Isatin Hybrids and Their Pharmacological Investigations

Page: [1182 - 1225] Pages: 44

  • * (Excluding Mailing and Handling)

Abstract

Hybridization is an important strategy to design molecules that can be effectively used to treat fatal diseases known to mankind. Molecular hybrids and their pharmacological investigations aided in discovering several potent isatin (Indole 2, 3 dione) derivatives with anti-HIV, antimalarial, antitubercular, antibacterial, and anticancer activities. Indole-2,3-dione and their derivatives have diverse pharmacological properties and have a prominent role in the discovery of new drugs. To understand the various approaches for designing new molecules based on isatin nucleus analysis of various pharmacophore hybrids, spacers/linkers between pharmacophores and isatin for hybridization and their biological activities are important. This review discusses the progress in developing isatin hybrids as biologically effective agents and their crucial aspects of design and structure-activity relationships.

Keywords: Hybridization, Molecular hybrids, anticancer, anti-HIV, antimalarial, antitubercular, antibacterial.

Graphical Abstract

[1]
Erdmann, O.L. Untersuchungen Über Den Indigo. J. Prakt. Chem., 1840, 19, 321-362.
[http://dx.doi.org/10.1002/prac.18400190161]
[2]
Erdmann, O.L. Untersuchungen Über Den Indigo. J. Prakt. Chem., 1841, 22, 257-299.
[http://dx.doi.org/10.1002/prac.18410220148]
[3]
Laurent, A.; Erdmann, O.L. LIII. Untersuchungen Über Den Indigo. J. Prakt. Chem., 1842, 25, 430-474.
[http://dx.doi.org/10.1002/prac.18420250155]
[4]
Kekulé, A. Ueber Die Constitution Des Isatins, Der Isatinsäure Und Des Indols. Ber. Dtsch. Chem. Ges., 1869, 2, 748-749.
[http://dx.doi.org/10.1002/cber.186900201293]
[5]
Claisen, L.; Shadwell, J. Synthese Des Isatins. Ber. Dtsch. Chem. Ges., 1879, 12, 350-354.
[http://dx.doi.org/10.1002/cber.187901201100]
[6]
Baeyer, A. Ueber Die Beziehungen Der Zimmtsäure Zu Der Indigogruppe. Ber. Dtsch. Chem. Ges., 1880, 13, 2254-2263.
[http://dx.doi.org/10.1002/cber.188001302243]
[7]
Baeyer, A. Synthese Des Isatins Und Des Indigblaus. Ber. Dtsch. Chem. Ges., 1878, 11, 1228-1229.
[http://dx.doi.org/10.1002/cber.187801101337]
[8]
Baeyer, A. Synthese Des Indigblaus. Ber. Dtsch. Chem. Ges., 1878, 11, 1296-1297.
[http://dx.doi.org/10.1002/cber.18780110206]
[9]
Ostromisslensky, I. Über Die Einwirkung von Dichloressigsäure Auf Anilin Und Seine Homologen. Ber. Dtsch. Chem. Ges., 1907, 40, 4972-4979.
[http://dx.doi.org/10.1002/cber.190704004170]
[10]
Reissert. Sulfurized anilides of oxalic acid and their products of transformation. Ber. Dtsch. Chem. Ges., 1904, 37, 3708-3733.
[http://dx.doi.org/10.1002/cber.190403703218]
[11]
Heller, G. Uebereineneue Reductionsstufe Der Nitrogruppe. Ber. Dtsch. Chem. Ges., 1906, 39, 2339-2346.
[http://dx.doi.org/10.1002/cber.190603902211]
[12]
Sandmeyer, T. Über Isonitrosoacetanilide und deren Kondensation zu Isatinen. Helv. Chim. Acta, 1919, 2, 234-242.
[http://dx.doi.org/10.1002/hlca.19190020125]
[13]
Varun; Sonam; Kakkar, R. Isatin and its derivatives: A survey of recent syntheses, reactions, and applications. MedChemComm, 2019, 10(3), 351-368.
