.; Dutzmann, J.; Knöpp, K.; Gündüz, D.; Aslam, M.; Kampschulte, M.; Langheinrich, A.; Fischer, S.; Cabrera-Fuentes, H.; Wang, Y.; Wollert, K.C.; Bauersachs, J.; Braun-Dullaeus, R.; Preissner, K.T.; Sedding, D.G. Targeting of Extracellular RNA Reduces Edema Formation and Infarct Size and Improves Survival After Myocardial Infarction in Mice. J. Am. Heart Assoc., 2017, 6(6), e004541.
[http://dx.doi.org/10.1161/JAHA.116.004541] [PMID: 28637776]
[26]
Park, J.S.; Svetkauskaite, D.; He, Q.; Kim, J.Y.; Strassheim, D.; Ishizaka, A.; Abraham, E. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J. Biol. Chem., 2004, 279(9), 7370-7377.
[http://dx.doi.org/10.1074/jbc.M306793200] [PMID: 14660645]
[27]
Ding, H.S.; Yang, J.; Chen, P.; Yang, J.; Bo, S.Q.; Ding, J.W.; Yu, Q.Q. The HMGB1-TLR4 axis contributes to myocardial ischemia/reperfusion injury via regulation of cardiomyocyte apoptosis. Gene, 2013, 527(1), 389-393.
[http://dx.doi.org/10.1016/j.gene.2013.05.041] [PMID: 23727604]
[28]
Andrassy, M.; Volz, H.C.; Igwe, J.C.; Funke, B.; Eichberger, S.N.; Kaya, Z.; Buss, S.; Autschbach, F.; Pleger, S.T.; Lukic, I.K.; Bea, F.; Hardt, S.E.; Humpert, P.M.; Bianchi, M.E.; Mairbäurl, H.; Nawroth, P.P.; Remppis, A.; Katus, H.A.; Bierhaus, A. High- mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation, 2008, 117(25), 3216-3226.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.769331] [PMID: 18574060]
[29]
Hu, G.; Zhang, Y.; Jiang, H.; Hu, X. Exendin-4 attenuates myocardial ischemia and reperfusion injury by inhibiting high mobility group box 1 protein expression. Cardiol. J., 2013, 20(6), 600-604.
[http://dx.doi.org/10.5603/CJ.2013.0159] [PMID: 24338536]
[30]
Kitahara, T.; Takeishi, Y.; Harada, M.; Niizeki, T.; Suzuki, S.; Sasaki, T.; Ishino, M.; Bilim, O.; Nakajima, O.; Kubota, I. High- mobility group box 1 restores cardiac function after myocardial infarction in transgenic mice. Cardiovasc. Res., 2008, 80(1), 40-46.
[http://dx.doi.org/10.1093/cvr/cvn163] [PMID: 18558628]
[31]
Takahashi, K.; Fukushima, S.; Yamahara, K.; Yashiro, K.; Shintani, Y.; Coppen, S.R.; Salem, H.K.; Brouilette, S.W.; Yacoub, M.H.; Suzuki, K. Modulated inflammation by injection of high- mobility group box 1 recovers post-infarction chronically failing heart. Circulation, 2008, 118(14)(Suppl.), S106-S114.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.757443] [PMID: 18824741]
[32]
Timmers, L.; Sluijter, J.P.; van Keulen, J.K.; Hoefer, I.E.; Nederhoff, M.G.; Goumans, M.J.; Doevendans, P.A.; van Echteld, C.J.; Joles, J.A.; Quax, P.H.; Piek, J.J.; Pasterkamp, G.; de Kleijn, D.P. Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circ. Res., 2008, 102(2), 257-264.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.158220] [PMID: 18007026]
[33]
Shishido, T.; Nozaki, N.; Yamaguchi, S.; Shibata, Y.; Nitobe, J.; Miyamoto, T.; Takahashi, H.; Arimoto, T.; Maeda, K.; Yamakawa, M.; Takeuchi, O.; Akira, S.; Takeishi, Y.; Kubota, I. Toll-like receptor-2 modulates ventricular remodeling after myocardial infarction. Circulation, 2003, 108(23), 2905-2910.
[http://dx.doi.org/10.1161/01.CIR.0000101921.93016.1C] [PMID: 14656915]
[34]
Oyama, J.; Blais, C., Jr; Liu, X.; Pu, M.; Kobzik, L.; Kelly, R.A.; Bourcier, T. Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation, 2004, 109(6), 784-789.
[http://dx.doi.org/10.1161/01.CIR.0000112575.66565.84] [PMID: 14970116]
[35]
Shimamoto, A.; Chong, A.J.; Yada, M.; Shomura, S.; Takayama, H.; Fleisig, A.J.; Agnew, M.L.; Hampton, C.R.; Rothnie, C.L.; Spring, D.J.; Pohlman, T.H.; Shimpo, H.; Verrier, E.D. Inhibition of Toll-like receptor 4 with eritoran attenuates myocardial ischemia-reperfusion injury. Circulation, 2006, 114(1)(Suppl.), I270-I274.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.000901] [PMID: 16820585]
[36]
Arslan, F.; Smeets, M.B.; O’Neill, L.A.; Keogh, B.; McGuirk, P.; Timmers, L.; Tersteeg, C.; Hoefer, I.E.; Doevendans, P.A.; Pasterkamp, G.; de Kleijn, D.P. Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation, 2010, 121(1), 80-90.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.880187] [PMID: 20026776]
[37]
Arslan, F.; Houtgraaf, J.H.; Keogh, B.; Kazemi, K.; de Jong, R.; McCormack, W.J.; O’Neill, L.A.; McGuirk, P.; Timmers, L.; Smeets, M.B.; Akeroyd, L.; Reilly, M.; Pasterkamp, G.; de Kleijn, D.P. Treatment with OPN-305, a humanized anti-Toll-Like receptor-2 antibody, reduces myocardial ischemia/reperfusion injury in pigs. Circ. Cardiovasc. Interv., 2012, 5(2), 279-287.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.111.967596] [PMID: 22354933]
[38]
Naftali-Shani, N.; Levin-Kotler, L.P.; Palevski, D.; Amit, U.; Kain, D.; Landa, N.; Hochhauser, E.; Leor, J. Left Ventricular Dysfunction Switches Mesenchymal Stromal Cells Toward an Inflammatory Phenotype and Impairs Their Reparative Properties Via Toll-Like Receptor-4. Circulation, 2017, 135(23), 2271-2287.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.023527] [PMID: 28356441]
[39]
Volz, H.C.; Laohachewin, D.; Seidel, C.; Lasitschka, F.; Keilbach, K.; Wienbrandt, A.R.; Andrassy, J.; Bierhaus, A.; Kaya, Z.; Katus, H.A.; Andrassy, M. S100A8/A9 aggravates post-ischemic heart failure through activation of RAGE-dependent NF-κB signaling. Basic Res. Cardiol., 2012, 107(2), 250.
[http://dx.doi.org/10.1007/s00395-012-0250-z] [PMID: 22318783]
[40]
Ku, S.H.; Hong, J.; Moon, H.H.; Jeong, J.H.; Mok, H.; Park, S.; Choi, D.; Kim, S.H. Deoxycholic acid-modified polyethylenimine based nanocarriers for RAGE siRNA therapy in acute myocardial infarction. Arch. Pharm. Res., 2015, 38(7), 1317-1324.
[http://dx.doi.org/10.1007/s12272-014-0527-x] [PMID: 25559468]
[41]
Rossen, R.D.; Michael, L.H.; Hawkins, H.K.; Youker, K.; Dreyer, W.J.; Baughn, R.E.; Entman, M.L. Cardiolipin-protein complexes and initiation of complement activation after coronary artery occlusion. Circ. Res., 1994, 75(3), 546-555.
[http://dx.doi.org/10.1161/01.RES.75.3.546] [PMID: 8062428]
[42]
Nijmeijer, R.; Lagrand, W.K.; Lubbers, Y.T.; Visser, C.A.; Meijer, C.J.; Niessen, H.W.; Hack, C.E. C-reactive protein activates complement in infarcted human myocardium. Am. J. Pathol., 2003, 163(1), 269-275.
[http://dx.doi.org/10.1016/S0002-9440(10)63650-4] [PMID: 12819031]
[43]
Krijnen, P.A.; Ciurana, C.; Cramer, T.; Hazes, T.; Meijer, C.J.; Visser, C.A.; Niessen, H.W.; Hack, C.E. IgM colocalises with complement and C reactive protein in infarcted human myocardium. J. Clin. Pathol., 2005, 58(4), 382-388.
[http://dx.doi.org/10.1136/jcp.2004.022988] [PMID: 15790702]
[44]
De Hoog, V.C.; Timmers, L.; Van Duijvenvoorde, A.; De Jager, S.C.; Van Middelaar, B.J.; Smeets, M.B.; Woodruff, T.M.; Doevendans, P.A.; Pasterkamp, G.; Hack, C.E.; De Kleijn, D.P. Leucocyte expression of complement C5a receptors exacerbates infarct size after myocardial reperfusion injury. Cardiovasc. Res., 2014, 103(4), 521-529.
[http://dx.doi.org/10.1093/cvr/cvu153] [PMID: 24935433]
[45]
Weisman, H.F.; Bartow, T.; Leppo, M.K.; Marsh, H.C., Jr; Carson, G.R.; Concino, M.F.; Boyle, M.P.; Roux, K.H.; Weisfeldt, M.L.; Fearon, D.T. Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science, 1990, 249(4965), 146-151.
[http://dx.doi.org/10.1126/science.2371562] [PMID: 2371562]
[46]
Buerke, M.; Prüfer, D.; Dahm, M.; Oelert, H.; Meyer, J.; Darius, H. Blocking of classical complement pathway inhibits endothelial adhesion molecule expression and preserves ischemic myocardium from reperfusion injury. J. Pharmacol. Exp. Ther., 1998, 286(1), 429-438.
[PMID: 9655888]
[47]
Jordan, J.E.; Montalto, M.C.; Stahl, G.L. Inhibition of mannose-binding lectin reduces postischemic myocardial reperfusion injury. Circulation, 2001, 104(12), 1413-1418.
[http://dx.doi.org/10.1161/hc3601.095578] [PMID: 11560858]
[48]
Walsh, M.C.; Bourcier, T.; Takahashi, K.; Shi, L.; Busche, M.N.; Rother, R.P.; Solomon, S.D.; Ezekowitz, R.A.; Stahl, G.L. Mannose-binding lectin is a regulator of inflammation that accompanies myocardial ischemia and reperfusion injury. J. Immunol., 2005, 175(1), 541-546.
[http://dx.doi.org/10.4049/jimmunol.175.1.541] [PMID: 15972690]
[49]
Busche, M.N.; Pavlov, V.; Takahashi, K.; Stahl, G.L. Myocardial ischemia and reperfusion injury is dependent on both IgM and mannose-binding lectin. Am. J. Physiol. Heart Circ. Physiol., 2009, 297(5), H1853-H1859.
[http://dx.doi.org/10.1152/ajpheart.00049.2009] [PMID: 19749170]
[50]
Amsterdam, E.A.; Stahl, G.L.; Pan, H.L.; Rendig, S.V.; Fletcher, M.P.; Longhurst, J.C. Limitation of reperfusion injury by a monoclonal antibody to C5a during myocardial infarction in pigs. Am. J. Physiol., 1995, 268(1 Pt 2), H448-H457.
[PMID: 7840295]
[51]
Vakeva, A.P.; Agah, A.; Rollins, S.A.; Matis, L.A.; Li, L.; Stahl, G.L. Myocardial infarction and apoptosis after myocardial ischemia and reperfusion: role of the terminal complement components and inhibition by anti-C5 therapy. Circulation, 1998, 97(22), 2259-2267.
[http://dx.doi.org/10.1161/01.CIR.97.22.2259] [PMID: 9631876]
[52]
Zhang, H.; Qin, G.; Liang, G.; Li, J.; Barrington, R.A.; Liu, D.X. C5aR-mediated myocardial ischemia/reperfusion injury. Biochem. Biophys. Res. Commun., 2007, 357(2), 446-452.
[http://dx.doi.org/10.1016/j.bbrc.2007.03.152] [PMID: 17416341]
[53]
van der Pals, J.; Koul, S.; Andersson, P.; Götberg, M.; Ubachs, J.F.; Kanski, M.; Arheden, H.; Olivecrona, G.K.; Larsson, B.; Erlinge, D. Treatment with the C5a receptor antagonist ADC-1004 reduces myocardial infarction in a porcine ischemia-reperfusion model. BMC Cardiovasc. Disord., 2010, 10, 45.
[http://dx.doi.org/10.1186/1471-2261-10-45] [PMID: 20875134]
[54]
Pischke, S.E.; Gustavsen, A.; Orrem, H.L.; Egge, K.H.; Courivaud, F.; Fontenelle, H.; Despont, A.; Bongoni, A.K.; Rieben, R.; Tønnessen, T.I.; Nunn, M.A.; Scott, H.; Skulstad, H.; Barratt-Due, A.; Mollnes, T.E. Complement factor 5 blockade reduces porcine myocardial infarction size and improves immediate cardiac function. Basic Res. Cardiol., 2017, 112(3), 20.
[http://dx.doi.org/10.1007/s00395-017-0610-9] [PMID: 28258298]
[55]
Gorsuch, W.B.; Guikema, B.J.; Fritzinger, D.C.; Vogel, C.W.; Stahl, G.L. Humanized cobra venom factor decreases myocardial ischemia-reperfusion injury. Mol. Immunol., 2009, 47(2-3), 506-510.
[http://dx.doi.org/10.1016/j.molimm.2009.08.017] [PMID: 19747734]
[56]
Pomerantz, B.J.; Reznikov, L.L.; Harken, A.H.; Dinarello, C.A. Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1beta. Proc. Natl. Acad. Sci. USA, 2001, 98(5), 2871-2876.
[http://dx.doi.org/10.1073/pnas.041611398] [PMID: 11226333]
[57]
Kawaguchi, M.; Takahashi, M.; Hata, T.; Kashima, Y.; Usui, F.; Morimoto, H.; Izawa, A.; Takahashi, Y.; Masumoto, J.; Koyama, J.; Hongo, M.; Noda, T.; Nakayama, J.; Sagara, J.; Taniguchi, S.; Ikeda, U. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation, 2011, 123(6), 594-604.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.982777] [PMID: 21282498]
[58]
Mezzaroma, E.; Toldo, S.; Farkas, D.; Seropian, I.M.; Van Tassell, B.W.; Salloum, F.N.; Kannan, H.R.; Menna, A.C.; Voelkel, N.F.; Abbate, A. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc. Natl. Acad. Sci. USA, 2011, 108(49), 19725-19730.
[http://dx.doi.org/10.1073/pnas.1108586108] [PMID: 22106299]
[59]
Sandanger, Ø.; Ranheim, T.; Vinge, L.E.; Bliksøen, M.; Alfsnes, K.; Finsen, A.V.; Dahl, C.P.; Askevold, E.T.; Florholmen, G.; Christensen, G.; Fitzgerald, K.A.; Lien, E.; Valen, G.; Espevik, T.; Aukrust, P.; Yndestad, A. The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc. Res., 2013, 99(1), 164-174.
[http://dx.doi.org/10.1093/cvr/cvt091] [PMID: 23580606]
[60]
Marchetti, C.; Chojnacki, J.; Toldo, S.; Mezzaroma, E.; Tranchida, N.; Rose, S.W.; Federici, M.; Van Tassell, B.W.; Zhang, S.; Abbate, A. A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse. J. Cardiovasc. Pharmacol., 2014, 63(4), 316-322.
[http://dx.doi.org/10.1097/FJC.0000000000000053] [PMID: 24336017]
[61]
Coll, R.C.; Robertson, A.A.; Chae, J.J.; Higgins, S.C.; Muñoz- Planillo, R.; Inserra, M.C.; Vetter, I.; Dungan, L.S.; Monks, B.G.; Stutz, A.; Croker, D.E.; Butler, M.S.; Haneklaus, M.; Sutton, C.E.; Núñez, G.; Latz, E.; Kastner, D.L.; Mills, K.H.; Masters, S.L.; Schroder, K.; Cooper, M.A.; O’Neill, L.A. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med., 2015, 21(3), 248-255.
[http://dx.doi.org/10.1038/nm.3806] [PMID: 25686105]
[62]
Toldo, S.; Marchetti, C.; Mauro, A.G.; Chojnacki, J.; Mezzaroma, E.; Carbone, S.; Zhang, S.; Van Tassell, B.; Salloum, F.N.; Abbate, A. Inhibition of the NLRP3 inflammasome limits the inflammatory injury following myocardial ischemia-reperfusion in the mouse. Int. J. Cardiol., 2016, 209, 215-220.
[http://dx.doi.org/10.1016/j.ijcard.2016.02.043] [PMID: 26896627]
[63]
Engel, D.; Peshock, R.; Armstong, R.C.; Sivasubramanian, N.; Mann, D.L. Cardiac myocyte apoptosis provokes adverse cardiac remodeling in transgenic mice with targeted TNF overexpression. Am. J. Physiol. Heart Circ. Physiol., 2004, 287(3), H1303-H1311.
[http://dx.doi.org/10.1152/ajpheart.00053.2004] [PMID: 15317679]
[64]
Yokoyama, T.; Vaca, L.; Rossen, R.D.; Durante, W.; Hazarika, P.; Mann, D.L. Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J. Clin. Invest., 1993, 92(5), 2303-2312.
[http://dx.doi.org/10.1172/JCI116834] [PMID: 8227345]
[65]
Baud, V.; Karin, M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol., 2001, 11(9), 372-377.
[http://dx.doi.org/10.1016/S0962-8924(01)02064-5] [PMID: 11514191]
[66]
Sugano, M.; Tsuchida, K.; Hata, T.; Makino, N. in vivo transfer of soluble TNF-alpha receptor 1 gene improves cardiac function and reduces infarct size after myocardial infarction in rats. FASEB J., 2004, 18(7), 911-913.
[http://dx.doi.org/10.1096/fj.03-1148fje] [PMID: 15117889]
[67]
Monden, Y.; Kubota, T.; Tsutsumi, T.; Inoue, T.; Kawano, S.; Kawamura, N.; Ide, T.; Egashira, K.; Tsutsui, H.; Sunagawa, K. Soluble TNF receptors prevent apoptosis in infiltrating cells and promote ventricular rupture and remodeling after myocardial infarction. Cardiovasc. Res., 2007, 73(4), 794-805.
[http://dx.doi.org/10.1016/j.cardiores.2006.12.016] [PMID: 17266945]
[68]
Sun, M.; Dawood, F.; Wen, W.H.; Chen, M.; Dixon, I.; Kirshenbaum, L.A.; Liu, P.P. Excessive tumor necrosis factor activation after infarction contributes to susceptibility of myocardial rupture and left ventricular dysfunction. Circulation, 2004, 110(20), 3221-3228.