[http://dx.doi.org/10.1039/C8MD00585K] [PMID: 30996856]
[14]
Kaur, J.; Chimni, S.S. Catalytic synthesis of 3-aminooxindoles via addition to isatin imine: An update. Org. Biomol. Chem., 2018, 16(18), 3328-3347.
[http://dx.doi.org/10.1039/C7OB03002A] [PMID: 29664071]
[15]
Maurya, R.A.; Nayak, R.; Reddy, C.N.; Kapure, J.S.; Nanubolu, J.B.; Singarapu, K.K.; Ajitha, M.; Kamal, A. Regio- and stereoselective synthesis of novel spiropyrrolidines through 1,3-dipolar cycloaddition reactions of azomethine ylides and 2-styrylquinazolin-4(3H)-ones. RSC Advances, 2014, 4, 32303-32311.
[http://dx.doi.org/10.1039/C4RA03508A]
[16]
Dalpozzo, R.; Bartoli, G.; Bencivenni, G. Recent advances in organocatalytic methods for the synthesis of disubstituted 2- and 3-indolinones. Chem. Soc. Rev., 2012, 41(21), 7247-7290.
[http://dx.doi.org/10.1039/c2cs35100e] [PMID: 22899437]
[17]
Sumpter, W.C. The chemistry of isatin. Chem. Rev., 1944, 34, 393-434.
[http://dx.doi.org/10.1021/cr60109a003]
[18]
Popp, D.P. The chemistry of isatin. Adv. Heterocycl. Chem., 1975, 18, 1-58.
[http://dx.doi.org/10.1016/S0065-2725(08)60127-0]
[19]
Da Silva, J.F.M.; Garden, S.J.; Pinto, A.C. The chemistry of isatins: A review from 1975 to 1999. J. Braz. Chem. Soc., 2001, 12, 273-324.
[http://dx.doi.org/10.1590/S0103-50532001000300002]
[20]
Ozgun, D.O.; Yamali, C.; Gul, H.I.; Taslimi, P.; Gulcin, I.; Yanik, T.; Supuran, C.T. Inhibitory effects of isatin mannich bases on carbonic anhydrases, acetylcholinesterase, and butyrylcholinesterase. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1498-1501.
[http://dx.doi.org/10.3109/14756366.2016.1149479] [PMID: 26928426]
[21]
Karki, S.S.; Kulkarni, A.; Teraiya, N.; De Clercq, E.; Balzarini, J. Synthesis and cytostatic evaluation of some 2-(5-substituted-2-oxoindolin- 3-ylidene)-N-substituted hydrazine carbothioamide. Med. Chem. Res., 2011, 20, 1229-1234.
[http://dx.doi.org/10.1007/s00044-010-9458-3]
[22]
Karthikeyan, C.; Solomon, V.R.; Lee, H.; Trivedi, P. Design, synthesis and biological evaluation of some isatin-linked chalcones as novel anti-breast cancer agents: A molecular hybridization approach. Biomed. Prev. Nutr., 2013, 3, 325-330.
[http://dx.doi.org/10.1016/j.bionut.2013.04.001]
[23]
Ibrahim, S.A.; Elsaman, T.; Zeng, W. Cytotoxic and anticancer activities of indoline-2,3- dione (isatin) and its derivatives. J. Pharm. Res. Int., 2018, 21, 1-19.
[http://dx.doi.org/10.9734/JPRI/2018/39708]
[24]
Vine, K.L.; Matesic, L.; Locke, J.M.; Ranson, M.; Skropeta, D. Cytotoxic and anticancer activities of isatin and its derivatives: A comprehensive review from 2000-2008. Anticancer. Agents Med. Chem., 2009, 9(4), 397-414.
[http://dx.doi.org/10.2174/1871520610909040397] [PMID: 19442041]
[25]
Hou, Y.; Shang, C.; Wang, H.; Yun, J. Isatin-azole hybrids and their anticancer activities. Arch. Pharm. (Weinheim), 2020, 353(1)
[http://dx.doi.org/10.1002/ardp.201900272] [PMID: 31691360]
[26]
Xu, Z.; Zhao, S.J.; Lv, Z.S.; Gao, F.; Wang, Y.; Zhang, F.; Bai, L.; Deng, J.L. Fluoroquinolone-isatin hybrids and their biological activities. Eur. J. Med. Chem., 2019, 162, 396-406.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.032] [PMID: 30453247]
[27]
Jiang, D.; Wang, G.Q.; Liu, X.; Zhang, Z.; Feng, L.S.; Liu, M.L. Isatin derivatives with potential antitubercular activities. J. Heterocycl. Chem., 2018, 55, 1263-1279.
[http://dx.doi.org/10.1002/jhet.3189]
[28]
Muregi, F.W.; Ishih, A. Next-generation antimalarial drugs: Hybrid molecules as a new strategy in drug design. Drug Dev. Res., 2010, 71(1), 20-32.
[http://dx.doi.org/10.1002/ddr.20345] [PMID: 21399701]
[29]
Sriram, D.; Yogeeswari, P.; Meena, K. Synthesis, anti-HIV and antitubercular activities of isatin derivatives. Pharmazie, 2006, 61(4), 274-277.
[http://dx.doi.org/10.1002/chin.200629154] [PMID: 16649536]
[30]
Karki, S.S.; Kulkarni, A.A.; Kumar, S.; Veliyath, S.K.; De Clercq, E.; Balzarini, J. Synthesis and biological evaluation of 2-(5-substituted-1-((diethylamino)methyl)-2-oxoindolin-3-ylidene)-N-substituted-hydrazinecarbothioamides. Med. Chem. Res., 2013, 22(4), 2014-2022.
[http://dx.doi.org/10.1007/s00044-012-0184-x] [PMID: 32214762]
[31]
Guo, H. Isatin derivatives and their anti-bacterial activities. Eur. J. Med. Chem., 2019, 164, 678-688.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.017] [PMID: 30654239]
[32]
Pakravan, P.; Kashanian, S.; Khodaei, M.M.; Harding, F.J. Biochemical and pharmacological characterization of isatin and its derivatives: From structure to activity. Pharmacol. Rep., 2013, 65(2), 313-335.
[http://dx.doi.org/10.1016/S1734-1140(13)71007-7] [PMID: 23744416]
[33]
Maddela, S.; Mathew, G.E.; Parambi, D.G.T.; Aljoufi, F.; Mathew, B. Dual acting isatin-heterocyclic hybrids: Recent highlights as promising pharmacological agents. Lett. Drug Des. Discov., 2019, 16, 220-236.
[http://dx.doi.org/10.2174/1570180815666180516102100]
[34]
Xu, Z.; Zhang, S.; Gao, C.; Fan, J.; Zhao, F.; Lv, Z.S.; Feng, L.S. Isatin hybrids and their anti-tuberculosis activity. Chin. Chem. Lett., 2017, 28, 159-167.
[http://dx.doi.org/10.1016/j.cclet.2016.07.032]
[35]
Sunil, R.; Pal, S.; Jayashree, A. Molecular hybridization - An emanating tool in drug design. Med. Chem. (Los Angeles), 2019, 9, 93-95.
[36]
Claudio, V.J.; Eliezer, J. Barreiro; Carlos, A.; Manssour, F. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14, 1829-1852.
[http://dx.doi.org/10.2174/092986707781058805]
[37]
Zhang, Y.Z.; Du, H.Z.; Liu, H.L.; He, Q.S.; Xu, Z. Isatin dimers and their biological activities. Arch. Pharm. (Weinheim), 2020, 353(3)
[http://dx.doi.org/10.1002/ardp.201900299] [PMID: 31985855]
[38]
Loveman, E.; Copley, V.R.; Colquitt, J.L.; Scott, D.A.; Clegg, A.J.; Jones, J.; O’Reilly, K.M.; Singh, S.; Bausewein, C.; Wells, A. The effectiveness and cost-effectiveness of treatments for idiopathic pulmonary fibrosis: Systematic review, network meta-analysis and health economic evaluation. BMC Pharmacol. Toxicol., 2014, 15, 63.