[http://dx.doi.org/10.1161/01.CIR.0000147233.10318.23] [PMID: 15533863]
[69]
Frangogiannis, N.G.; Lindsey, M.L.; Michael, L.H.; Youker, K.A.; Bressler, R.B.; Mendoza, L.H.; Spengler, R.N.; Smith, C.W.; Entman, M.L. Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation, 1998, 98(7), 699-710.
[http://dx.doi.org/10.1161/01.CIR.98.7.699] [PMID: 9715863]
[70]
Lugrin, J.; Parapanov, R.; Rosenblatt-Velin, N.; Rignault-Clerc, S.; Feihl, F.; Waeber, B.; Müller, O.; Vergely, C.; Zeller, M.; Tardivel, A.; Schneider, P.; Pacher, P.; Liaudet, L. Cutting edge: IL-1α is a crucial danger signal triggering acute myocardial inflammation during myocardial infarction. J. Immunol., 2015, 194(2), 499-503.
[http://dx.doi.org/10.4049/jimmunol.1401948] [PMID: 25505286]
[71]
Christia, P.; Bujak, M.; Gonzalez-Quesada, C.; Chen, W.; Dobaczewski, M.; Reddy, A.; Frangogiannis, N.G. Systematic characterization of myocardial inflammation, repair, and remodeling in a mouse model of reperfused myocardial infarction. J. Histochem. Cytochem., 2013, 61(8), 555-570.
[http://dx.doi.org/10.1369/0022155413493912] [PMID: 23714783]
[72]
Abbate, A.; Salloum, F.N.; Vecile, E.; Das, A.; Hoke, N.N.; Straino, S.; Biondi-Zoccai, G.G.; Houser, J.E.; Qureshi, I.Z.; Ownby, E.D.; Gustini, E.; Biasucci, L.M.; Severino, A.; Capogrossi, M.C.; Vetrovec, G.W.; Crea, F.; Baldi, A.; Kukreja, R.C.; Dobrina, A. Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation, 2008, 117(20), 2670-2683.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.740233] [PMID: 18474815]
[73]
Bujak, M.; Dobaczewski, M.; Chatila, K.; Mendoza, L.H.; Li, N.; Reddy, A.; Frangogiannis, N.G. Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am. J. Pathol., 2008, 173(1), 57-67.
[http://dx.doi.org/10.2353/ajpath.2008.070974] [PMID: 18535174]
[74]
Toldo, S.; Mezzaroma, E.; Van Tassell, B.W.; Farkas, D.; Marchetti, C.; Voelkel, N.F.; Abbate, A. Interleukin-1β blockade improves cardiac remodelling after myocardial infarction without interrupting the inflammasome in the mouse. Exp. Physiol., 2013, 98(3), 734-745.
[http://dx.doi.org/10.1113/expphysiol.2012.069831] [PMID: 23180808]
[75]
Monnerat, G.; Alarcón, M.L.; Vasconcellos, L.R.; Hochman-Mendez, C.; Brasil, G.; Bassani, R.A.; Casis, O.; Malan, D.; Travassos, L.H.; Sepúlveda, M.; Burgos, J.I.; Vila-Petroff, M.; Dutra, F.F.; Bozza, M.T.; Paiva, C.N.; Carvalho, A.B.; Bonomo, A.; Fleischmann, B.K.; de Carvalho, A.C.C.; Medei, E. Macrophage-dependent IL-1β production induces cardiac arrhythmias in diabetic mice. Nat. Commun., 2016, 7, 13344.
[http://dx.doi.org/10.1038/ncomms13344] [PMID: 27882934]
[76]
De Jesus, N.M.; Wang, L.; Lai, J.; Rigor, R.R.; Francis Stuart, S.D.; Bers, D.M.; Lindsey, M.L.; Ripplinger, C.M. Antiarrhythmic effects of interleukin 1 inhibition after myocardial infarction. Heart Rhythm, 2017, 14(5), 727-736.
[http://dx.doi.org/10.1016/j.hrthm.2017.01.027] [PMID: 28111350]
[77]
Gwechenberger, M.; Mendoza, L.H.; Youker, K.A.; Frangogiannis, N.G.; Smith, C.W.; Michael, L.H.; Entman, M.L. Cardiac myocytes produce interleukin-6 in culture and in viable border zone of reperfused infarctions. Circulation, 1999, 99(4), 546-551.
[http://dx.doi.org/10.1161/01.CIR.99.4.546] [PMID: 9927402]
[78]
Empana, J.P.; Jouven, X.; Canouï-Poitrine, F.; Luc, G.; Tafflet, M.; Haas, B.; Arveiler, D.; Ferrieres, J.; Ruidavets, J.B.; Montaye, M.; Yarnell, J.; Morange, P.; Kee, F.; Evans, A.; Amouyel, P.; Ducimetiere, P. C-reactive protein, interleukin 6, fibrinogen and risk of sudden death in European middle-aged men: the PRIME study. Arterioscler. Thromb. Vasc. Biol., 2010, 30(10), 2047-2052.
[http://dx.doi.org/10.1161/ATVBAHA.110.208785] [PMID: 20651278]
[79]
Swerdlow, D.I.; Holmes, M.V.; Kuchenbaecker, K.B.; Engmann, J.E.; Shah, T.; Sofat, R.; Guo, Y.; Chung, C.; Peasey, A.; Pfister, R.; Mooijaart, S.P.; Ireland, H.A.; Leusink, M.; Langenberg, C.; Li, K.W.; Palmen, J.; Howard, P.; Cooper, J.A.; Drenos, F.; Hardy, J.; Nalls, M.A.; Li, Y.R.; Lowe, G.; Stewart, M.; Bielinski, S.J.; Peto, J.; Timpson, N.J.; Gallacher, J.; Dunlop, M.; Houlston, R.; Tomlinson, I.; Tzoulaki, I.; Luan, J.; Boer, J.M.; Forouhi, N.G.; Onland-Moret, N.C.; van der Schouw, Y.T.; Schnabel, R.B.; Hubacek, J.A.; Kubinova, R.; Baceviciene, M.; Tamosiunas, A.; Pajak, A.; Topor-Madry, R.; Malyutina, S.; Baldassarre, D.; Sennblad, B.; Tremoli, E.; de Faire, U.; Ferrucci, L.; Bandenelli, S.; Tanaka, T.; Meschia, J.F.; Singleton, A.; Navis, G.; Mateo Leach, I.; Bakker, S.J.; Gansevoort, R.T.; Ford, I.; Epstein, S.E.; Burnett, M.S.; Devaney, J.M.; Jukema, J.W.; Westendorp, R.G.; Jan de Borst, G.; van der Graaf, Y.; de Jong, P.A.; Mailand-van der Zee, A.H.; Klungel, O.H.; de Boer, A.; Doevendans, P.A.; Stephens, J.W.; Eaton, C.B.; Robinson, J.G.; Manson, J.E.; Fowkes, F.G.; Frayling, T.M.; Price, J.F.; Whincup, P.H.; Morris, R.W.; Lawlor, D.A.; Smith, G.D.; Ben-Shlomo, Y.; Redline, S.; Lange, L.A.; Kumari, M.; Wareham, N.J.; Verschuren, W.M.; Benjamin, E.J.; Whittaker, J.C.; Hamsten, A.; Dudbridge, F.; Delaney, J.A.; Wong, A.; Kuh, D.; Hardy, R.; Castillo, B.A.; Connolly, J.J.; van der Harst, P.; Brunner, E.J.; Marmot, M.G.; Wassel, C.L.; Humphries, S.E.; Talmud, P.J.; Kivimaki, M.; Asselbergs, F.W.; Voevoda, M.; Bobak, M.; Pikhart, H.; Wilson, J.G.; Hakonarson, H.; Reiner, A.P.; Keating, B.J.; Sattar, N.; Hingorani, A.D.; Casas, J.P. Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet, 2012, 379(9822), 1214-1224.
[http://dx.doi.org/10.1016/S0140-6736(12)60110-X] [PMID: 22421340]
[80]
Fuchs, M.; Hilfiker, A.; Kaminski, K.; Hilfiker-Kleiner, D.; Guener, Z.; Klein, G.; Podewski, E.; Schieffer, B.; Rose-John, S.; Drexler, H. Role of interleukin-6 for LV remodeling and survival after experimental myocardial infarction. FASEB J., 2003, 17(14), 2118-2120.
[http://dx.doi.org/10.1096/fj.03-0331fje] [PMID: 12958147]
[81]
Kamiński, K.A.; Kozuch, M.; Bonda, T.A.; Stepaniuk, M.M.; Waszkiewicz, E.; Chyczewski, L.; Musiał, W.J.; Winnicka, M.M. Effect of interleukin 6 deficiency on the expression of Bcl-2 and Bax in the murine heart. Pharmacol. Rep., 2009, 61(3), 504-513.
[http://dx.doi.org/10.1016/S1734-1140(09)70093-3] [PMID: 19605950]
[82]
Jong, W.M.; Ten Cate, H.; Linnenbank, A.C.; de Boer, O.J.; Reitsma, P.H.; de Winter, R.J.; Zuurbier, C.J. Reduced acute myocardial ischemia-reperfusion injury in IL-6-deficient mice employing a closed-chest model. Inflamm. Res., 2016, 65(6), 489-499.
[http://dx.doi.org/10.1007/s00011-016-0931-4] [PMID: 26935770]
[83]
Hartman, M.H.; Vreeswijk-Baudoin, I.; Groot, H.E.; van de Kolk, K.W.; de Boer, R.A.; Mateo Leach, I.; Vliegenthart, R.; Sillje, H.H.; van der Harst, P. Inhibition of Interleukin-6 Receptor in a Murine Model of Myocardial Ischemia-Reperfusion. PLoS One, 2016, 11(12), e0167195.
[http://dx.doi.org/10.1371/journal.pone.0167195] [PMID: 27936014]
[84]
Kumar, A.G.; Ballantyne, C.M.; Michael, L.H.; Kukielka, G.L.; Youker, K.A.; Lindsey, M.L.; Hawkins, H.K.; Birdsall, H.H.; MacKay, C.R.; LaRosa, G.J.; Rossen, R.D.; Smith, C.W.; Entman, M.L. Induction of monocyte chemoattractant protein-1 in the small veins of the ischemic and reperfused canine myocardium. Circulation, 1997, 95(3), 693-700.
[http://dx.doi.org/10.1161/01.CIR.95.3.693] [PMID: 9024159]
[85]
Dewald, O.; Zymek, P.; Winkelmann, K.; Koerting, A.; Ren, G.; Abou-Khamis, T.; Michael, L.H.; Rollins, B.J.; Entman, M.L.; Frangogiannis, N.G. CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ. Res., 2005, 96(8), 881-889.
[http://dx.doi.org/10.1161/01.RES.0000163017.13772.3a] [PMID: 15774854]
[86]
Hayashidani, S.; Tsutsui, H.; Shiomi, T.; Ikeuchi, M.; Matsusaka, H.; Suematsu, N.; Wen, J.; Egashira, K.; Takeshita, A. Anti-monocyte chemoattractant protein-1 gene therapy attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation, 2003, 108(17), 2134-2140.
[http://dx.doi.org/10.1161/01.CIR.0000092890.29552.22] [PMID: 14517168]
[87]
Kaikita, K.; Hayasaki, T.; Okuma, T.; Kuziel, W.A.; Ogawa, H.; Takeya, M. Targeted deletion of CC chemokine receptor 2 attenuates left ventricular remodeling after experimental myocardial infarction. Am. J. Pathol., 2004, 165(2), 439-447.
[http://dx.doi.org/10.1016/S0002-9440(10)63309-3] [PMID: 15277218]
[88]
Leuschner, F.; Dutta, P.; Gorbatov, R.; Novobrantseva, T.I.; Donahoe, J.S.; Courties, G.; Lee, K.M.; Kim, J.I.; Markmann, J.F.; Marinelli, B.; Panizzi, P.; Lee, W.W.; Iwamoto, Y.; Milstein, S.; Epstein-Barash, H.; Cantley, W.; Wong, J.; Cortez-Retamozo, V.; Newton, A.; Love, K.; Libby, P.; Pittet, M.J.; Swirski, F.K.; Koteliansky, V.; Langer, R.; Weissleder, R.; Anderson, D.G.; Nahrendorf, M. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol., 2011, 29(11), 1005-1010.
[http://dx.doi.org/10.1038/nbt.1989] [PMID: 21983520]
[89]
Xia, Y.; Frangogiannis, N.G. MCP-1/CCL2 as a therapeutic target in myocardial infarction and ischemic cardiomyopathy. Inflamm. Allergy Drug Targets, 2007, 6(2), 101-107.
[http://dx.doi.org/10.2174/187152807780832265] [PMID: 17692033]
[90]
Becker, L.C. Yin and yang of MCP-1. Circ. Res., 2005, 96(8), 812-814.
[http://dx.doi.org/10.1161/01.RES.0000165652.82726.d9] [PMID: 15860761]
[91]
Montecucco, F.; Braunersreuther, V.; Lenglet, S.; Delattre, B.M.; Pelli, G.; Buatois, V.; Guilhot, F.; Galan, K.; Vuilleumier, N.; Ferlin, W.; Fischer, N.; Vallée, J.P.; Kosco-Vilbois, M.; Mach, F. CC chemokine CCL5 plays a central role impacting infarct size and post-infarction heart failure in mice. Eur. Heart J., 2012, 33(15), 1964-1974.
[http://dx.doi.org/10.1093/eurheartj/ehr127] [PMID: 21606075]
[92]
Dobaczewski, M.; Xia, Y.; Bujak, M.; Gonzalez-Quesada, C.; Frangogiannis, N.G. CCR5 signaling suppresses inflammation and reduces adverse remodeling of the infarcted heart, mediating recruitment of regulatory T cells. Am. J. Pathol., 2010, 176(5), 2177-2187.
[http://dx.doi.org/10.2353/ajpath.2010.090759] [PMID: 20382703]
[93]
Huang, Y.; Wang, D.; Wang, X.; Zhang, Y.; Liu, T.; Chen, Y.; Tang, Y.; Wang, T.; Hu, D.; Huang, C. Abrogation of CC chemokine receptor 9 ameliorates ventricular remodeling in mice after myocardial infarction. Sci. Rep., 2016, 6, 32660.
[http://dx.doi.org/10.1038/srep32660] [PMID: 27585634]
[94]
Montecucco, F.; Lenglet, S.; Braunersreuther, V.; Pelli, G.; Pellieux, C.; Montessuit, C.; Lerch, R.; Deruaz, M.; Proudfoot, A.E.; Mach, F. Single administration of the CXC chemokine-binding protein Evasin-3 during ischemia prevents myocardial reperfusion injury in mice. Arterioscler. Thromb. Vasc. Biol., 2010, 30(7), 1371-1377.
[http://dx.doi.org/10.1161/ATVBAHA.110.206011] [PMID: 20413731]
[95]
Aiuti, A.; Webb, I.J.; Bleul, C.; Springer, T.; Gutierrez-Ramos, J.C. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J. Exp. Med., 1997, 185(1), 111-120.
[http://dx.doi.org/10.1084/jem.185.1.111] [PMID: 8996247]
[96]
Askari, A.T.; Unzek, S.; Popovic, Z.B.; Goldman, C.K.; Forudi, F.; Kiedrowski, M.; Rovner, A.; Ellis, S.G.; Thomas, J.D.; DiCorleto, P.E.; Topol, E.J.; Penn, M.S. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 2003, 362(9385), 697-703.
[http://dx.doi.org/10.1016/S0140-6736(03)14232-8] [PMID: 12957092]
[97]
Liehn, E.A.; Tuchscheerer, N.; Kanzler, I.; Drechsler, M.; Fraemohs, L.; Schuh, A.; Koenen, R.R.; Zander, S.; Soehnlein, O.; Hristov, M.; Grigorescu, G.; Urs, A.O.; Leabu, M.; Bucur, I.; Merx, M.W.; Zernecke, A.; Ehling, J.; Gremse, F.; Lammers, T.; Kiessling, F.; Bernhagen, J.; Schober, A.; Weber, C. Double-edged role of the CXCL12/CXCR4 axis in experimental myocardial infarction. J. Am. Coll. Cardiol., 2011, 58(23), 2415-2423.
[http://dx.doi.org/10.1016/j.jacc.2011.08.033] [PMID: 22115649]
[98]
Frangogiannis, N.G. The stromal cell-derived factor-1/CXCR4 axis in cardiac injury and repair. J. Am. Coll. Cardiol., 2011, 58(23), 2424-2426.
[http://dx.doi.org/10.1016/j.jacc.2011.08.031] [PMID: 22115650]
[99]
Hu, X.; Dai, S.; Wu, W.J.; Tan, W.; Zhu, X.; Mu, J.; Guo, Y.; Bolli, R.; Rokosh, G. Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury: role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis. Circulation, 2007, 116(6), 654-663.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.672451] [PMID: 17646584]
[100]
Saxena, A.; Fish, J.E.; White, M.D.; Yu, S.; Smyth, J.W.; Shaw, R.M.; DiMaio, J.M.; Srivastava, D. Stromal cell-derived factor-1alpha is cardioprotective after myocardial infarction. Circulation, 2008, 117(17), 2224-2231.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.694992] [PMID: 18427137]
[101]
MacArthur, J.W., Jr; Purcell, B.P.; Shudo, Y.; Cohen, J.E.; Fairman, A.; Trubelja, A.; Patel, J.; Hsiao, P.; Yang, E.; Lloyd, K.; Hiesinger, W.; Atluri, P.; Burdick, J.A.; Woo, Y.J. Sustained release of engineered stromal cell-derived factor 1-α from injectable hydrogels effectively recruits endothelial progenitor cells and preserves ventricular function after myocardial infarction. Circulation, 2013, 128(11)(Suppl. 1), S79-S86.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.000343] [PMID: 24030424]
[102]
Macarthur, J.W., Jr; Cohen, J.E.; McGarvey, J.R.; Shudo, Y.; Patel, J.B.; Trubelja, A.; Fairman, A.S.; Edwards, B.B.; Hung, G.; Hiesinger, W.; Goldstone, A.B.; Atluri, P.; Wilensky, R.L.; Pilla, J.J.; Gorman, J.H., III; Gorman, R.C.; Woo, Y.J. Preclinical evaluation of the engineered stem cell chemokine stromal cell-derived factor 1α analog in a translational ovine myocardial infarction model. Circ. Res., 2014, 114(4), 650-659.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302884] [PMID: 24366171]
[103]
Song, M.; Jang, H.; Lee, J.; Kim, J.H.; Kim, S.H.; Sun, K.; Park, Y. Regeneration of chronic myocardial infarction by injectable hydrogels containing stem cell homing factor SDF-1 and angiogenic peptide Ac-SDKP. Biomaterials, 2014, 35(8), 2436-2445.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.011] [PMID: 24378015]
[104]
Proulx, C.; El-Helou, V.; Gosselin, H.; Clement, R.; Gillis, M.A.; Villeneuve, L.; Calderone, A. Antagonism of stromal cell-derived factor-1alpha reduces infarct size and improves ventricular function after myocardial infarction. Pflugers Arch., 2007, 455(2), 241-250.