[http://dx.doi.org/10.1186/2050-6511-15-63] [PMID: 25410822]
[39]
Hartmann, J.T.; Kanz, L. Sunitinib and periodic hair depigmentation due to temporary c-KIT inhibition. Arch. Dermatol., 2008, 144(11), 1525-1526.
[http://dx.doi.org/10.1001/archderm.144.11.1525] [PMID: 19015436]
[40]
Quek, R.; George, S. Gastrointestinal stromal tumor: A clinical overview. Hematol. Oncol. Clin. North Am., 2009, 23(1), 69-78.[viii]..
[http://dx.doi.org/10.1016/j.hoc.2008.11.006] [PMID: 19248971]
[41]
Blay, J.Y.; Reichardt, P. Advanced gastrointestinal stromal tumor in Europe: A review of updated treatment recommendations. Expert Rev. Anticancer Ther., 2009, 9(6), 831-838.
[http://dx.doi.org/10.1586/era.09.34] [PMID: 19496720]
[42]
Gan, H.K.; Seruga, B.; Knox, J.J. Sunitinib in solid tumors. Expert Opin. Investig. Drugs, 2009, 18(6), 821-834.
[http://dx.doi.org/10.1517/13543780902980171] [PMID: 19453268]
[43]
Demetri, G.D.; van Oosterom, A.T.; Garrett, C.R.; Blackstein, M.E.; Shah, M.H.; Verweij, J.; McArthur, G.; Judson, I.R.; Heinrich, M.C.; Morgan, J.A.; Desai, J.; Fletcher, C.D.; George, S.; Bello, C.L.; Huang, X.; Baum, C.M.; Casali, P.G. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: A randomised controlled trial. Lancet, 2006, 368(9544), 1329-1338.
[http://dx.doi.org/10.1016/S0140-6736(06)69446-4] [PMID: 17046465]
[44]
Zhang, X.; Song, Y.; Wu, Y.; Dong, Y.; Lai, L.; Zhang, J.; Lu, B.; Dai, F.; He, L.; Liu, M.; Yi, Z. Indirubin inhibits tumor growth by antitumor angiogenesis via blocking VEGFR2-mediated JAK/STAT3 signaling in endothelial cell. Int. J. Cancer, 2011, 129(10), 2502-2511.
[http://dx.doi.org/10.1002/ijc.25909] [PMID: 21207415]
[45]
Williams, S.P.; Nowicki, M.O.; Liu, F.; Press, R.; Godlewski, J.; Abdel-Rasoul, M.; Kaur, B.; Fernandez, S.A.; Chiocca, E.A.; Lawler, S.E. Indirubins decrease glioma invasion by blocking migratory phenotypes in both the tumor and stromal endothelial cell compartments. Cancer Res., 2011, 71(16), 5374-5380.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3026] [PMID: 21697283]
[46]
Suzuki, H.; Kaneko, T.; Mizokami, Y.; Narasaka, T.; Endo, S.; Matsui, H.; Yanaka, A.; Hirayama, A.; Hyodo, I. Therapeutic efficacy of the Qing Dai in patients with intractable ulcerative colitis. World J. Gastroenterol., 2013, 19(17), 2718-2722.
[http://dx.doi.org/10.3748/wjg.v19.i17.2718] [PMID: 23674882]
[47]
O’Donnell, A.; Padhani, A.; Hayes, C.; Kakkar, A.J.; Leach, M.; Trigo, J.M.; Scurr, M.; Raynaud, F.; Phillips, S.; Aherne, W.; Hardcastle, A.; Workman, P.; Hannah, A.; Judson, I. A Phase I study of the angiogenesis inhibitor SU5416 (semaxanib) in solid tumours, incorporating dynamic contrast MR pharmacodynamic end points. Br. J. Cancer, 2005, 93(8), 876-883.