[http://dx.doi.org/10.1007/s00424-007-0284-5] [PMID: 17520275]
[105]
Jujo, K.; Hamada, H.; Iwakura, A.; Thorne, T.; Sekiguchi, H.; Clarke, T.; Ito, A.; Misener, S.; Tanaka, T.; Klyachko, E.; Kobayashi, K.; Tongers, J.; Roncalli, J.; Tsurumi, Y.; Hagiwara, N.; Losordo, D.W. CXCR4 blockade augments bone marrow progenitor cell recruitment to the neovasculature and reduces mortality after myocardial infarction. Proc. Natl. Acad. Sci. USA, 2010, 107(24), 11008-11013.
[http://dx.doi.org/10.1073/pnas.0914248107] [PMID: 20534467]
[106]
Xuan, W.; Liao, Y.; Chen, B.; Huang, Q.; Xu, D.; Liu, Y.; Bin, J.; Kitakaze, M. Detrimental effect of fractalkine on myocardial ischaemia and heart failure. Cardiovasc. Res., 2011, 92(3), 385-393.
[http://dx.doi.org/10.1093/cvr/cvr221] [PMID: 21840883]
[107]
Takahashi, T.; Anzai, T.; Kaneko, H.; Mano, Y.; Anzai, A.; Nagai, T.; Kohno, T.; Maekawa, Y.; Yoshikawa, T.; Fukuda, K.; Ogawa, S. Increased C-reactive protein expression exacerbates left ventricular dysfunction and remodeling after myocardial infarction. Am. J. Physiol. Heart Circ. Physiol., 2010, 299(6), H1795-H1804.
[http://dx.doi.org/10.1152/ajpheart.00001.2010] [PMID: 20852043]
[108]
Slagman, A.C.; Bock, C.; Abdel-Aty, H.; Vogt, B.; Gebauer, F.; Janelt, G.; Wohlgemuth, F.; Morgenstern, R.; Yapici, G.; Puppe, A.; Modersohn, D.; Mans, D.; Jerichow, T.; Ott, S.; Kunze, R.; Schrödl, W.; Janko, C.; Hermann, M.; Kalden, J.R.; Kern, P.; Parsch, H.; Kirschfink, M.; Schulz-Menger, J.; Röttgen, R.; Unger, J.K.; Frei, U.; Schindler, R.; Möckel, M.; Sheriff, A. Specific removal of C-reactive protein by apheresis in a porcine cardiac infarction model. Blood Purif., 2011, 31(1-3), 9-17.
[http://dx.doi.org/10.1159/000320763] [PMID: 21135544]
[109]
Deban, L.; Jaillon, S.; Garlanda, C.; Bottazzi, B.; Mantovani, A. Pentraxins in innate immunity: lessons from PTX3. Cell Tissue Res., 2011, 343(1), 237-249.
[http://dx.doi.org/10.1007/s00441-010-1018-0] [PMID: 20683616]
[110]
Pepys, M.B.; Hirschfield, G.M.; Tennent, G.A.; Gallimore, J.R.; Kahan, M.C.; Bellotti, V.; Hawkins, P.N.; Myers, R.M.; Smith, M.D.; Polara, A.; Cobb, A.J.; Ley, S.V.; Aquilina, J.A.; Robinson, C.V.; Sharif, I.; Gray, G.A.; Sabin, C.A.; Jenvey, M.C.; Kolstoe, S.E.; Thompson, D.; Wood, S.P. Targeting C-reactive protein for the treatment of cardiovascular disease. Nature, 2006, 440(7088), 1217-1221.
[http://dx.doi.org/10.1038/nature04672] [PMID: 16642000]
[111]
Schwedler, S.B.; Amann, K.; Wernicke, K.; Krebs, A.; Nauck, M.; Wanner, C.; Potempa, L.A.; Galle, J. Native C-reactive protein increases whereas modified C-reactive protein reduces atherosclerosis in apolipoprotein E-knockout mice. Circulation, 2005, 112(7), 1016-1023.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.556530] [PMID: 16087790]
[112]
Hirschfield, G.M.; Gallimore, J.R.; Kahan, M.C.; Hutchinson, W.L.; Sabin, C.A.; Benson, G.M.; Dhillon, A.P.; Tennent, G.A.; Pepys, M.B. Transgenic human C-reactive protein is not proatherogenic in apolipoprotein E-deficient mice. Proc. Natl. Acad. Sci. USA, 2005, 102(23), 8309-8314.
[http://dx.doi.org/10.1073/pnas.0503202102] [PMID: 15919817]
[113]
Tennent, G.A.; Hutchinson, W.L.; Kahan, M.C.; Hirschfield, G.M.; Gallimore, J.R.; Lewin, J.; Sabin, C.A.; Dhillon, A.P.; Pepys, M.B. Transgenic human CRP is not pro-atherogenic, pro-atherothrombotic or pro-inflammatory in apoE-/- mice. Atherosclerosis, 2008, 196(1), 248-255.
[http://dx.doi.org/10.1016/j.atherosclerosis.2007.05.010] [PMID: 17588586]
[114]
Kovacs, A.; Tornvall, P.; Nilsson, R.; Tegnér, J.; Hamsten, A.; Björkegren, J. Human C-reactive protein slows atherosclerosis development in a mouse model with human-like hypercholesterolemia. Proc. Natl. Acad. Sci. USA, 2007, 104(34), 13768-13773.
[http://dx.doi.org/10.1073/pnas.0706027104] [PMID: 17702862]
[115]
Eisenhardt, S.U.; Habersberger, J.; Peter, K. Monomeric C-reactive protein generation on activated platelets: the missing link between inflammation and atherothrombotic risk. Trends Cardiovasc. Med., 2009, 19(7), 232-237.
[http://dx.doi.org/10.1016/j.tcm.2010.02.002] [PMID: 20382347]
[116]
Ma, Y.; Yabluchanskiy, A.; Iyer, R.P.; Cannon, P.L.; Flynn, E.R.; Jung, M.; Henry, J.; Cates, C.A.; Deleon-Pennell, K.Y.; Lindsey, M.L. Temporal neutrophil polarization following myocardial infarction. Cardiovasc. Res., 2016, 110(1), 51-61.
[http://dx.doi.org/10.1093/cvr/cvw024] [PMID: 26825554]
[117]
Entman, M.L.; Youker, K.; Shoji, T.; Kukielka, G.; Shappell, S.B.; Taylor, A.A.; Smith, C.W. Neutrophil induced oxidative injury of cardiac myocytes. A compartmented system requiring CD11b/CD18-ICAM-1 adherence. J. Clin. Invest., 1992, 90(4), 1335-1345.
[http://dx.doi.org/10.1172/JCI115999] [PMID: 1357003]
[118]
Christia, P.; Frangogiannis, N.G. Targeting inflammatory pathways in myocardial infarction. Eur. J. Clin. Invest., 2013, 43(9), 986-995.
[http://dx.doi.org/10.1111/eci.12118] [PMID: 23772948]
[119]
Simpson, P.J.; Todd, R.F., III; Fantone, J.C.; Mickelson, J.K.; Griffin, J.D.; Lucchesi, B.R. Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti-Mo1, anti-CD11b) that inhibits leukocyte adhesion. J. Clin. Invest., 1988, 81(2), 624-629.
[http://dx.doi.org/10.1172/JCI113364] [PMID: 3339135]
[120]
Ma, X.L.; Tsao, P.S.; Lefer, A.M. Antibody to CD-18 exerts endothelial and cardiac protective effects in myocardial ischemia and reperfusion. J. Clin. Invest., 1991, 88(4), 1237-1243.
[http://dx.doi.org/10.1172/JCI115427] [PMID: 1680879]
[121]
Tanaka, M.; Brooks, S.E.; Richard, V.J.; FitzHarris, G.P.; Stoler, R.C.; Jennings, R.B.; Arfors, K.E.; Reimer, K.A. Effect of anti-CD18 antibody on myocardial neutrophil accumulation and infarct size after ischemia and reperfusion in dogs. Circulation, 1993, 87(2), 526-535.
[http://dx.doi.org/10.1161/01.CIR.87.2.526] [PMID: 8093866]
[122]
Lefer, D.J.; Shandelya, S.M.; Serrano, C.V., Jr; Becker, L.C.; Kuppusamy, P.; Zweier, J.L. Cardioprotective actions of a monoclonal antibody against CD-18 in myocardial ischemia-reperfusion injury. Circulation, 1993, 88(4 Pt 1), 1779-1787.
[http://dx.doi.org/10.1161/01.CIR.88.4.1779] [PMID: 8104739]
[123]
Aversano, T.; Zhou, W.; Nedelman, M.; Nakada, M.; Weisman, H. A chimeric IgG4 monoclonal antibody directed against CD18 reduces infarct size in a primate model of myocardial ischemia and reperfusion. J. Am. Coll. Cardiol., 1995, 25(3), 781-788.
[http://dx.doi.org/10.1016/0735-1097(94)00443-T] [PMID: 7860929]
[124]
Arai, M.; Lefer, D.J.; So, T.; DiPaula, A.; Aversano, T.; Becker, L.C. An anti-CD18 antibody limits infarct size and preserves left ventricular function in dogs with ischemia and 48-hour reperfusion. J. Am. Coll. Cardiol., 1996, 27(5), 1278-1285.
[http://dx.doi.org/10.1016/0735-1097(95)00578-1] [PMID: 8609356]
[125]
Sager, H.B.; Dutta, P.; Dahlman, J.E.; Hulsmans, M.; Courties, G.; Sun, Y.; Heidt, T.; Vinegoni, C.; Borodovsky, A.; Fitzgerald, K.; Wojtkiewicz, G.R.; Iwamoto, Y.; Tricot, B.; Khan, O.F.; Kauffman, K.J.; Xing, Y.; Shaw, T.E.; Libby, P.; Langer, R.; Weissleder, R.; Swirski, F.K.; Anderson, D.G.; Nahrendorf, M. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Sci. Transl. Med., 2016, 8(342), 342ra80.
[http://dx.doi.org/10.1126/scitranslmed.aaf1435] [PMID: 27280687]
[126]
Huynh, M.L.; Fadok, V.A.; Henson, P.M. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J. Clin. Invest., 2002, 109(1), 41-50.
[http://dx.doi.org/10.1172/JCI0211638] [PMID: 11781349]
[127]
Wan, E.; Yeap, X.Y.; Dehn, S.; Terry, R.; Novak, M.; Zhang, S.; Iwata, S.; Han, X.; Homma, S.; Drosatos, K.; Lomasney, J.; Engman, D.M.; Miller, S.D.; Vaughan, D.E.; Morrow, J.P.; Kishore, R.; Thorp, E.B. Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circ. Res., 2013, 113(8), 1004-1012.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301198] [PMID: 23836795]
[128]
Chen, W.; Saxena, A.; Li, N.; Sun, J.; Gupta, A.; Lee, D.W.; Tian, Q.; Dobaczewski, M.; Frangogiannis, N.G. Endogenous IRAK-M attenuates postinfarction remodeling through effects on macrophages and fibroblasts. Arterioscler. Thromb. Vasc. Biol., 2012, 32(11), 2598-2608.
[http://dx.doi.org/10.1161/ATVBAHA.112.300310] [PMID: 22995519]
[129]
Shintani, Y.; Ito, T.; Fields, L.; Shiraishi, M.; Ichihara, Y.; Sato, N.; Podaru, M.; Kainuma, S.; Tanaka, H.; Suzuki, K. IL-4 as a Repurposed Biological Drug for Myocardial Infarction through Augmentation of Reparative Cardiac Macrophages: Proof-of-Concept Data in Mice. Sci. Rep., 2017, 7(1), 6877.
[http://dx.doi.org/10.1038/s41598-017-07328-z] [PMID: 28761077]
[130]
ter Horst, E.N.; Hakimzadeh, N.; van der Laan, A.M.; Krijnen, P.A.; Niessen, H.W.; Piek, J.J. Modulators of Macrophage Polarization Influence Healing of the Infarcted Myocardium. Int. J. Mol. Sci., 2015, 16(12), 29583-29591.
[http://dx.doi.org/10.3390/ijms161226187] [PMID: 26690421]
[131]
Harel-Adar, T.; Ben Mordechai, T.; Amsalem, Y.; Feinberg, M.S.; Leor, J.; Cohen, S. Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proc. Natl. Acad. Sci. USA, 2011, 108(5), 1827-1832.
[http://dx.doi.org/10.1073/pnas.1015623108] [PMID: 21245355]
[132]
Courties, G.; Heidt, T.; Sebas, M.; Iwamoto, Y.; Jeon, D.; Truelove, J.; Tricot, B.; Wojtkiewicz, G.; Dutta, P.; Sager, H.B.; Borodovsky, A.; Novobrantseva, T.; Klebanov, B.; Fitzgerald, K.; Anderson, D.G.; Libby, P.; Swirski, F.K.; Weissleder, R.; Nahrendorf, M. in vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing. J. Am. Coll. Cardiol., 2014, 63(15), 1556-1566.
[http://dx.doi.org/10.1016/j.jacc.2013.11.023] [PMID: 24361318]
[133]
Weirather, J.; Hofmann, U.D.; Beyersdorf, N.; Ramos, G.C.; Vogel, B.; Frey, A.; Ertl, G.; Kerkau, T.; Frantz, S. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ. Res., 2014, 115(1), 55-67.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.303895] [PMID: 24786398]
[134]
Zhou, L.S.; Zhao, G.L.; Liu, Q.; Jiang, S.C.; Wang, Y.; Zhang, D.M. Silencing collapsin response mediator protein-2 reprograms macrophage phenotype and improves infarct healing in experimental myocardial infarction model. J. Inflamm. (Lond.), 2015, 12, 11.
[http://dx.doi.org/10.1186/s12950-015-0053-8] [PMID: 25685072]
[135]
Frangogiannis, N.G.; Mendoza, L.H.; Lindsey, M.L.; Ballantyne, C.M.; Michael, L.H.; Smith, C.W.; Entman, M.L. IL-10 is induced in the reperfused myocardium and may modulate the reaction to injury. J. Immunol., 2000, 165(5), 2798-2808.
[http://dx.doi.org/10.4049/jimmunol.165.5.2798] [PMID: 10946312]
[136]
Yan, X.; Anzai, A.; Katsumata, Y.; Matsuhashi, T.; Ito, K.; Endo, J.; Yamamoto, T.; Takeshima, A.; Shinmura, K.; Shen, W.; Fukuda, K.; Sano, M. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J. Mol. Cell. Cardiol., 2013, 62, 24-35.
[http://dx.doi.org/10.1016/j.yjmcc.2013.04.023] [PMID: 23644221]
[137]
Zouggari, Y.; Ait-Oufella, H.; Bonnin, P.; Simon, T.; Sage, A.P.; Guérin, C.; Vilar, J.; Caligiuri, G.; Tsiantoulas, D.; Laurans, L.; Dumeau, E.; Kotti, S.; Bruneval, P.; Charo, I.F.; Binder, C.J.; Danchin, N.; Tedgui, A.; Tedder, T.F.; Silvestre, J.S.; Mallat, Z. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat. Med., 2013, 19(10), 1273-1280.
[http://dx.doi.org/10.1038/nm.3284] [PMID: 24037091]
[138]
Varda-Bloom, N.; Leor, J.; Ohad, D.G.; Hasin, Y.; Amar, M.; Fixler, R.; Battler, A.; Eldar, M.; Hasin, D. Cytotoxic T lymphocytes are activated following myocardial infarction and can recognize and kill healthy myocytes in vitro. J. Mol. Cell. Cardiol., 2000, 32(12), 2141-2149.
[http://dx.doi.org/10.1006/jmcc.2000.1261] [PMID: 11112990]
[139]
Boag, S.E.; Das, R.; Shmeleva, E.V.; Bagnall, A.; Egred, M.; Howard, N.; Bennaceur, K.; Zaman, A.; Keavney, B.; Spyridopoulos, I. T lymphocytes and fractalkine contribute to myocardial ischemia/reperfusion injury in patients. J. Clin. Invest., 2015, 125(8), 3063-3076.
[http://dx.doi.org/10.1172/JCI80055] [PMID: 26168217]
[140]
Yan, X.; Shichita, T.; Katsumata, Y.; Matsuhashi, T.; Ito, H.; Ito, K.; Anzai, A.; Endo, J.; Tamura, Y.; Kimura, K.; Fujita, J.; Shinmura, K.; Shen, W.; Yoshimura, A.; Fukuda, K.; Sano, M. Deleterious effect of the IL-23/IL-17A axis and γδT cells on left ventricular remodeling after myocardial infarction. J. Am. Heart Assoc., 2012, 1(5), e004408.
[http://dx.doi.org/10.1161/JAHA.112.004408] [PMID: 23316306]
[141]
Shinde, A.V.; Frangogiannis, N.G. Fibroblasts in myocardial infarction: a role in inflammation and repair. J. Mol. Cell. Cardiol., 2014, 70, 74-82.
[http://dx.doi.org/10.1016/j.yjmcc.2013.11.015] [PMID: 24321195]
[142]
Zhang, W.; Lavine, K.J.; Epelman, S.; Evans, S.A.; Weinheimer, C.J.; Barger, P.M.; Mann, D.L. Necrotic myocardial cells release damage-associated molecular patterns that provoke fibroblast activation in vitro and trigger myocardial inflammation and fibrosis in vivo. J. Am. Heart Assoc., 2015, 4(6), e001993.
[http://dx.doi.org/10.1161/JAHA.115.001993] [PMID: 26037082]
[143]
Saxena, A.; Chen, W.; Su, Y.; Rai, V.; Uche, O.U.; Li, N.; Frangogiannis, N.G. IL-1 induces proinflammatory leukocyte infiltration and regulates fibroblast phenotype in the infarcted myocardium. J. Immunol., 2013, 191(9), 4838-4848.
[http://dx.doi.org/10.4049/jimmunol.1300725] [PMID: 24078695]
[144]
Serhan, C.N.; Chiang, N.; Van Dyke, T.E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol., 2008, 8(5), 349-361.
[http://dx.doi.org/10.1038/nri2294] [PMID: 18437155]
[145]
Mantovani, A.; Cassatella, M.A.; Costantini, C.; Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol., 2011, 11(8), 519-531.
[http://dx.doi.org/10.1038/nri3024] [PMID: 21785456]
[146]
Kempf, T.; Zarbock, A.; Widera, C.; Butz, S.; Stadtmann, A.; Rossaint, J.; Bolomini-Vittori, M.; Korf-Klingebiel, M.; Napp, L.C.; Hansen, B.; Kanwischer, A.; Bavendiek, U.; Beutel, G.; Hapke, M.; Sauer, M.G.; Laudanna, C.; Hogg, N.; Vestweber, D.; Wollert, K.C. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat. Med., 2011, 17(5), 581-588.
[http://dx.doi.org/10.1038/nm.2354] [PMID: 21516086]
[147]
Ortega-Gómez, A.; Perretti, M.; Soehnlein, O. Resolution of inflammation: an integrated view. EMBO Mol. Med., 2013, 5(5), 661-674.