[http://dx.doi.org/10.1038/sj.bjc.6602797] [PMID: 16222321]
[48]
Lockhart, A.C.; Cropp, G.F.; Berlin, J.D.; Donnelly, E.; Schumaker, R.D.; Schaaf, L.J.; Hande, K.R.; Fleischer, A.C.; Hannah, A.L.; Rothenberg, M.L. Phase I/pilot study of SU5416 (semaxinib) in combination with irinotecan/bolus 5-FU/LV (IFL) in patients with metastatic colorectal cancer. Am. J. Clin. Oncol., 2006, 29(2), 109-115.
[http://dx.doi.org/10.1097/01.coc.0000199882.53545.ac] [PMID: 16601426]
[49]
Hoff, P.M.; Wolff, R.A.; Bogaard, K.; Waldrum, S.; Abbruzzese, J.L. A Phase I study of escalating doses of the tyrosine kinase inhibitor semaxanib (SU5416) in combination with irinotecan in patients with advanced colorectal carcinoma. Jpn. J. Clin. Oncol., 2006, 36(2), 100-103.
[http://dx.doi.org/10.1093/jjco/hyi229] [PMID: 16449240]
[50]
Shin, S.J.; Jung, M.; Jeung, H.C.; Kim, H.R.; Rha, S.Y.; Roh, J.K.; Chung, H.C.; Ahn, J.B. A phase I pharmacokinetic study of TSU-68 (a multiple tyrosine kinase inhibitor of VEGFR-2, FGF and PDFG) in combination with S-1 and oxaliplatin in metastatic colorectal cancer patients previously treated with chemotherapy. Invest. New Drugs, 2012, 30(4), 1501-1510.
[http://dx.doi.org/10.1007/s10637-011-9683-8] [PMID: 21567184]
[51]
Kim, H.C.; Chung, J.W.; Choi, S.H.; Im, S.A.; Yamasaki, Y.; Jun, S.; Jae, H.J.; Park, J.H. Augmentation of chemotherapeutic infusion effect by TSU-68, an oral targeted antiangiogenic agent, in a rabbit VX2 liver tumor model. Cardiovasc. Intervent. Radiol., 2012, 35(1), 168-175.
[http://dx.doi.org/10.1007/s00270-010-0081-y] [PMID: 21184227]
[52]
Ding, Z.; Zhou, M.; Zeng, C. Recent advances in isatin hybrids as potential anticancer agents. Arch. Pharm. (Weinheim), 2020, 353(3)e1900367
[http://dx.doi.org/10.1002/ardp.201900367] [PMID: 31960987]
[53]
Hu, Y.Q.; Song, X.F.; Fan, J. Design, synthesis, and in vitro antimycobacterial activity of propylene-tethered isatin dimmers. J. Heterocycl. Chem., 2018, 55, 265-268.
[http://dx.doi.org/10.1002/jhet.3042]
[54]
Liu, B.; Wang, G.Q.; Peng, Y.H.; Tang, X.Q.; Hu, G.W. Design, synthesis, and in vitro antimycobacterial activities of butylene tethered 7-fluoroisatin-isatin scaffolds. J. Heterocycl. Chem., 2019, 56, 3423-3428.
[http://dx.doi.org/10.1002/jhet.3696]
[55]
Cheng, R.; Yan, X.; Xu, Z. Isatin-1,2,3-triazole-isatin scaffolds and their antibacterial activity. J. Heterocycl. Chem., 2019, 56, 2970-2974.
[http://dx.doi.org/10.1002/jhet.3689]
[56]
Zhao, S.; Lv, Z.; Shi, L.; Zhao, S.; Xu, Z. Design, synthesis, and in vitro anti-mycobacterial activities of tetraethylene glycol tethered isatin dimers. J. Heterocycl. Chem., 2018, 55, 2985-2989.
[http://dx.doi.org/10.1002/jhet.3324]
[57]
Worley, M.V.; Estrada, S.J. Bedaquiline: A novel antitubercular agent for the treatment of multidrug-resistant tuberculosis. Pharmacotherapy, 2014, 34(11), 1187-1197.