[http://dx.doi.org/10.1002/emmm.201202382] [PMID: 23592557]
[148]
Nahrendorf, M.; Swirski, F.K.; Aikawa, E.; Stangenberg, L.; Wurdinger, T.; Figueiredo, J.L.; Libby, P.; Weissleder, R.; Pittet, M.J. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med., 2007, 204(12), 3037-3047.
[http://dx.doi.org/10.1084/jem.20070885] [PMID: 18025128]
[149]
Nahrendorf, M.; Pittet, M.J.; Swirski, F.K. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation, 2010, 121(22), 2437-2445.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.916346] [PMID: 20530020]
[150]
Hanna, R.N.; Carlin, L.M.; Hubbeling, H.G.; Nackiewicz, D.; Green, A.M.; Punt, J.A.; Geissmann, F.; Hedrick, C.C. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes. Nat. Immunol., 2011, 12(8), 778-785.
[http://dx.doi.org/10.1038/ni.2063] [PMID: 21725321]
[151]
Hilgendorf, I.; Gerhardt, L.M.; Tan, T.C.; Winter, C.; Holderried, T.A.; Chousterman, B.G.; Iwamoto, Y.; Liao, R.; Zirlik, A.; Scherer-Crosbie, M.; Hedrick, C.C.; Libby, P.; Nahrendorf, M.; Weissleder, R.; Swirski, F.K. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ. Res., 2014, 114(10), 1611-1622.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.303204] [PMID: 24625784]
[152]
Lörchner, H.; Pöling, J.; Gajawada, P.; Hou, Y.; Polyakova, V.; Kostin, S.; Adrian-Segarra, J.M.; Boettger, T.; Wietelmann, A.; Warnecke, H.; Richter, M.; Kubin, T.; Braun, T. Myocardial healing requires Reg3β-dependent accumulation of macrophages in the ischemic heart. Nat. Med., 2015, 21(4), 353-362.
[http://dx.doi.org/10.1038/nm.3816] [PMID: 25751817]
[153]
Anzai, A.; Anzai, T.; Nagai, S.; Maekawa, Y.; Naito, K.; Kaneko, H.; Sugano, Y.; Takahashi, T.; Abe, H.; Mochizuki, S.; Sano, M.; Yoshikawa, T.; Okada, Y.; Koyasu, S.; Ogawa, S.; Fukuda, K. Regulatory role of dendritic cells in postinfarction healing and left ventricular remodeling. Circulation, 2012, 125(10), 1234-1245.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.052126] [PMID: 22308302]
[154]
Liu, H.; Gao, W.; Yuan, J.; Wu, C.; Yao, K.; Zhang, L.; Ma, L.; Zhu, J.; Zou, Y.; Ge, J. Exosomes derived from dendritic cells improve cardiac function via activation of CD4(+) T lymphocytes after myocardial infarction. J. Mol. Cell. Cardiol., 2016, 91, 123-133.
[http://dx.doi.org/10.1016/j.yjmcc.2015.12.028] [PMID: 26746143]
[155]
Wang, Y.M.; Alexander, S.I. IL-2/anti-IL-2 complex: a novel strategy of in vivo regulatory T cell expansion in renal injury. J. Am. Soc. Nephrol., 2013, 24(10), 1503-1504.
[http://dx.doi.org/10.1681/ASN.2013070718] [PMID: 23949795]
[156]
Meng, X.; Yang, J.; Dong, M.; Zhang, K.; Tu, E.; Gao, Q.; Chen, W.; Zhang, C.; Zhang, Y. Regulatory T cells in cardiovascular diseases. Nat. Rev. Cardiol., 2016, 13(3), 167-179.
[http://dx.doi.org/10.1038/nrcardio.2015.169] [PMID: 26525543]
[157]
Wang, Y.P.; Xie, Y.; Ma, H.; Su, S.A.; Wang, Y.D.; Wang, J.A.; Xiang, M.X. Regulatory T lymphocytes in myocardial infarction: A promising new therapeutic target. Int. J. Cardiol., 2016, 203, 923-928.
[http://dx.doi.org/10.1016/j.ijcard.2015.11.078] [PMID: 26618254]
[158]
Hofmann, U.; Beyersdorf, N.; Weirather, J.; Podolskaya, A.; Bauersachs, J.; Ertl, G.; Kerkau, T.; Frantz, S. Activation of CD4+ T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation, 2012, 125(13), 1652-1663.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.044164] [PMID: 22388323]
[159]
Matsumoto, K.; Ogawa, M.; Suzuki, J.; Hirata, Y.; Nagai, R.; Isobe, M. Regulatory T lymphocytes attenuate myocardial infarction-induced ventricular remodeling in mice. Int. Heart J., 2011, 52(6), 382-387.
[http://dx.doi.org/10.1536/ihj.52.382] [PMID: 22188713]
[160]
Tang, T.T.; Yuan, J.; Zhu, Z.F.; Zhang, W.C.; Xiao, H.; Xia, N.; Yan, X.X.; Nie, S.F.; Liu, J.; Zhou, S.F.; Li, J.J.; Yao, R.; Liao, M.Y.; Tu, X.; Liao, Y.H.; Cheng, X. Regulatory T cells ameliorate cardiac remodeling after myocardial infarction. Basic Res. Cardiol., 2012, 107(1), 232.
[http://dx.doi.org/10.1007/s00395-011-0232-6] [PMID: 22189560]
[161]
Saxena, A.; Dobaczewski, M.; Rai, V.; Haque, Z.; Chen, W.; Li, N.; Frangogiannis, N.G. Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function. Am. J. Physiol. Heart Circ. Physiol., 2014, 307(8), H1233-H1242.
[http://dx.doi.org/10.1152/ajpheart.00328.2014] [PMID: 25128167]
[162]
Wang, G.; Kim, R.Y.; Imhof, I.; Honbo, N.; Luk, F.S.; Li, K.; Kumar, N.; Zhu, B.Q.; Eberlé, D.; Ching, D.; Karliner, J.S.; Raffai, R.L. The immunosuppressant FTY720 prolongs survival in a mouse model of diet-induced coronary atherosclerosis and myocardial infarction. J. Cardiovasc. Pharmacol., 2014, 63(2), 132-143.
[http://dx.doi.org/10.1097/FJC.0000000000000031] [PMID: 24508946]
[163]
Ke, D.; Fang, J.; Fan, L.; Chen, Z.; Chen, L. Regulatory T cells contribute to rosuvastatin-induced cardioprotection against ischemia-reperfusion injury. Coron. Artery Dis., 2013, 24(4), 334-341.
[http://dx.doi.org/10.1097/MCA.0b013e3283608c12] [PMID: 23531479]
[164]
Mor, A.; Luboshits, G.; Planer, D.; Keren, G.; George, J. Altered status of CD4(+)CD25(+) regulatory T cells in patients with acute coronary syndromes. Eur. Heart J., 2006, 27(21), 2530-2537.
[http://dx.doi.org/10.1093/eurheartj/ehl222] [PMID: 16954132]
[165]
Sardella, G.; De Luca, L.; Francavilla, V.; Accapezzato, D.; Mancone, M.; Sirinian, M.I.; Fedele, F.; Paroli, M. Frequency of naturally-occurring regulatory T cells is reduced in patients with ST-segment elevation myocardial infarction. Thromb. Res., 2007, 120(4), 631-634.
[http://dx.doi.org/10.1016/j.thromres.2006.12.005] [PMID: 17261328]
[166]
Zhang, W.C.; Wang, J.; Shu, Y.W.; Tang, T.T.; Zhu, Z.F.; Xia, N.; Nie, S.F.; Liu, J.; Zhou, S.F.; Li, J.J.; Xiao, H.; Yuan, J.; Liao, M.Y.; Cheng, L.X.; Liao, Y.H.; Cheng, X. Impaired thymic export and increased apoptosis account for regulatory T cell defects in patients with non-ST segment elevation acute coronary syndrome. J. Biol. Chem., 2012, 287(41), 34157-34166.
[http://dx.doi.org/10.1074/jbc.M112.382978] [PMID: 22872639]
[167]
Wigren, M.; Björkbacka, H.; Andersson, L.; Ljungcrantz, I.; Fredrikson, G.N.; Persson, M.; Bryngelsson, C.; Hedblad, B.; Nilsson, J. Low levels of circulating CD4+FoxP3+ T cells are associated with an increased risk for development of myocardial infarction but not for stroke. Arterioscler. Thromb. Vasc. Biol., 2012, 32(8), 2000-2004.
[http://dx.doi.org/10.1161/ATVBAHA.112.251579] [PMID: 22628434]
[168]
Sobirin, M.A.; Kinugawa, S.; Takahashi, M.; Fukushima, A.; Homma, T.; Ono, T.; Hirabayashi, K.; Suga, T.; Azalia, P.; Takada, S.; Taniguchi, M.; Nakayama, T.; Ishimori, N.; Iwabuchi, K.; Tsutsui, H. Activation of natural killer T cells ameliorates postinfarct cardiac remodeling and failure in mice. Circ. Res., 2012, 111(8), 1037-1047.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.270132] [PMID: 22887770]
[169]
Homma, T.; Kinugawa, S.; Takahashi, M.; Sobirin, M.A.; Saito, A.; Fukushima, A.; Suga, T.; Takada, S.; Kadoguchi, T.; Masaki, Y.; Furihata, T.; Taniguchi, M.; Nakayama, T.; Ishimori, N.; Iwabuchi, K.; Tsutsui, H. Activation of invariant natural killer T cells by α-galactosylceramide ameliorates myocardial ischemia/reperfusion injury in mice. J. Mol. Cell. Cardiol., 2013, 62, 179-188.
[http://dx.doi.org/10.1016/j.yjmcc.2013.06.004] [PMID: 23774048]
[170]
Ruiz-Villalba, A.; Simón, A.M.; Pogontke, C.; Castillo, M.I.; Abizanda, G.; Pelacho, B.; Sánchez-Domínguez, R.; Segovia, J.C.; Prósper, F.; Pérez-Pomares, J.M. Interacting resident epicardium-derived fibroblasts and recruited bone marrow cells form myocardial infarction scar. J. Am. Coll. Cardiol., 2015, 65(19), 2057-2066.
[http://dx.doi.org/10.1016/j.jacc.2015.03.520] [PMID: 25975467]
[171]
Kanisicak, O.; Khalil, H.; Ivey, M.J.; Karch, J.; Maliken, B.D.; Correll, R.N.; Brody, M.J.; J Lin, S.C.; Aronow, B.J.; Tallquist, M.D.; Molkentin, J.D. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun., 2016, 7, 12260.
[http://dx.doi.org/10.1038/ncomms12260] [PMID: 27447449]
[172]
Frangogiannis, N.G. The role of transforming growth factor (TGF)-β in the infarcted myocardium. J. Thorac. Dis., 2017, 9(Suppl. 1), S52-S63.
[http://dx.doi.org/10.21037/jtd.2016.11.19] [PMID: 28446968]
[173]
Frangogiannis, N.G. The extracellular matrix in myocardial injury, repair, and remodeling. J. Clin. Invest., 2017, 127(5), 1600-1612.
[http://dx.doi.org/10.1172/JCI87491] [PMID: 28459429]
[174]
Arslan, F.; Smeets, M.B.; Riem Vis, P.W.; Karper, J.C.; Quax, P.H.; Bongartz, L.G.; Peters, J.H.; Hoefer, I.E.; Doevendans, P.A.; Pasterkamp, G.; de Kleijn, D.P. Lack of fibronectin-EDA promotes survival and prevents adverse remodeling and heart function deterioration after myocardial infarction. Circ. Res., 2011, 108(5), 582-592.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.224428] [PMID: 21350212]
[175]
Dobaczewski, M.; Bujak, M.; Li, N.; Gonzalez-Quesada, C.; Mendoza, L.H.; Wang, X.F.; Frangogiannis, N.G. Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ. Res., 2010, 107(3), 418-428.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.216101] [PMID: 20522804]
[176]
Cohn, J.N.; Colucci, W. Cardiovascular effects of aldosterone and post-acute myocardial infarction pathophysiology. Am. J. Cardiol., 2006, 97(10A), 4F-12F.
[http://dx.doi.org/10.1016/j.amjcard.2006.03.004] [PMID: 16698330]
[177]
Schnee, J.M.; Hsueh, W.A. Angiotensin II, adhesion, and cardiac fibrosis. Cardiovasc. Res., 2000, 46(2), 264-268.
[http://dx.doi.org/10.1016/S0008-6363(00)00044-4] [PMID: 10773230]
[178]
Willems, I.E.; Havenith, M.G.; De Mey, J.G.; Daemen, M.J. The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am. J. Pathol., 1994, 145(4), 868-875.
[PMID: 7943177]
[179]
Frangogiannis, N.G.; Michael, L.H.; Entman, M.L. Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb). Cardiovasc. Res., 2000, 48(1), 89-100.
[http://dx.doi.org/10.1016/S0008-6363(00)00158-9] [PMID: 11033111]
[180]
Cleutjens, J.P.; Verluyten, M.J.; Smiths, J.F.; Daemen, M.J. Collagen remodeling after myocardial infarction in the rat heart. Am. J. Pathol., 1995, 147(2), 325-338.
[PMID: 7639329]
[181]
Nakaya, M.; Watari, K.; Tajima, M.; Nakaya, T.; Matsuda, S.; Ohara, H.; Nishihara, H.; Yamaguchi, H.; Hashimoto, A.; Nishida, M.; Nagasaka, A.; Horii, Y.; Ono, H.; Iribe, G.; Inoue, R.; Tsuda, M.; Inoue, K.; Tanaka, A.; Kuroda, M.; Nagata, S.; Kurose, H. Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction. J. Clin. Invest., 2017, 127(1), 383-401.
[http://dx.doi.org/10.1172/JCI83822] [PMID: 27918308]
[182]
Abrial, M.; Da Silva, C.C.; Pillot, B.; Augeul, L.; Ivanes, F.; Teixeira, G.; Cartier, R.; Angoulvant, D.; Ovize, M.; Ferrera, R. Cardiac fibroblasts protect cardiomyocytes against lethal ischemia-reperfusion injury. J. Mol. Cell. Cardiol., 2014, 68, 56-65.
[http://dx.doi.org/10.1016/j.yjmcc.2014.01.005] [PMID: 24440456]
[183]
Anzai, A.; Choi, J.L.; He, S.; Fenn, A.M.; Nairz, M.; Rattik, S.; McAlpine, C.S.; Mindur, J.E.; Chan, C.T.; Iwamoto, Y.; Tricot, B.; Wojtkiewicz, G.R.; Weissleder, R.; Libby, P.; Nahrendorf, M.; Stone, J.R.; Becher, B.; Swirski, F.K. The infarcted myocardium solicits GM-CSF for the detrimental oversupply of inflammatory leukocytes. J. Exp. Med., 2017, 214(11), 3293-3310.
[http://dx.doi.org/10.1084/jem.20170689] [PMID: 28978634]
[184]
Dobaczewski, M.; Chen, W.; Frangogiannis, N.G. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J. Mol. Cell. Cardiol., 2011, 51(4), 600-606.
[http://dx.doi.org/10.1016/j.yjmcc.2010.10.033] [PMID: 21059352]
[185]
Ikeuchi, M.; Tsutsui, H.; Shiomi, T.; Matsusaka, H.; Matsushima, S.; Wen, J.; Kubota, T.; Takeshita, A. Inhibition of TGF-beta signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc. Res., 2004, 64(3), 526-535.
[http://dx.doi.org/10.1016/j.cardiores.2004.07.017] [PMID: 15537506]
[186]
Frangogiannis, N.G. Targeting the transforming growth factor (TGF)-β cascade in the remodeling heart: benefits and perils. J. Mol. Cell. Cardiol., 2014, 76, 169-171.
[http://dx.doi.org/10.1016/j.yjmcc.2014.09.001] [PMID: 25218305]
[187]
Bujak, M.; Ren, G.; Kweon, H.J.; Dobaczewski, M.; Reddy, A.; Taffet, G.; Wang, X.F.; Frangogiannis, N.G. Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation, 2007, 116(19), 2127-2138.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.704197] [PMID: 17967775]
[188]
Rainer, P.P.; Hao, S.; Vanhoutte, D.; Lee, D.I.; Koitabashi, N.; Molkentin, J.D.; Kass, D.A. Cardiomyocyte-specific transforming growth factor β suppression blocks neutrophil infiltration, augments multiple cytoprotective cascades, and reduces early mortality after myocardial infarction. Circ. Res., 2014, 114(8), 1246-1257.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302653] [PMID: 24573206]
[189]
Kong, P.; Shinde, A.V.; Su, Y.; Russo, I.; Chen, B.; Saxena, A.; Conway, S.J.; Graff, J.M.; Frangogiannis, N.G. Opposing Actions of Fibroblast and Cardiomyocyte Smad3 Signaling in the Infarcted Myocardium. Circulation, 2018, 137(7), 707-724.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.029622] [PMID: 29229611]
[190]
Molkentin, J.D.; Bugg, D.; Ghearing, N.; Dorn, L.E.; Kim, P.; Sargent, M.A.; Gunaje, J.; Otsu, K.; Davis, J. Fibroblast-Specific Genetic Manipulation of p38 Mitogen-Activated Protein Kinase in vivo Reveals Its Central Regulatory Role in Fibrosis. Circulation, 2017, 136(6), 549-561.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.026238] [PMID: 28356446]
[191]
Fingleton, B. Matrix metalloproteinases as regulators of inflammatory processes. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(11 Pt A), 2036-2042.
[http://dx.doi.org/10.1016/j.bbamcr.2017.05.010] [PMID: 28502592]
[192]
Ducharme, A.; Frantz, S.; Aikawa, M.; Rabkin, E.; Lindsey, M.; Rohde, L.E.; Schoen, F.J.; Kelly, R.A.; Werb, Z.; Libby, P.; Lee, R.T. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J. Clin. Invest., 2000, 106(1), 55-62.
[http://dx.doi.org/10.1172/JCI8768] [PMID: 10880048]
[193]
Matsumura, S.; Iwanaga, S.; Mochizuki, S.; Okamoto, H.; Ogawa, S.; Okada, Y. Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice. J. Clin. Invest., 2005, 115(3), 599-609.
[http://dx.doi.org/10.1172/JCI22304] [PMID: 15711638]
[194]
Villarreal, F.J.; Griffin, M.; Omens, J.; Dillmann, W.; Nguyen, J.; Covell, J. Early short-term treatment with doxycycline modulates postinfarction left ventricular remodeling. Circulation, 2003, 108(12), 1487-1492.
[http://dx.doi.org/10.1161/01.CIR.0000089090.05757.34] [PMID: 12952845]
[195]
Iyer, R.P.; de Castro Brás, L.E.; Patterson, N.L.; Bhowmick, M.; Flynn, E.R.; Asher, M.; Cannon, P.L.; Deleon-Pennell, K.Y.; Fields, G.B.; Lindsey, M.L. Early matrix metalloproteinase-9 inhibition post-myocardial infarction worsens cardiac dysfunction by delaying inflammation resolution. J. Mol. Cell. Cardiol., 2016, 100, 109-117.
[http://dx.doi.org/10.1016/j.yjmcc.2016.10.005] [PMID: 27746126]
[196]
Sager, H.B.; Hulsmans, M.; Lavine, K.J.; Moreira, M.B.; Heidt, T.; Courties, G.; Sun, Y.; Iwamoto, Y.; Tricot, B.; Khan, O.F.; Dahlman, J.E.; Borodovsky, A.; Fitzgerald, K.; Anderson, D.G.; Weissleder, R.; Libby, P.; Swirski, F.K.; Nahrendorf, M. Proliferation and Recruitment Contribute to Myocardial Macrophage Expansion in Chronic Heart Failure. Circ. Res., 2016, 119(7), 853-864.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309001] [PMID: 27444755]
[197]
Frangogiannis, N.G.; Ren, G.; Dewald, O.; Zymek, P.; Haudek, S.; Koerting, A.; Winkelmann, K.; Michael, L.H.; Lawler, J.; Entman, M.L. Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation, 2005, 111(22), 2935-2942.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.510354] [PMID: 15927970]
[198]
Ismahil, M.A.; Hamid, T.; Bansal, S.S.; Patel, B.; Kingery, J.R.; Prabhu, S.D. Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: critical importance of the cardiosplenic axis. Circ. Res., 2014, 114(2), 266-282.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301720] [PMID: 24186967]
[199]
Ono, K.; Matsumori, A.; Shioi, T.; Furukawa, Y.; Sasayama, S. Cytokine gene expression after myocardial infarction in rat hearts: possible implication in left ventricular remodeling. Circulation, 1998, 98(2), 149-156.
[http://dx.doi.org/10.1161/01.CIR.98.2.149] [PMID: 9679721]
[200]
Ørn, S.; Ueland, T.; Manhenke, C.; Sandanger, Ø.; Godang, K.; Yndestad, A.; Mollnes, T.E.; Dickstein, K.; Aukrust, P. Increased interleukin-1β levels are associated with left ventricular hypertrophy and remodelling following acute ST segment elevation myocardial infarction treated by primary percutaneous coronary intervention. J. Intern. Med., 2012, 272(3), 267-276.
[http://dx.doi.org/10.1111/j.1365-2796.2012.02517.x] [PMID: 22243053]
[201]
Dorn, G.W., II Novel pharmacotherapies to abrogate postinfarction ventricular remodeling. Nat. Rev. Cardiol., 2009, 6(4), 283-291.
[http://dx.doi.org/10.1038/nrcardio.2009.12] [PMID: 19352332]
[202]
Burchfield, J.S.; Xie, M.; Hill, J.A. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation, 2013, 128(4), 388-400.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.001878] [PMID: 23877061]
[203]
Leuschner, F.; Panizzi, P.; Chico-Calero, I.; Lee, W.W.; Ueno, T.; Cortez-Retamozo, V.; Waterman, P.; Gorbatov, R.; Marinelli, B.; Iwamoto, Y.; Chudnovskiy, A.; Figueiredo, J.L.; Sosnovik, D.E.; Pittet, M.J.; Swirski, F.K.; Weissleder, R.; Nahrendorf, M. Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ. Res., 2010, 107(11), 1364-1373.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.227454] [PMID: 20930148]
[204]
Kohno, T.; Anzai, T.; Naito, K.; Sugano, Y.; Maekawa, Y.; Takahashi, T.; Yoshikawa, T.; Ogawa, S. Angiotensin-receptor blockade reduces border zone myocardial monocyte chemoattractant protein-1 expression and macrophage infiltration in post-infarction ventricular remodeling. Circ. J., 2008, 72(10), 1685-1692.
[http://dx.doi.org/10.1253/circj.CJ-08-0115] [PMID: 18753699]
[205]
Fraccarollo, D.; Galuppo, P.; Schraut, S.; Kneitz, S.; van Rooijen, N.; Ertl, G.; Bauersachs, J. Immediate mineralocorticoid receptor blockade improves myocardial infarct healing by modulation of the inflammatory response. Hypertension, 2008, 51(4), 905-914.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.100941] [PMID: 18299485]
[206]
García-Prieto, J.; Villena-Gutiérrez, R.; Gómez, M.; Bernardo, E.; Pun-García, A.; García-Lunar, I.; Crainiciuc, G.; Fernández-Jiménez, R.; Sreeramkumar, V.; Bourio-Martínez, R.; García-Ruiz, J.M.; Del Valle, A.S.; Sanz-Rosa, D.; Pizarro, G.; Fernández-Ortiz, A.; Hidalgo, A.; Fuster, V.; Ibanez, B. Neutrophil stunning by metoprolol reduces infarct size. Nat. Commun., 2017, 8, 14780.
[http://dx.doi.org/10.1038/ncomms14780] [PMID: 28416795]
[207]
Zhang, J.; Cheng, X.; Liao, Y.H.; Lu, B.; Yang, Y.; Li, B.; Ge, H.; Wang, M.; Liu, Y.; Guo, Z.; Zhang, L. Simvastatin regulates myocardial cytokine expression and improves ventricular remodeling in rats after acute myocardial infarction. Cardiovasc. Drugs Ther., 2005, 19(1), 13-21.
[http://dx.doi.org/10.1007/s10557-005-6893-3] [PMID: 15883752]
[208]
Grisanti, L.A.; Traynham, C.J.; Repas, A.A.; Gao, E.; Koch, W.J.; Tilley, D.G. β2-Adrenergic receptor-dependent chemokine receptor 2 expression regulates leukocyte recruitment to the heart following acute injury. Proc. Natl. Acad. Sci. USA, 2016, 113(52), 15126-15131.
[http://dx.doi.org/10.1073/pnas.1611023114] [PMID: 27956622]
[209]
Cain, D.W.; Cidlowski, J.A. Immune regulation by glucocorticoids. Nat. Rev. Immunol., 2017, 17(4), 233-247.
[http://dx.doi.org/10.1038/nri.2017.1] [PMID: 28192415]
[210]
Liu, Y.; Cousin, J.M.; Hughes, J.; Van Damme, J.; Seckl, J.R.; Haslett, C.; Dransfield, I.; Savill, J.; Rossi, A.G. Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes. J. Immunol., 1999, 162(6), 3639-3646.
[PMID: 10092825]
[211]
Snyder, D.S.; Unanue, E.R. Corticosteroids inhibit murine macrophage Ia expression and interleukin 1 production. J. Immunol., 1982, 129(5), 1803-1805.
[PMID: 6811653]
[212]
Libby, P.; Maroko, P.R.; Bloor, C.M.; Sobel, B.E.; Braunwald, E. Reduction of experimental myocardial infarct size by corticosteroid administration. J. Clin. Invest., 1973, 52(3), 599-607.
[http://dx.doi.org/10.1172/JCI107221] [PMID: 4685084]
[213]
Spath, J.A., Jr; Lane, D.L.; Lefer, A.M. Protective action of methylprednisolone on the myocardium during experimental myocardial ischemia in the cat. Circ. Res., 1974, 35(1), 44-51.
[http://dx.doi.org/10.1161/01.RES.35.1.44] [PMID: 4841252]
[214]
Spath, J.A.; Lefer, A.M. Effects of dexamethasone on myocardial cells in the early phase of acute myocardial infarction. Am. Heart J., 1975, 90(1), 50-55.
[http://dx.doi.org/10.1016/0002-8703(75)90256-2] [PMID: 1136939]
[215]
Maclean, D.; Fishbein, M.C.; Braunwald, E.; Maroko, P.R. Long-term preservation of ischemic myocardium after experimental coronary artery occlusion. J. Clin. Invest., 1978, 61(3), 541-551.
[http://dx.doi.org/10.1172/JCI108965] [PMID: 641137]
[216]
Slutsky, R.A.; Murray, M. Computed tomographic analysis of the effects of hyperosmolar mannitol and methylprednisolone on myocardial infarct size. J. Am. Coll. Cardiol., 1985, 5(2 Pt 1), 273-279.
[http://dx.doi.org/10.1016/S0735-1097(85)80047-4] [PMID: 3155760]
[217]
Xu, B.; Strom, J.; Chen, Q.M. Dexamethasone induces transcriptional activation of Bcl-xL gene and inhibits cardiac injury by myocardial ischemia. Eur. J. Pharmacol., 2011, 668(1-2), 194-200.
[http://dx.doi.org/10.1016/j.ejphar.2011.06.019] [PMID: 21723861]
[218]
Van Kerckhoven, R.; van Veghel, R.; Saxena, P.R.; Schoemaker, R.G. Pharmacological therapy can increase capillary density in post-infarction remodeled rat hearts. Cardiovasc. Res., 2004, 61(3), 620-629.
[http://dx.doi.org/10.1016/j.cardiores.2003.09.026] [PMID: 14962492]
[219]
Kloner, R.A.; Fishbein, M.C.; Lew, H.; Maroko, P.R.; Braunwald, E. Mummification of the infarcted myocardium by high dose corticosteroids. Circulation, 1978, 57(1), 56-63.
[http://dx.doi.org/10.1161/01.CIR.57.1.56] [PMID: 618398]
[220]
Hammerman, H.; Kloner, R.A.; Hale, S.; Schoen, F.J.; Braunwald, E. Dose-dependent effects of short-term methylprednisolone on myocardial infarct extent, scar formation, and ventricular function. Circulation, 1983, 68(2), 446-452.
[http://dx.doi.org/10.1161/01.CIR.68.2.446] [PMID: 6861321]
[221]
Vivaldi, M.T.; Eyre, D.R.; Kloner, R.A.; Schoen, F.J. Effects of methylprednisolone on collagen biosynthesis in healing acute myocardial infarction. Am. J. Cardiol., 1987, 60(4), 424-425.
[http://dx.doi.org/10.1016/0002-9149(87)90277-3] [PMID: 3618516]
[222]
Shizukuda, Y.; Miura, T.; Ishimoto, R.; Itoya, M.; Iimura, O. Effect of prednisolone on myocardial infarct healing: characteristics and comparison with indomethacin. Can. J. Cardiol., 1991, 7(10), 447-454.
[PMID: 1768984]
[223]
Garcia, R.A.; Go, K.V.; Villarreal, F.J. Effects of timed administration of doxycycline or methylprednisolone on post-myocardial infarction inflammation and left ventricular remodeling in the rat heart. Mol. Cell. Biochem., 2007, 300(1-2), 159-169.
[http://dx.doi.org/10.1007/s11010-006-9379-0] [PMID: 17149544]
[224]
Sievers, J.; Johansson, B.W.; Nilsson, S.E. The Corticosteroid Treatment of Acute Myocardial Infarction. Cardiologia, 1964, 45, 65-76.
[http://dx.doi.org/10.1159/000168100] [PMID: 14167473]
[225]
Barzilai, D.; Plavnick, J.; Hazani, A.; Einath, R.; Kleinhaus, N.; Kanter, Y. Use of hydrocortisone in the treatment of acute myocardial infarction. Summary of a clinical trial in 446 patients. Chest, 1972, 61(5), 488-491.
[http://dx.doi.org/10.1378/chest.61.5.488] [PMID: 5046847]
[226]
Morrison, J.; Maley, T.; Reduto, L.; Victa, C.; Pyros, I.; Brandon, J.; Gulotta, S. Effect of methylprednisolone on predicted myocardial infarction size in man. Crit. Care Med., 1975, 3(3), 94-102.
[http://dx.doi.org/10.1097/00003246-197505000-00003] [PMID: 1181102]
[227]
Morrison, J.; Reduto, L.; Pizzarello, R.; Geller, K.; Maley, T.; Gulotta, S. Modification of myocardial injury in man by corticosteroid administration. Circulation, 1976, 53(3)(Suppl.), I200-I204.
[PMID: 1253360]
[228]
Madias, J.E.; Hood, W.B., Jr Effects of methylprednisolone on the ischemic damage in patients with acute myocardial infarction. Circulation, 1982, 65(6), 1106-1113.
[http://dx.doi.org/10.1161/01.CIR.65.6.1106] [PMID: 7042110]
[229]
The Solu-Medrol Sterile Powder AMI Studies Group. Methylprednisolone as an intervention following myocardial infarction. J. Int. Med. Res., 1986, 14(Suppl. 1), 1-10.
[http://dx.doi.org/10.1177/03000605860140S101] [PMID: 2875003]
[230]
Giugliano, G.R.; Giugliano, R.P.; Gibson, C.M.; Kuntz, R.E. Meta-analysis of corticosteroid treatment in acute myocardial infarction. Am. J. Cardiol., 2003, 91(9), 1055-1059.
[http://dx.doi.org/10.1016/S0002-9149(03)00148-6] [PMID: 12714146]
[231]
Roberts, R.; DeMello, V.; Sobel, B.E. Deleterious effects of methylprednisolone in patients with myocardial infarction. Circulation, 1976, 53(3)(Suppl.), I204-I206.
[PMID: 1253361]
[232]
Dellborg, M.; Held, P.; Swedberg, K.; Vedin, A. Rupture of the myocardium. Occurrence and risk factors. Br. Heart J., 1985, 54(1), 11-16.
[http://dx.doi.org/10.1136/hrt.54.1.11] [PMID: 4015910]
[233]
Silverman, H.S.; Pfeifer, M.P. Relation between use of anti-inflammatory agents and left ventricular free wall rupture during acute myocardial infarction. Am. J. Cardiol., 1987, 59(4), 363-364.
[http://dx.doi.org/10.1016/0002-9149(87)90817-4] [PMID: 3812291]
[234]
White, C.I.; Jansen, M.A.; McGregor, K.; Mylonas, K.J.; Richardson, R.V.; Thomson, A.; Moran, C.M.; Seckl, J.R.; Walker, B.R.; Chapman, K.E.; Gray, G.A. Cardiomyocyte and Vascular Smooth Muscle-Independent 11β-Hydroxysteroid Dehydrogenase 1 Amplifies Infarct Expansion, Hypertrophy, and the Development of Heart Failure After Myocardial Infarction in Male Mice. Endocrinology, 2016, 157(1), 346-357.
[http://dx.doi.org/10.1210/en.2015-1630] [PMID: 26465199]
[235]
Gray, G.A.; White, C.I.; Castellan, R.F.; McSweeney, S.J.; Chapman, K.E. Getting to the heart of intracellular glucocorticoid regeneration: 11β-HSD1 in the myocardium. J. Mol. Endocrinol., 2017, 58(1), R1-R13.
[http://dx.doi.org/10.1530/JME-16-0128] [PMID: 27553202]
[236]
Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Lancet, 1988, 2(8607), 349-360.
[PMID: 2899772]
[237]
Vonkeman, H.E.; van de Laar, M.A. Nonsteroidal anti-inflammatory drugs: adverse effects and their prevention. Semin. Arthritis Rheum., 2010, 39(4), 294-312.
[http://dx.doi.org/10.1016/j.semarthrit.2008.08.001] [PMID: 18823646]
[238]
Lefer, A.M.; Polansky, E.W. Beneficial effects of ibuprofen in acute myocardial ischemia. Cardiology, 1979, 64(5), 265-279.
[http://dx.doi.org/10.1159/000170624] [PMID: 476733]
[239]
Kirlin, P.C.; Romson, J.L.; Pitt, B.; Abrams, G.D.; Schork, M.A.; Lucchesi, B.R. Ibuprofen-mediated infarct size reduction: effects on regional myocardial function in canine myocardial infarction in canine myocardial infarction. Am. J. Cardiol., 1982, 50(4), 849-856.
[http://dx.doi.org/10.1016/0002-9149(82)91244-9] [PMID: 7124645]
[240]
Kalkman, E.A.; van Suylen, R.J.; van Dijk, J.P.; Saxena, P.R.; Schoemaker, R.G. Chronic aspirin treatment affects collagen deposition in non-infarcted myocardium during remodeling after coronary artery ligation in the rat. J. Mol. Cell. Cardiol., 1995, 27(11), 2483-2494.
[http://dx.doi.org/10.1006/jmcc.1995.0236] [PMID: 8596199]
[241]
LaPointe, M.C.; Mendez, M.; Leung, A.; Tao, Z.; Yang, X.P. Inhibition of cyclooxygenase-2 improves cardiac function after myocardial infarction in the mouse. Am. J. Physiol. Heart Circ. Physiol., 2004, 286(4), H1416-H1424.
[http://dx.doi.org/10.1152/ajpheart.00136.2003] [PMID: 14670812]
[242]
Abbate, A.; Limana, F.; Capogrossi, M.C.; Santini, D.; Biondi- Zoccai, G.G.; Scarpa, S.; Germani, A.; Straino, S.; Severino, A.; Vasaturo, F.; Campioni, M.; Liuzzo, G.; Crea, F.; Vetrovec, G.W.; Biasucci, L.M.; Baldi, A. Cyclo-oxygenase-2 (COX-2) inhibition reduces apoptosis in acute myocardial infarction. Apoptosis, 2006, 11(6), 1061-1063.
[http://dx.doi.org/10.1007/s10495-006-6306-5] [PMID: 16544098]
[243]
Straino, S.; Salloum, F.N.; Baldi, A.; Ockaili, R.A.; Piro, M.; Das, A.; Qureshi, I.Z.; Biasucci, L.M.; Capogrossi, M.C.; Biondi-Zoccai, G.G.; Severino, A.; Mellone, P.; Crea, F.; Vetrovec, G.W.; Kukreja, R.C.; Abbate, A. Protective effects of parecoxib, a cyclo-oxygenase-2 inhibitor, in postinfarction remodeling in the rat. J. Cardiovasc. Pharmacol., 2007, 50(5), 571-577.
[http://dx.doi.org/10.1097/FJC.0b013e31814b91cb] [PMID: 18030068]
[244]
Brown, E.J., Jr; Kloner, R.A.; Schoen, F.J.; Hammerman, H.; Hale, S.; Braunwald, E. Scar thinning due to ibuprofen administration after experimental myocardial infarction. Am. J. Cardiol., 1983, 51(5), 877-883.
[http://dx.doi.org/10.1016/S0002-9149(83)80148-9] [PMID: 6829446]
[245]
Hammerman, H.; Kloner, R.A.; Schoen, F.J.; Brown, E.J., Jr; Hale, S.; Braunwald, E. Indomethacin-induced scar thinning after experimental myocardial infarction. Circulation, 1983, 67(6), 1290-1295.
[http://dx.doi.org/10.1161/01.CIR.67.6.1290] [PMID: 6851023]
[246]
Hammerman, H.; Alker, K.J.; Schoen, F.J.; Kloner, R.A. Morphologic and functional effects of piroxicam on myocardial scar formation after coronary occlusion in dogs. Am. J. Cardiol., 1984, 53(4), 604-607.
[http://dx.doi.org/10.1016/0002-9149(84)90038-9] [PMID: 6695791]
[247]
Timmers, L.; Sluijter, J.P.; Verlaan, C.W.; Steendijk, P.; Cramer, M.J.; Emons, M.; Strijder, C.; Gründeman, P.F.; Sze, S.K.; Hua, L.; Piek, J.J.; Borst, C.; Pasterkamp, G.; de Kleijn, D.P. Cyclooxygenase-2 inhibition increases mortality, enhances left ventricular remodeling, and impairs systolic function after myocardial infarction in the pig. Circulation, 2007, 115(3), 326-332.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.647230] [PMID: 17210840]
[248]
Camitta, M.G.; Gabel, S.A.; Chulada, P.; Bradbury, J.A.; Langenbach, R.; Zeldin, D.C.; Murphy, E. Cyclooxygenase-1 and -2 knockout mice demonstrate increased cardiac ischemia/reperfusion injury but are protected by acute preconditioning. Circulation, 2001, 104(20), 2453-2458.
[http://dx.doi.org/10.1161/hc4401.098429] [PMID: 11705824]
[249]
Bolli, R.; Shinmura, K.; Tang, X.L.; Kodani, E.; Xuan, Y.T.; Guo, Y.; Dawn, B. Discovery of a new function of cyclooxygenase (COX)-2: COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning. Cardiovasc. Res., 2002, 55(3), 506-519.
[http://dx.doi.org/10.1016/S0008-6363(02)00414-5] [PMID: 12160947]
[250]
Gislason, G.H.; Jacobsen, S.; Rasmussen, J.N.; Rasmussen, S.; Buch, P.; Friberg, J.; Schramm, T.K.; Abildstrom, S.Z.; Køber, L.; Madsen, M.; Torp-Pedersen, C. Risk of death or reinfarction associated with the use of selective cyclooxygenase-2 inhibitors and nonselective nonsteroidal antiinflammatory drugs after acute myocardial infarction. Circulation, 2006, 113(25), 2906-2913.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.616219] [PMID: 16785336]
[251]
Brophy, J.M.; Lévesque, L.E.; Zhang, B. The coronary risk of cyclo-oxygenase-2 inhibitors in patients with a previous myocardial infarction. Heart, 2007, 93(2), 189-194.
[http://dx.doi.org/10.1136/hrt.2006.089367] [PMID: 16849374]
[252]
Boulakh, L.; Gislason, G.H. Treatment with non-steroidal anti-inflammatory drugs in patients after myocardial infarction - a systematic review. Expert Opin. Pharmacother., 2016, 17(10), 1387-1394.
[http://dx.doi.org/10.1080/14656566.2016.1186648] [PMID: 27148768]
[253]
Schmidt, M.; Lamberts, M.; Olsen, A.M.; Fosbøll, E.; Niessner, A.; Tamargo, J.; Rosano, G.; Agewall, S.; Kaski, J.C.; Kjeldsen, K.; Lewis, B.S.; Torp-Pedersen, C. Cardiovascular safety of non-aspirin non-steroidal anti-inflammatory drugs: review and position paper by the working group for Cardiovascular Pharmacotherapy of the European Society of Cardiology. Eur. Heart J., 2016, 37(13), 1015-1023.
[http://dx.doi.org/10.1093/eurheartj/ehv505] [PMID: 26984863]
[254]
Zhu, J.; Qiu, Y.; Wang, Q.; Zhu, Y.; Hu, S.; Zheng, L.; Wang, L.; Zhang, Y. Low dose cyclophosphamide rescues myocardial function from ischemia-reperfusion in rats. Eur. J. Cardiothorac. Surg., 2008, 34(3), 661-666.
[http://dx.doi.org/10.1016/j.ejcts.2008.05.035] [PMID: 18583145]
[255]
Asanuma, H.; Sanada, S.; Ogai, A.; Minamino, T.; Takashima, S.; Asakura, M.; Ogita, H.; Shinozaki, Y.; Mori, H.; Node, K.; Tomoike, H.; Hori, M.; Kitakaze, M. Methotrexate and MX-68, a new derivative of methotrexate, limit infarct size via adenosine-dependent mechanisms in canine hearts. J. Cardiovasc. Pharmacol., 2004, 43(4), 574-579.
[http://dx.doi.org/10.1097/00005344-200404000-00013] [PMID: 15085069]
[256]
Maranhão, R.C.; Guido, M.C.; de Lima, A.D.; Tavares, E.R.; Marques, A.F.; Tavares de Melo, M.D.; Nicolau, J.C.; Salemi, V.M.; Kalil-Filho, R. Methotrexate carried in lipid core nanoparticles reduces myocardial infarction size and improves cardiac function in rats. Int. J. Nanomedicine, 2017, 12, 3767-3784.
[http://dx.doi.org/10.2147/IJN.S129324] [PMID: 28553113]
[257]
Moreira, D.M.; Lueneberg, M.E.; da Silva, R.L.; Fattah, T.; Gottschall, C.A.M.; Methotrexa, T.E. MethotrexaTE THerapy in ST-Segment Elevation MYocardial InfarctionS: A Randomized Double-Blind, Placebo-Controlled Trial (TETHYS Trial). J. Cardiovasc. Pharmacol. Ther., 2017, 22(6), 538-545.
[http://dx.doi.org/10.1177/1074248417699884] [PMID: 28325070]
[258]
Ridker, P.M.; Everett, B.M.; Pradhan, A.; MacFadyen, J.G.; Solomon, D.H.; Zaharris, E.; Mam, V.; Hasan, A.; Rosenberg, Y.; Iturriaga, E.; Gupta, M.; Tsigoulis, M.; Verma, S.; Clearfield, M.; Libby, P.; Goldhaber, S.Z.; Seagle, R.; Ofori, C.; Saklayen, M.; Butman, S.; Singh, N.; Le May, M.; Bertrand, O.; Johnston, J.; Paynter, N.P.; Glynn, R.J.; Investigators, C. CIRT Investigators. Low- Dose Methotrexate for the Prevention of Atherosclerotic Events. N. Engl. J. Med., 2019, 380(8), 752-762.
[http://dx.doi.org/10.1056/NEJMoa1809798] [PMID: 30415610]
[259]
Squadrito, F.; Altavilla, D.; Squadrito, G.; Saitta, A.; Campo, G.M.; Arlotta, M.; Quartarone, C.; Ferlito, M.; Caputi, A.P. Cyclosporin-A reduces leukocyte accumulation and protects against myocardial ischaemia reperfusion injury in rats. Eur. J. Pharmacol., 1999, 364(2-3), 159-168.
[http://dx.doi.org/10.1016/S0014-2999(98)00823-1] [PMID: 9932719]
[260]
Piot, C.; Croisille, P.; Staat, P.; Thibault, H.; Rioufol, G.; Mewton, N.; Elbelghiti, R.; Cung, T.T.; Bonnefoy, E.; Angoulvant, D.; Macia, C.; Raczka, F.; Sportouch, C.; Gahide, G.; Finet, G.; André- Fouët, X.; Revel, D.; Kirkorian, G.; Monassier, J.P.; Derumeaux, G.; Ovize, M. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N. Engl. J. Med., 2008, 359(5), 473-481.
[http://dx.doi.org/10.1056/NEJMoa071142] [PMID: 18669426]
[261]
Cung, T.T.; Morel, O.; Cayla, G.; Rioufol, G.; Garcia-Dorado, D.; Angoulvant, D.; Bonnefoy-Cudraz, E.; Guérin, P.; Elbaz, M.; Delarche, N.; Coste, P.; Vanzetto, G.; Metge, M.; Aupetit, J.F.; Jouve, B.; Motreff, P.; Tron, C.; Labeque, J.N.; Steg, P.G.; Cottin, Y.; Range, G.; Clerc, J.; Claeys, M.J.; Coussement, P.; Prunier, F.; Moulin, F.; Roth, O.; Belle, L.; Dubois, P.; Barragan, P.; Gilard, M.; Piot, C.; Colin, P.; De Poli, F.; Morice, M.C.; Ider, O.; Dubois-Randé, J.L.; Unterseeh, T.; Le Breton, H.; Béard, T.; Blanchard, D.; Grollier, G.; Malquarti, V.; Staat, P.; Sudre, A.; Elmer, E.; Hansson, M.J.; Bergerot, C.; Boussaha, I.; Jossan, C.; Derumeaux, G.; Mewton, N.; Ovize, M. Cyclosporine before PCI in Patients with Acute Myocardial Infarction. N. Engl. J. Med., 2015, 373(11), 1021-1031.
[http://dx.doi.org/10.1056/NEJMoa1505489] [PMID: 26321103]
[262]
Spartalis, M.; Spartalis, E.; Tzatzaki, E.; Tsilimigras, D.I.; Moris, D.; Kontogiannis, C.; Kaminiotis, V.V.; Paschou, S.A.; Chatzidou, S.; Siasos, G.; Voudris, V.; Iliopoulos, D.C. The Beneficial Therapy with Colchicine for Atherosclerosis via Anti-inflammation and Decrease in Hypertriglyceridemia. Cardiovasc. Hematol. Agents Med. Chem., 2018, 16(2), 74-80.
[http://dx.doi.org/10.2174/1871525717666181211110332] [PMID: 30526472]
[263]
Akodad, M.; Sicard, P.; Fauconnier, J.; Roubille, F. Colchicine and myocardial infarction: A review. Arch. Cardiovasc. Dis., 2020, 113(10), 652-659.
[http://dx.doi.org/10.1016/j.acvd.2020.04.007] [PMID: 32712201]
[264]
Deftereos, S.; Giannopoulos, G.; Angelidis, C.; Alexopoulos, N.; Filippatos, G.; Papoutsidakis, N.; Sianos, G.; Goudevenos, J.; Alexopoulos, D.; Pyrgakis, V.; Cleman, M.W.; Manolis, A.S.; Tousoulis, D.; Lekakis, J. Anti-Inflammatory Treatment With Colchicine in Acute Myocardial Infarction: A Pilot Study. Circulation, 2015, 132(15), 1395-1403.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.017611] [PMID: 26265659]
[265]
Akodad, M.; Lattuca, B.; Nagot, N.; Georgescu, V.; Buisson, M.; Cristol, J.P.; Leclercq, F.; Macia, J.C.; Gervasoni, R.; Cung, T.T.; Cade, S.; Cransac, F.; Labour, J.; Dupuy, A.M.; Roubille, F. COLIN trial: Value of colchicine in the treatment of patients with acute myocardial infarction and inflammatory response. Arch. Cardiovasc. Dis., 2017, 110(6-7), 395-402.
[PMID: 28065445]
[266]
Nidorf, S.M.; Eikelboom, J.W.; Budgeon, C.A.; Thompson, P.L. Low-dose colchicine for secondary prevention of cardiovascular disease. J. Am. Coll. Cardiol., 2013, 61(4), 404-410.
[PMID: 23265346]
[267]
Tardif, J.C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; Berry, C.; López-Sendón, J.; Ostadal, P.; Koenig, W.; Angoulvant, D.; Grégoire, J.C.; Lavoie, M.A.; Dubé, M.P.; Rhainds, D.; Provencher, M.; Blondeau, L.; Orfanos, A.; L’Allier, P.L.; Guertin, M.C.; Roubille, F. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N. Engl. J. Med., 2019, 381(26), 2497-2505.
[http://dx.doi.org/10.1056/NEJMoa1912388] [PMID: 31733140]
[268]
Nidorf, S.M.; Fiolet, A.T.L.; Mosterd, A.; Eikelboom, J.W.; Schut, A.; Opstal, T.S.J.; The, S.H.K.; Xu, X.F.; Ireland, M.A.; Lenderink, T.; Latchem, D.; Hoogslag, P.; Jerzewski, A.; Nierop, P.; Whelan, A.; Hendriks, R.; Swart, H.; Schaap, J.; Kuijper, A.F.M.; van Hessen, M.W.J.; Saklani, P.; Tan, I.; Thompson, A.G.; Morton, A.; Judkins, C.; Bax, W.A.; Dirksen, M.; Alings, M.; Hankey, G.J.; Budgeon, C.A.; Tijssen, J.G.P.; Cornel, J.H.; Thompson, P.L. LoDoCo2 Trial, I., Colchicine in Patients with Chronic Coronary Disease. N. Engl. J. Med., 2020.
[http://dx.doi.org/10.1056/NEJMoa2021372]
[269]
Gullestad, L.; Orn, S.; Dickstein, K.; Eek, C.; Edvardsen, T.; Aakhus, S.; Askevold, E.T.; Michelsen, A.; Bendz, B.; Skårdal, R.; Smith, H.J.; Yndestad, A.; Ueland, T.; Aukrust, P. Intravenous immunoglobulin does not reduce left ventricular remodeling in patients with myocardial dysfunction during hospitalization after acute myocardial infarction. Int. J. Cardiol., 2013, 168(1), 212-218.
[http://dx.doi.org/10.1016/j.ijcard.2012.09.092] [PMID: 23046599]
[270]
Gilutz, H.; Siegel, Y.; Paran, E.; Cristal, N.; Quastel, M.R. Alpha 1-antitrypsin in acute myocardial infarction. Br. Heart J., 1983, 49(1), 26-29.
[http://dx.doi.org/10.1136/hrt.49.1.26] [PMID: 6600394]
[271]
Toldo, S.; Seropian, I.M.; Mezzaroma, E.; Van Tassell, B.W.; Salloum, F.N.; Lewis, E.C.; Voelkel, N.; Dinarello, C.A.; Abbate, A. Alpha-1 antitrypsin inhibits caspase-1 and protects from acute myocardial ischemia-reperfusion injury. J. Mol. Cell. Cardiol., 2011, 51(2), 244-251.
[http://dx.doi.org/10.1016/j.yjmcc.2011.05.003] [PMID: 21600901]
[272]
Abbate, A.; Van Tassell, B.W.; Christopher, S.; Abouzaki, N.A.; Sonnino, C.; Oddi, C.; Carbone, S.; Melchior, R.D.; Gambill, M.L.; Roberts, C.S.; Kontos, M.C.; Peberdy, M.A.; Toldo, S.; Vetrovec, G.W.; Biondi-Zoccai, G.; Dinarello, C.A. Effects of Prolastin C (Plasma-Derived Alpha-1 Antitrypsin) on the acute inflammatory response in patients with ST-segment elevation myocardial infarction (from the VCU-alpha 1-RT pilot study). Am. J. Cardiol., 2015, 115(1), 8-12.
[http://dx.doi.org/10.1016/j.amjcard.2014.09.043] [PMID: 25456867]
[273]
Mahaffey, K.W.; Granger, C.B.; Nicolau, J.C.; Ruzyllo, W.; Weaver, W.D.; Theroux, P.; Hochman, J.S.; Filloon, T.G.; Mojcik, C.F.; Todaro, T.G.; Armstrong, P.W.; Investigators, C. COMPLY Investigators. Effect of pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to fibrinolysis in acute myocardial infarction: the COMPlement inhibition in myocardial infarction treated with thromboLYtics (COMPLY) trial. Circulation, 2003, 108(10), 1176-1183.
[http://dx.doi.org/10.1161/01.CIR.0000087404.53661.F8] [PMID: 12925455]
[274]
Granger, C.B.; Mahaffey, K.W.; Weaver, W.D.; Theroux, P.; Hochman, J.S.; Filloon, T.G.; Rollins, S.; Todaro, T.G.; Nicolau, J.C.; Ruzyllo, W.; Armstrong, P.W.; Investigators, C. COMMA Investigators. Pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to primary percutaneous coronary intervention in acute myocardial infarction: the COMplement inhibition in Myocardial infarction treated with Angioplasty (COMMA) trial. Circulation, 2003, 108(10), 1184-1190.
[http://dx.doi.org/10.1161/01.CIR.0000087447.12918.85] [PMID: 12925454]
[275]
Verrier, E.D.; Shernan, S.K.; Taylor, K.M.; Van de Werf, F.; Newman, M.F.; Chen, J.C.; Carrier, M.; Haverich, A.; Malloy, K.J.; Adams, P.X.; Todaro, T.G.; Mojcik, C.F.; Rollins, S.A.; Levy, J.H. PRIMO-CABG Investigators. Terminal complement blockade with pexelizumab during coronary artery bypass graft surgery requiring cardiopulmonary bypass: a randomized trial. JAMA, 2004, 291(19), 2319-2327.
[http://dx.doi.org/10.1001/jama.291.19.2319] [PMID: 15150203]
[276]
Armstrong, P.W.; Granger, C.B.; Adams, P.X.; Hamm, C.; Holmes, D., Jr; O’Neill, W.W.; Todaro, T.G.; Vahanian, A.; Van de Werf, F. APEX AMI Investigators. Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: a randomized controlled trial. JAMA, 2007, 297(1), 43-51.
[http://dx.doi.org/10.1001/jama.297.1.43] [PMID: 17200474]
[277]
de Zwaan, C.; Kleine, A.H.; Diris, J.H.; Glatz, J.F.; Wellens, H.J.; Strengers, P.F.; Tissing, M.; Hack, C.E.; van Dieijen-Visser, M.P.; Hermens, W.T. Continuous 48-h C1-inhibitor treatment, following reperfusion therapy, in patients with acute myocardial infarction. Eur. Heart J., 2002, 23(21), 1670-1677.
[http://dx.doi.org/10.1053/euhj.2002.3191] [PMID: 12398824]
[278]
Thielmann, M.; Marggraf, G.; Neuhäuser, M.; Forkel, J.; Herold, U.; Kamler, M.; Massoudy, P.; Jakob, H. Administration of C1-esterase inhibitor during emergency coronary artery bypass surgery in acute ST-elevation myocardial infarction. Eur. J. Cardiothorac. Surg., 2006, 30(2), 285-293.
[http://dx.doi.org/10.1016/j.ejcts.2006.04.022] [PMID: 16829095]
[279]
Fattouch, K.; Bianco, G.; Speziale, G.; Sampognaro, R.; Lavalle, C.; Guccione, F.; Dioguardi, P.; Ruvolo, G. Beneficial effects of C1 esterase inhibitor in ST-elevation myocardial infarction in patients who underwent surgical reperfusion: a randomised double-blind study. Eur. J. Cardiothorac. Surg., 2007, 32(2), 326-332.
[http://dx.doi.org/10.1016/j.ejcts.2007.04.038] [PMID: 17576071]
[280]
Rusnak, J.M.; Kopecky, S.L.; Clements, I.P.; Gibbons, R.J.; Holland, A.E.; Peterman, H.S.; Martin, J.S.; Saoud, J.B.; Feldman, R.L.; Breisblatt, W.M.; Simons, M.; Gessler, C.J., Jr; Yu, A.S. An anti-CD11/CD18 monoclonal antibody in patients with acute myocardial infarction having percutaneous transluminal coronary angioplasty (the FESTIVAL study). Am. J. Cardiol., 2001, 88(5), 482-487.
[http://dx.doi.org/10.1016/S0002-9149(01)01723-4] [PMID: 11524054]
[281]
Baran, K.W.; Nguyen, M.; McKendall, G.R.; Lambrew, C.T.; Dykstra, G.; Palmeri, S.T.; Gibbons, R.J.; Borzak, S.; Sobel, B.E.; Gourlay, S.G.; Rundle, A.C.; Gibson, C.M.; Barron, H.V. Limitation of Myocardial Infarction Following Thrombolysis in Acute Myocardial Infarction (LIMIT AMI) Study Group. Double-blind, randomized trial of an anti-CD18 antibody in conjunction with recombinant tissue plasminogen activator for acute myocardial infarction: limitation of myocardial infarction following thrombolysis in acute myocardial infarction (LIMIT AMI) study. Circulation, 2001, 104(23), 2778-2783.
[http://dx.doi.org/10.1161/hc4801.100236] [PMID: 11733394]
[282]
Faxon, D.P.; Gibbons, R.J.; Chronos, N.A.; Gurbel, P.A.; Sheehan, F. HALT-MI Investigators. The effect of blockade of the CD11/CD18 integrin receptor on infarct size in patients with acute myocardial infarction treated with direct angioplasty: the results of the HALT-MI study. J. Am. Coll. Cardiol., 2002, 40(7), 1199-1204.
[http://dx.doi.org/10.1016/S0735-1097(02)02136-8] [PMID: 12383565]
[283]
Hayashi, S.; Watanabe, N.; Nakazawa, K.; Suzuki, J.; Tsushima, K.; Tamatani, T.; Sakamoto, S.; Isobe, M. Roles of P-selectin in inflammation, neointimal formation, and vascular remodeling in balloon-injured rat carotid arteries. Circulation, 2000, 102(14), 1710-1717.
[http://dx.doi.org/10.1161/01.CIR.102.14.1710] [PMID: 11015352]
[284]
Wang, K.; Zhou, Z.; Zhou, X.; Tarakji, K.; Topol, E.J.; Lincoff, A.M. Prevention of intimal hyperplasia with recombinant soluble P-selectin glycoprotein ligand-immunoglobulin in the porcine coronary artery balloon injury model. J. Am. Coll. Cardiol., 2001, 38(2), 577-582.
[http://dx.doi.org/10.1016/S0735-1097(01)01347-X] [PMID: 11499755]
[285]
Phillips, J.W.; Barringhaus, K.G.; Sanders, J.M.; Hesselbacher, S.E.; Czarnik, A.C.; Manka, D.; Vestweber, D.; Ley, K.; Sarembock, I.J. Single injection of P-selectin or P-selectin glycoprotein ligand-1 monoclonal antibody blocks neointima formation after arterial injury in apolipoprotein E-deficient mice. Circulation, 2003, 107(17), 2244-2249.
[http://dx.doi.org/10.1161/01.CIR.0000065604.56839.18] [PMID: 12707243]
[286]
Tardif, J.C.; Tanguay, J.F.; Wright, S.R.; Duchatelle, V.; Petroni, T.; Grégoire, J.C.; Ibrahim, R.; Heinonen, T.M.; Robb, S.; Bertrand, O.F.; Cournoyer, D.; Johnson, D.; Mann, J.; Guertin, M.C.; L’Allier, P.L. Effects of the P-selectin antagonist inclacumab on myocardial damage after percutaneous coronary intervention for non-ST-segment elevation myocardial infarction: results of the SELECT-ACS trial. J. Am. Coll. Cardiol., 2013, 61(20), 2048-2055.
[http://dx.doi.org/10.1016/j.jacc.2013.03.003] [PMID: 23500230]
[287]
Abbate, A.; Kontos, M. C.; Grizzard, J. D.; Biondi-Zoccai, G. G.; Van Tassell, B. W.; Robati, R.; Roach, L. M.; Arena, R. A.; Roberts, C. S.; Varma, A.; Gelwix, C. C.; Salloum, F. N.; Hastillo, A.; Dinarello, C. A.; Vetrovec, G. W. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot study). Am J Cardiol, 2010, 105(10), 1371-1377.
[288]
Abbate, A.; Van Tassell, B.W.; Biondi-Zoccai, G.; Kontos, M.C.; Grizzard, J.D.; Spillman, D.W.; Oddi, C.; Roberts, C.S.; Melchior, R.D.; Mueller, G.H.; Abouzaki, N.A.; Rengel, L.R.; Varma, A.; Gambill, M.L.; Falcao, R.A.; Voelkel, N.F.; Dinarello, C.A.; Vetrovec, G.W. Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth University-Anakinra Remodeling Trial (2) (VCU-ART2) pilot study]. Am. J. Cardiol., 2013, 111(10), 1394-1400. [from the Virginia Commonwealth University-Anakinra Remodeling Trial (2) (VCU-ART2) pilot study].
[http://dx.doi.org/10.1016/j.amjcard.2013.01.287] [PMID: 23453459]
[289]
Abbate, A.; Kontos, M.C.; Abouzaki, N.A.; Melchior, R.D.; Thomas, C.; Van Tassell, B.W.; Oddi, C.; Carbone, S.; Trankle, C.R.; Roberts, C.S.; Mueller, G.H.; Gambill, M.L.; Christopher, S.; Markley, R.; Vetrovec, G.W.; Dinarello, C.A.; Biondi-Zoccai, G. Comparative safety of interleukin-1 blockade with anakinra in patients with ST-segment elevation acute myocardial infarction (from the VCU-ART and VCU-ART2 pilot studies). Am. J. Cardiol., 2015, 115(3), 288-292.
[http://dx.doi.org/10.1016/j.amjcard.2014.11.003] [PMID: 25482680]
[290]
Abbate, A.; Trankle, C.R.; Buckley, L.F.; Lipinski, M.J.; Appleton, D.; Kadariya, D.; Canada, J.M.; Carbone, S.; Roberts, C.S.; Abouzaki, N.; Melchior, R.; Christopher, S.; Turlington, J.; Mueller, G.; Garnett, J.; Thomas, C.; Markley, R.; Wohlford, G.F.; Puckett, L.; Medina de Chazal, H.; Chiabrando, J.G.; Bressi, E.; Del Buono, M.G.; Schatz, A.; Vo, C.; Dixon, D.L.; Biondi-Zoccai, G.G.; Kontos, M.C.; Van Tassell, B.W. Interleukin-1 Blockade Inhibits the Acute Inflammatory Response in Patients With ST-Segment-Elevation Myocardial Infarction. J. Am. Heart Assoc., 2020, 9(5), e014941.
[http://dx.doi.org/10.1161/JAHA.119.014941] [PMID: 32122219]
[291]
Morton, A.C.; Rothman, A.M.; Greenwood, J.P.; Gunn, J.; Chase, A.; Clarke, B.; Hall, A.S.; Fox, K.; Foley, C.; Banya, W.; Wang, D.; Flather, M.D.; Crossman, D.C. The effect of interleukin-1 receptor antagonist therapy on markers of inflammation in non-ST elevation acute coronary syndromes: the MRC-ILA Heart Study. Eur. Heart J., 2015, 36(6), 377-384.
[http://dx.doi.org/10.1093/eurheartj/ehu272] [PMID: 25079365]
[292]
Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; Kastelein, J.J.P.; Cornel, J.H.; Pais, P.; Pella, D.; Genest, J.; Cifkova, R.; Lorenzatti, A.; Forster, T.; Kobalava, Z.; Vida-Simiti, L.; Flather, M.; Shimokawa, H.; Ogawa, H.; Dellborg, M.; Rossi, P.R.F.; Troquay, R.P.T.; Libby, P.; Glynn, R.J.; Group, C.T. CANTOS Trial Group. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med., 2017, 377(12), 1119-1131.
[http://dx.doi.org/10.1056/NEJMoa1707914] [PMID: 28845751]
[293]
Kleveland, O.; Kunszt, G.; Bratlie, M.; Ueland, T.; Broch, K.; Holte, E.; Michelsen, A.E.; Bendz, B.; Amundsen, B.H.; Espevik, T.; Aakhus, S.; Damås, J.K.; Aukrust, P.; Wiseth, R.; Gullestad, L. Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: a double-blind, randomized, placebo-controlled phase 2 trial. Eur. Heart J., 2016, 37(30), 2406-2413.
[http://dx.doi.org/10.1093/eurheartj/ehw171] [PMID: 27161611]
[294]
Anstensrud, A.K.; Woxholt, S.; Sharma, K.; Broch, K.; Bendz, B.; Aakhus, S.; Ueland, T.; Amundsen, B.H.; Damås, J.K.; Hopp, E.; Kleveland, O.; Stensæth, K.H.; Opdahl, A.; Kløw, N.E.; Seljeflot, I.; Andersen, G.O.; Wiseth, R.; Aukrust, P.; Gullestad, L. Rationale for the ASSAIL-MI-trial: a randomised controlled trial designed to assess the effect of tocilizumab on myocardial salvage in patients with acute ST-elevation myocardial infarction (STEMI). Open Heart, 2019, 6(2), e001108.
[http://dx.doi.org/10.1136/openhrt-2019-001108] [PMID: 31673391]
[295]
Ridker, P.M.; Rifai, N.; Pfeffer, M.; Sacks, F.; Lepage, S.; Braunwald, E. Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction. Circulation, 2000, 101(18), 2149-2153.
[http://dx.doi.org/10.1161/01.CIR.101.18.2149] [PMID: 10801754]
[296]
Valgimigli, M.; Ceconi, C.; Malagutti, P.; Merli, E.; Soukhomovskaia, O.; Francolini, G.; Cicchitelli, G.; Olivares, A.; Parrinello, G.; Percoco, G.; Guardigli, G.; Mele, D.; Pirani, R.; Ferrari, R. Tumor necrosis factor-alpha receptor 1 is a major predictor of mortality and new-onset heart failure in patients with acute myocardial infarction: the Cytokine-Activation and Long-Term Prognosis in Myocardial Infarction (C-ALPHA) study. Circulation, 2005, 111(7), 863-870.
[http://dx.doi.org/10.1161/01.CIR.0000155614.35441.69] [PMID: 15699251]
[297]
Padfield, G.J.; Din, J.N.; Koushiappi, E.; Mills, N.L.; Robinson, S.D.; Cruden, Nle.M.; Lucking, A.J.; Chia, S.; Harding, S.A.; Newby, D.E. Cardiovascular effects of tumour necrosis factor α antagonism in patients with acute myocardial infarction: a first in human study. Heart, 2013, 99(18), 1330-1335.
[http://dx.doi.org/10.1136/heartjnl-2013-303648] [PMID: 23574969]
[298]
Chung, E.S.; Packer, M.; Lo, K.H.; Fasanmade, A.A.; Willerson, J.T.; Anti, T.N.F.T.A.C.H.F.I. Anti-TNF Therapy Against Congestive Heart Failure Investigators. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to- severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation, 2003, 107(25), 3133-3140.
[http://dx.doi.org/10.1161/01.CIR.0000077913.60364.D2] [PMID: 12796126]
[299]
Chung, E.S.; Miller, L.; Patel, A.N.; Anderson, R.D.; Mendelsohn, F.O.; Traverse, J.; Silver, K.H.; Shin, J.; Ewald, G.; Farr, M.J.; Anwaruddin, S.; Plat, F.; Fisher, S.J.; AuWerter, A.T.; Pastore, J.M.; Aras, R.; Penn, M.S. Changes in ventricular remodelling and clinical status during the year following a single administration of stromal cell-derived factor-1 non-viral gene therapy in chronic ischaemic heart failure patients: the STOP-HF randomized Phase II trial. Eur. Heart J., 2015, 36(33), 2228-2238.
[http://dx.doi.org/10.1093/eurheartj/ehv254] [PMID: 26056125]
[300]
Hudson, M.P.; Armstrong, P.W.; Ruzyllo, W.; Brum, J.; Cusmano, L.; Krzeski, P.; Lyon, R.; Quinones, M.; Theroux, P.; Sydlowski, D.; Kim, H.E.; Garcia, M.J.; Jaber, W.A.; Weaver, W.D. Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction: results of the PREMIER (Prevention of Myocardial Infarction Early Remodeling) trial. J. Am. Coll. Cardiol., 2006, 48(1), 15-20.
[http://dx.doi.org/10.1016/j.jacc.2006.02.055] [PMID: 16814643]
[301]
Cerisano, G.; Buonamici, P.; Valenti, R.; Sciagrà, R.; Raspanti, S.; Santini, A.; Carrabba, N.; Dovellini, E.V.; Romito, R.; Pupi, A.; Colonna, P.; Antoniucci, D. Early short-term doxycycline therapy in patients with acute myocardial infarction and left ventricular dysfunction to prevent the ominous progression to adverse remodelling: the TIPTOP trial. Eur. Heart J., 2014, 35(3), 184-191.
[http://dx.doi.org/10.1093/eurheartj/eht420] [PMID: 24104875]
[302]
Foster, J.G.; Blunt, M.D.; Carter, E.; Ward, S.G. Inhibition of PI3K signaling spurs new therapeutic opportunities in inflammatory/autoimmune diseases and hematological malignancies. Pharmacol. Rev., 2012, 64(4), 1027-1054.
[http://dx.doi.org/10.1124/pr.110.004051] [PMID: 23023033]
[303]
Tsang, A.; Hausenloy, D.J.; Mocanu, M.M.; Yellon, D.M. Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ. Res., 2004, 95(3), 230-232.
[http://dx.doi.org/10.1161/01.RES.0000138303.76488.fe] [PMID: 15242972]
[304]
Doukas, J.; Wrasidlo, W.; Noronha, G.; Dneprovskaia, E.; Hood, J.; Soll, R. Isoform-selective PI3K inhibitors as novel therapeutics for the treatment of acute myocardial infarction. Biochem. Soc. Trans., 2007, 35(Pt 2), 204-206.
[http://dx.doi.org/10.1042/BST0350204] [PMID: 17371238]
[305]
Siragusa, M.; Katare, R.; Meloni, M.; Damilano, F.; Hirsch, E.; Emanueli, C.; Madeddu, P. Involvement of phosphoinositide 3-kinase gamma in angiogenesis and healing of experimental myocardial infarction in mice. Circ. Res., 2010, 106(4), 757-768.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.207449] [PMID: 20056919]
[306]
Seropian, I.M.; Abbate, A.; Toldo, S.; Harrington, J.; Smithson, L.; Ockaili, R.; Mezzaroma, E.; Damilano, F.; Hirsch, E.; Van Tassell, B.W. Pharmacologic inhibition of phosphoinositide 3-kinase gamma (PI3Kγ) promotes infarct resorption and prevents adverse cardiac remodeling after myocardial infarction in mice. J. Cardiovasc. Pharmacol., 2010, 56(6), 651-658.
[http://dx.doi.org/10.1097/FJC.0b013e3181f9a905] [PMID: 20881611]
[307]
Seropian, I.M.; Toldo, S.; Abbate, A.; Mezzaroma, E.; Van Tassell, B.W. Effects of PI3Kgamma inhibition using AS-605240 in acute myocardial infarction. Circ. Res., 2010, 107(2), e5.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.224568] [PMID: 20651289]
[308]
Petzelbauer, P.; Zacharowski, P.A.; Miyazaki, Y.; Friedl, P.; Wickenhauser, G.; Castellino, F.J.; Gröger, M.; Wolff, K.; Zacharowski, K. The fibrin-derived peptide Bbeta15-42 protects the myocardium against ischemia-reperfusion injury. Nat. Med., 2005, 11(3), 298-304.
[http://dx.doi.org/10.1038/nm1198] [PMID: 15723073]
[309]
Roesner, J.P.; Petzelbauer, P.; Koch, A.; Mersmann, J.; Zacharowski, P.A.; Boehm, O.; Reingruber, S.; Pasteiner, W.; Mascher, D.; Wolzt, M.; Barthuber, C.; Nöldge-Schomburg, G.E.; Scheeren, T.W.; Zacharowski, K. The fibrin-derived peptide Bbeta15-42 is cardioprotective in a pig model of myocardial ischemia-reperfusion injury. Crit. Care Med., 2007, 35(7), 1730-1735.
[http://dx.doi.org/10.1097/01.CCM.0000269035.30231.76] [PMID: 17522584]
[310]
Zacharowski, K.; Zacharowski, P.A.; Friedl, P.; Mastan, P.; Koch, A.; Boehm, O.; Rother, R.P.; Reingruber, S.; Henning, R.; Emeis, J.J.; Petzelbauer, P. The effects of the fibrin-derived peptide Bbeta(15-42) in acute and chronic rodent models of myocardial ischemia-reperfusion. Shock, 2007, 27(6), 631-637.
[http://dx.doi.org/10.1097/SHK.0b013e31802fa038] [PMID: 17505302]
[311]
Atar, D.; Petzelbauer, P.; Schwitter, J.; Huber, K.; Rensing, B.; Kasprzak, J.D.; Butter, C.; Grip, L.; Hansen, P.R.; Süselbeck, T.; Clemmensen, P.M.; Marin-Galiano, M.; Geudelin, B.; Buser, P.T.; Investigators, F.I.R.E. F.I.R.E. Investigators. Effect of intravenous FX06 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction results of the F.I.R.E. (Efficacy of FX06 in the Prevention of Myocardial Reperfusion Injury) trial. J. Am. Coll. Cardiol., 2009, 53(8), 720-729.
[http://dx.doi.org/10.1016/j.jacc.2008.12.017] [PMID: 19232907]
[312]
van der Spoel, T.I.; Jansen of Lorkeers, S.J.; Agostoni, P.; van Belle, E.; Gyöngyösi, M.; Sluijter, J.P.; Cramer, M.J.; Doevendans, P.A.; Chamuleau, S.A. Human relevance of pre-clinical studies in stem cell therapy: systematic review and meta-analysis of large animal models of ischaemic heart disease. Cardiovasc. Res., 2011, 91(4), 649-658.
[http://dx.doi.org/10.1093/cvr/cvr113] [PMID: 21498423]
[313]
Zamilpa, R.; Navarro, M.M.; Flores, I.; Griffey, S. Stem cell mechanisms during left ventricular remodeling post-myocardial infarction: Repair and regeneration. World J. Cardiol., 2014, 6(7), 610-620.
[http://dx.doi.org/10.4330/wjc.v6.i7.610] [PMID: 25068021]
[314]
Thakker, R.; Yang, P. Mesenchymal stem cell therapy for cardiac repair. Curr. Treat. Options Cardiovasc. Med., 2014, 16(7), 323.
[http://dx.doi.org/10.1007/s11936-014-0323-4] [PMID: 24898315]
[315]
van den Akker, F.; de Jager, S.C.; Sluijter, J.P. Mesenchymal stem cell therapy for cardiac inflammation: immunomodulatory properties and the influence of toll-like receptors. Mediators Inflamm., 2013, 2013, 181020.
[http://dx.doi.org/10.1155/2013/181020] [PMID: 24391353]
[316]
Prockop, D.J.; Oh, J.Y. Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol. Ther., 2012, 20(1), 14-20.
[http://dx.doi.org/10.1038/mt.2011.211] [PMID: 22008910]
[317]
Nauta, A.J.; Fibbe, W.E. Immunomodulatory properties of mesenchymal stromal cells. Blood, 2007, 110(10), 3499-3506.
[http://dx.doi.org/10.1182/blood-2007-02-069716] [PMID: 17664353]
[318]
Fisher, S.A.; Zhang, H.; Doree, C.; Mathur, A.; Martin-Rendon, E. Stem cell treatment for acute myocardial infarction. Cochrane Database Syst. Rev., 2015, (9), CD006536.
[http://dx.doi.org/10.1002/14651858.CD006536.pub4] [PMID: 26419913]
[319]
Telukuntla, K.S.; Suncion, V.Y.; Schulman, I.H.; Hare, J.M. The advancing field of cell-based therapy: insights and lessons from clinical trials. J. Am. Heart Assoc., 2013, 2(5), e000338.
[http://dx.doi.org/10.1161/JAHA.113.000338] [PMID: 24113326]
[320]
Rosen, M.R.; Myerburg, R.J.; Francis, D.P.; Cole, G.D.; Marbán, E. Translating stem cell research to cardiac disease therapies: pitfalls and prospects for improvement. J. Am. Coll. Cardiol., 2014, 64(9), 922-937.
[http://dx.doi.org/10.1016/j.jacc.2014.06.1175] [PMID: 25169179]
[321]
Mathur, A.; Fernández-Avilés, F.; Bartunek, J.; Belmans, A.; Crea, F.; Dowlut, S.; Galiñanes, M.; Good, M.C.; Hartikainen, J.; Hauskeller, C.; Janssens, S.; Kala, P.; Kastrup, J.; Martin, J.; Menasché, P.; Sanz-Ruiz, R.; Ylä-Herttuala, S.; Zeiher, A.; Group, B. BAMI Group. The effect of intracoronary infusion of bone marrow-derived mononuclear cells on all-cause mortality in acute myocardial infarction: the BAMI trial. Eur. Heart J., 2020, 41(38), 3702-3710.
[http://dx.doi.org/10.1093/eurheartj/ehaa651] [PMID: 32860406]
[322]
Ferdinandy, P.; Hausenloy, D.J.; Heusch, G.; Baxter, G.F.; Schulz, R. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol. Rev., 2014, 66(4), 1142-1174.
[http://dx.doi.org/10.1124/pr.113.008300] [PMID: 25261534]
[323]
Lecour, S.; Bøtker, H.E.; Condorelli, G.; Davidson, S.M.; Garcia- Dorado, D.; Engel, F.B.; Ferdinandy, P.; Heusch, G.; Madonna, R.; Ovize, M.; Ruiz-Meana, M.; Schulz, R.; Sluijter, J.P.; Van Laake, L.W.; Yellon, D.M.; Hausenloy, D.J. ESC working group cellular biology of the heart: position paper: improving the preclinical assessment of novel cardioprotective therapies. Cardiovasc. Res., 2014, 104(3), 399-411.
[http://dx.doi.org/10.1093/cvr/cvu225] [PMID: 25344369]
[324]
Warren, H.S.; Fitting, C.; Hoff, E.; Adib-Conquy, M.; Beasley-Topliffe, L.; Tesini, B.; Liang, X.; Valentine, C.; Hellman, J.; Hayden, D.; Cavaillon, J.M. Resilience to bacterial infection: difference between species could be due to proteins in serum. J. Infect. Dis., 2010, 201(2), 223-232.
[http://dx.doi.org/10.1086/649557] [PMID: 20001600]
[325]
Seok, J.; Warren, H.S.; Cuenca, A.G.; Mindrinos, M.N.; Baker, H.V.; Xu, W.; Richards, D.R.; McDonald-Smith, G.P.; Gao, H.; Hennessy, L.; Finnerty, C.C.; López, C.M.; Honari, S.; Moore, E.E.; Minei, J.P.; Cuschieri, J.; Bankey, P.E.; Johnson, J.L.; Sperry, J.; Nathens, A.B.; Billiar, T.R.; West, M.A.; Jeschke, M.G.; Klein, M.B.; Gamelli, R.L.; Gibran, N.S.; Brownstein, B.H.; Miller-Graziano, C.; Calvano, S.E.; Mason, P.H.; Cobb, J.P.; Rahme, L.G.; Lowry, S.F.; Maier, R.V.; Moldawer, L.L.; Herndon, D.N.; Davis, R.W.; Xiao, W.; Tompkins, R.G. Inflammation and Host Response to Injury, Large Scale Collaborative Research Program. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. USA, 2013, 110(9), 3507-3512.
[http://dx.doi.org/10.1073/pnas.1222878110] [PMID: 23401516]
[326]
Stone, P.H.; Muller, J.E.; Hartwell, T.; York, B.J.; Rutherford, J.D.; Parker, C.B.; Turi, Z.G.; Strauss, H.W.; Willerson, J.T.; Robertson, T. The MILIS Study Group. The effect of diabetes mellitus on prognosis and serial left ventricular function after acute myocardial infarction: contribution of both coronary disease and diastolic left ventricular dysfunction to the adverse prognosis. J. Am. Coll. Cardiol., 1989, 14(1), 49-57.
[http://dx.doi.org/10.1016/0735-1097(89)90053-3] [PMID: 2661630]
[327]
Aronson, D.; Musallam, A.; Lessick, J.; Dabbah, S.; Carasso, S.; Hammerman, H.; Reisner, S.; Agmon, Y.; Mutlak, D. Impact of diastolic dysfunction on the development of heart failure in diabetic patients after acute myocardial infarction. Circ Heart Fail, 2010, 3(1), 125-131.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.109.877340] [PMID: 19910536]
[328]
Cavalera, M.; Wang, J.; Frangogiannis, N.G. Obesity, metabolic dysfunction, and cardiac fibrosis: pathophysiological pathways, molecular mechanisms, and therapeutic opportunities. Transl. Res., 2014, 164(4), 323-335.
[http://dx.doi.org/10.1016/j.trsl.2014.05.001] [PMID: 24880146]
[329]
Martel, C.; Granger, C.B.; Ghitescu, M.; Stebbins, A.; Fortier, A.; Armstrong, P.W.; Bonnefoy, A.; Theroux, P. Pexelizumab fails to inhibit assembly of the terminal complement complex in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Insight from a substudy of the Assessment of Pexelizumab in Acute Myocardial Infarction (APEX-AMI) trial. Am. Heart J., 2012, 164(1), 43-51.
[http://dx.doi.org/10.1016/j.ahj.2012.04.007] [PMID: 22795281]
[330]
Baxter, G.F. The neutrophil as a mediator of myocardial ischemia-reperfusion injury: time to move on. Basic Res. Cardiol., 2002, 97(4), 268-275.
[http://dx.doi.org/10.1007/s00395-002-0366-7] [PMID: 12111036]
[331]
Chatelain, P.; Latour, J.G.; Tran, D.; de Lorgeril, M.; Dupras, G.; Bourassa, M. Neutrophil accumulation in experimental myocardial infarcts: relation with extent of injury and effect of reperfusion. Circulation, 1987, 75(5), 1083-1090.
[http://dx.doi.org/10.1161/01.CIR.75.5.1083] [PMID: 3568308]
[332]
Briaud, S.A.; Ding, Z.M.; Michael, L.H.; Entman, M.L.; Daniel, S.; Ballantyne, C.M. Leukocyte trafficking and myocardial reperfusion injury in ICAM-1/P-selectin-knockout mice. Am. J. Physiol. Heart Circ. Physiol., 2001, 280(1), H60-H67.
[http://dx.doi.org/10.1152/ajpheart.2001.280.1.H60] [PMID: 11123218]
[333]
Hausenloy, D.J.; Botker, H.E.; Engstrom, T.; Erlinge, D.; Heusch, G.; Ibanez, B.; Kloner, R.A.; Ovize, M.; Yellon, D.M.; Garcia-Dorado, D. Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: trials and tribulations. Eur. Heart J., 2017, 38(13), 935-941.
[PMID: 27118196]
[334]
Kloner, R.A.; Forman, M.B.; Gibbons, R.J.; Ross, A.M.; Alexander, R.W.; Stone, G.W. Impact of time to therapy and reperfusion modality on the efficacy of adenosine in acute myocardial infarction: the AMISTAD-2 trial. Eur. Heart J., 2006, 27(20), 2400-2405.
[http://dx.doi.org/10.1093/eurheartj/ehl094] [PMID: 16782719]
[335]
Lefer, D.J.; Bolli, R. Development of an NIH consortium for preclinicAl AssESsment of CARdioprotective therapies (CAESAR): a paradigm shift in studies of infarct size limitation. J. Cardiovasc. Pharmacol. Ther., 2011, 16(3-4), 332-339.
[http://dx.doi.org/10.1177/1074248411414155] [PMID: 21821536]
[336]
Jones, S.P.; Tang, X.L.; Guo, Y.; Steenbergen, C.; Lefer, D.J.; Kukreja, R.C.; Kong, M.; Li, Q.; Bhushan, S.; Zhu, X.; Du, J.; Nong, Y.; Stowers, H.L.; Kondo, K.; Hunt, G.N.; Goodchild, T.T.; Orr, A.; Chang, C.C.; Ockaili, R.; Salloum, F.N.; Bolli, R. The NHLBI-sponsored Consortium for preclinicAl assESsment of cARdioprotective therapies (CAESAR): a new paradigm for rigorous, accurate, and reproducible evaluation of putative infarct-sparing interventions in mice, rabbits, and pigs. Circ. Res., 2015, 116(4), 572-586.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305462] [PMID: 25499773]
[337]
Hausenloy, D.J.; Garcia-Dorado, D.; Bøtker, H.E.; Davidson, S.M.; Downey, J.; Engel, F.B.; Jennings, R.; Lecour, S.; Leor, J.; Madonna, R.; Ovize, M.; Perrino, C.; Prunier, F.; Schulz, R.; Sluijter, J.P.G.; Van Laake, L.W.; Vinten-Johansen, J.; Yellon, D.M.; Ytrehus, K.; Heusch, G.; Ferdinandy, P. Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc. Res., 2017, 113(6), 564-585.
[http://dx.doi.org/10.1093/cvr/cvx049] [PMID: 28453734]
[338]
Reilly, M.; Miller, R.M.; Thomson, M.H.; Patris, V.; Ryle, P.; McLoughlin, L.; Mutch, P.; Gilboy, P.; Miller, C.; Broekema, M.; Keogh, B.; McCormack, W.; van de Wetering de Rooij, J. Randomized, double-blind, placebo-controlled, dose-escalating phase I, healthy subjects study of intravenous OPN-305, a humanized anti-TLR2 antibody. Clin. Pharmacol. Ther., 2013, 94(5), 593-600.
[http://dx.doi.org/10.1038/clpt.2013.150] [PMID: 23880971]
[339]
Nahrendorf, M.; Frantz, S.; Swirski, F.K.; Mulder, W.J.; Randolph, G.; Ertl, G.; Ntziachristos, V.; Piek, J.J.; Stroes, E.S.; Schwaiger, M.; Mann, D.L.; Fayad, Z.A. Imaging systemic inflammatory networks in ischemic heart disease. J. Am. Coll. Cardiol., 2015, 65(15), 1583-1591.
[http://dx.doi.org/10.1016/j.jacc.2015.02.034] [PMID: 25881940]
[340]
Sosnovik, D.E.; Nahrendorf, M.; Weissleder, R. Molecular magnetic resonance imaging in cardiovascular medicine. Circulation, 2007, 115(15), 2076-2086.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.658930] [PMID: 17438163]
[341]
Sosnovik, D.E.; Nahrendorf, M.; Weissleder, R. Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res. Cardiol., 2008, 103(2), 122-130.
[http://dx.doi.org/10.1007/s00395-008-0710-7] [PMID: 18324368]
[342]
Alam, S.R.; Shah, A.S.; Richards, J.; Lang, N.N.; Barnes, G.; Joshi, N.; MacGillivray, T.; McKillop, G.; Mirsadraee, S.; Payne, J.; Fox, K.A.; Henriksen, P.; Newby, D.E.; Semple, S.I. Ultrasmall superparamagnetic particles of iron oxide in patients with acute myocardial infarction: early clinical experience. Circ Cardiovasc Imaging, 2012, 5(5), 559-565.
[http://dx.doi.org/10.1161/CIRCIMAGING.112.974907] [PMID: 22875883]
[343]
Alam, S.R.; Stirrat, C.; Richards, J.; Mirsadraee, S.; Semple, S.I.; Tse, G.; Henriksen, P.; Newby, D.E. Vascular and plaque imaging with ultrasmall superparamagnetic particles of iron oxide. J. Cardiovasc. Magn. Reson., 2015, 17, 83.
[http://dx.doi.org/10.1186/s12968-015-0183-4] [PMID: 26381872]
[344]
van Heeswijk, R.B.; Pellegrin, M.; Flögel, U.; Gonzales, C.; Aubert, J.F.; Mazzolai, L.; Schwitter, J.; Stuber, M.; Fluorine, M.R. Fluorine MR Imaging of Inflammation in Atherosclerotic Plaque in vivo. Radiology, 2015, 275(2), 421-429.
[http://dx.doi.org/10.1148/radiol.14141371] [PMID: 25496216]
[345]
Fayad, Z.A.; Mani, V.; Woodward, M.; Kallend, D.; Abt, M.; Burgess, T.; Fuster, V.; Ballantyne, C.M.; Stein, E.A.; Tardif, J.C.; Rudd, J.H.; Farkouh, M.E.; Tawakol, A. dal-PLAQUE Investigators. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal- PLAQUE): a randomised clinical trial. Lancet, 2011, 378(9802), 1547-1559.
[http://dx.doi.org/10.1016/S0140-6736(11)61383-4] [PMID: 21908036]
[346]
Tawakol, A.; Fayad, Z.A.; Mogg, R.; Alon, A.; Klimas, M.T.; Dansky, H.; Subramanian, S.S.; Abdelbaky, A.; Rudd, J.H.; Farkouh, M.E.; Nunes, I.O.; Beals, C.R.; Shankar, S.S. Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: results of a multicenter fluorodeoxyglucose-positron emission tomography/computed tomography feasibility study. J. Am. Coll. Cardiol., 2013, 62(10), 909-917.
[http://dx.doi.org/10.1016/j.jacc.2013.04.066] [PMID: 23727083]
[347]
Tawakol, A.; Singh, P.; Rudd, J.H.; Soffer, J.; Cai, G.; Vucic, E.; Brannan, S.P.; Tarka, E.A.; Shaddinger, B.C.; Sarov-Blat, L.; Matthews, P.; Subramanian, S.; Farkouh, M.; Fayad, Z.A. Effect of treatment for 12 weeks with rilapladib, a lipoprotein-associated phospholipase A2 inhibitor, on arterial inflammation as assessed with 18F-fluorodeoxyglucose-positron emission tomography imaging. J. Am. Coll. Cardiol., 2014, 63(1), 86-88.
[http://dx.doi.org/10.1016/j.jacc.2013.07.050] [PMID: 23973698]
[348]
van Wijk, D.F.; Sjouke, B.; Figueroa, A.; Emami, H.; van der Valk, F.M.; MacNabb, M.H.; Hemphill, L.C.; Schulte, D.M.; Koopman, M.G.; Lobatto, M.E.; Verberne, H.J.; Fayad, Z.A.; Kastelein, J.J.; Mulder, W.J.; Hovingh, G.K.; Tawakol, A.; Stroes, E.S. Nonpharmacological lipoprotein apheresis reduces arterial inflammation in familial hypercholesterolemia. J. Am. Coll. Cardiol., 2014, 64(14), 1418-1426.
[http://dx.doi.org/10.1016/j.jacc.2014.01.088] [PMID: 25277610]
[349]
Higuchi, T.; Wester, H.J.; Schwaiger, M. Imaging of angiogenesis in cardiology. Eur. J. Nucl. Med. Mol. Imaging, 2007, 34(Suppl. 1), S9-S19.
[http://dx.doi.org/10.1007/s00259-007-0436-z] [PMID: 17479264]
[350]
Li, X.; Samnick, S.; Lapa, C.; Israel, I.; Buck, A.K.; Kreissl, M.C.; Bauer, W. 68Ga-DOTATATE PET/CT for the detection of inflammation of large arteries: correlation with18F-FDG, calcium burden and risk factors. EJNMMI Res., 2012, 2(1), 52.
[http://dx.doi.org/10.1186/2191-219X-2-52] [PMID: 23016793]
[351]
Tahara, N.; Mukherjee, J.; de Haas, H.J.; Petrov, A.D.; Tawakol, A.; Haider, N.; Tahara, A.; Constantinescu, C.C.; Zhou, J.; Boersma, H.H.; Imaizumi, T.; Nakano, M.; Finn, A.; Fayad, Z.; Virmani, R.; Fuster, V.; Bosca, L.; Narula, J. 2-deoxy-2-[18F]fluoro-D-mannose positron emission tomography imaging in atherosclerosis. Nat. Med., 2014, 20(2), 215-219.
[http://dx.doi.org/10.1038/nm.3437] [PMID: 24412923]
[352]
Joshi, N.V.; Vesey, A.; Newby, D.E.; Dweck, M.R. Will 18F-sodium fluoride PET-CT imaging be the magic bullet for identifying vulnerable coronary atherosclerotic plaques? Curr. Cardiol. Rep., 2014, 16(9), 521.
[http://dx.doi.org/10.1007/s11886-014-0521-4] [PMID: 25103772]
[353]
Kwiecinski, J.; Tzolos, E.; Adamson, P.D.; Cadet, S.; Moss, A.J.; Joshi, N.; Williams, M.C.; van Beek, E.J.R.; Dey, D.; Berman, D.S.; Newby, D.E.; Slomka, P.J.; Dweck, M.R. Coronary 18F-Sodium Fluoride Uptake Predicts Outcomes in Patients With Coronary Artery Disease. J. Am. Coll. Cardiol., 2020, 75(24), 3061-3074.
[http://dx.doi.org/10.1016/j.jacc.2020.04.046] [PMID: 32553260]
[354]
van der Valk, F.M.; Kroon, J.; Potters, W.V.; Thurlings, R.M.; Bennink, R.J.; Verberne, H.J.; Nederveen, A.J.; Nieuwdorp, M.; Mulder, W.J.; Fayad, Z.A.; van Buul, J.D.; Stroes, E.S. in vivo imaging of enhanced leukocyte accumulation in atherosclerotic lesions in humans. J. Am. Coll. Cardiol., 2014, 64(10), 1019-1029.
[http://dx.doi.org/10.1016/j.jacc.2014.06.1171] [PMID: 25190238]
[355]
Lee, W.W.; Marinelli, B.; van der Laan, A.M.; Sena, B.F.; Gorbatov, R.; Leuschner, F.; Dutta, P.; Iwamoto, Y.; Ueno, T.; Begieneman, M.P.; Niessen, H.W.; Piek, J.J.; Vinegoni, C.; Pittet, M.J.; Swirski, F.K.; Tawakol, A.; Di Carli, M.; Weissleder, R.; Nahrendorf, M. PET/MRI of inflammation in myocardial infarction. J. Am. Coll. Cardiol., 2012, 59(2), 153-163.
[http://dx.doi.org/10.1016/j.jacc.2011.08.066] [PMID: 22222080]