[http://dx.doi.org/10.1002/phar.1482] [PMID: 25203970]
[58]
Koul, A.; Vranckx, L.; Dhar, N.; Göhlmann, H.W.; Özdemir, E.; Neefs, J.M.; Schulz, M.; Lu, P.; Mørtz, E.; McKinney, J.D.; Andries, K.; Bald, D. Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism. Nat. Commun., 2014, 5, 3369.
[http://dx.doi.org/10.1038/ncomms4369] [PMID: 24569628]
[59]
Peerzade, N.; Jadhav, S.; Bhosale, R.; Kulkarni, A.; Varape, B. Synthesis, docking, in silico ADMET and pharmacological evaluation of some N-acetyl pyrazole and quinoline conjugates. Lett. Drug Des. Discov., 2020, 17, 1015-1026.
[http://dx.doi.org/10.2174/1570180817666200228123347]
[60]
Maddela, S.; Makula, A. Design, synthesis and docking study of some novel isatin- quinoline hybrids as potential antitubercular agents. Antiinfect. Agents, 2016, 14, 53-62.
[http://dx.doi.org/10.2174/221135251401160302151229]
[61]
Foley, M.; Tilley, L. Quinoline antimalarials: Mechanisms of action and resistance and prospects for new agents. Pharmacol. Ther., 1998, 79(1), 55-87.
[http://dx.doi.org/10.1016/S0163-7258(98)00012-6] [PMID: 9719345]
[62]
Lorena, M. Coronado, Christopher T. Nadovich, C.S. Malarial hemozoin: From target to tool. Biochim. Biophys. Acta, 2014, 1840, 2032-2041.
[http://dx.doi.org/10.1016/j.bbagen.2014.02.009]
[63]
Nisha, G.J.; Gut, J.; Rosenthal, P.J.; Kumar, V. β-amino-alcohol tethered 4-aminoquinoline-isatin conjugates: Synthesis and antimalarial evaluation. Eur. J. Med. Chem., 2014, 84, 566-573.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.064] [PMID: 25062007]
[64]
Raj, R.; Biot, C.; Carrère-Kremer, S.; Kremer, L.; Guérardel, Y.; Gut, J.; Rosenthal, P.J.; Forge, D.; Kumar, V. 7-chloroquinoline-isatin conjugates: Antimalarial, antitubercular, and cytotoxic evaluation. Chem. Biol. Drug Des., 2014, 83(5), 622-629.
[http://dx.doi.org/10.1111/cbdd.12273] [PMID: 24341638]
[65]
Nisha; Kumar, K.; Bhargava, G.; Land, K.M.; Chang, K.H.; Arora, R.; Sen, S.; Kumar, V. N-Propargylated isatin-Mannich mono- and bis-adducts: Synthesis and preliminary analysis of in vitro activity against Tritrichomonas foetus. Eur. J. Med. Chem., 2014, 74, 657-663.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.015] [PMID: 24561663]
[66]
Raj, R.; Singh, P.; Singh, P.; Gut, J.; Rosenthal, P.J.; Kumar, V. Azide-alkyne cycloaddition en route to 1H-1,2,3-triazole-tethered 7-chloroquinoline-isatin chimeras: Synthesis and antimalarial evaluation. Eur. J. Med. Chem., 2013, 62, 590-596.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.032] [PMID: 23434528]
[67]
Burka, J.M.; Bower, K.S.; Vanroekel, R.C.; Stutzman, R.D.; Kuzmowych, C.P.; Howard, R.S. The effect of fourth-generation fluoroquinolones gatifloxacin and moxifloxacin on epithelial healing following photorefractive keratectomy. Am. J. Ophthalmol., 2005, 140(1), 83-87.
[http://dx.doi.org/10.1016/j.ajo.2005.02.037] [PMID: 15953577]
[68]
Sriram, D.; Aubry, A.; Yogeeswari, P.; Fisher, L.M. Gatifloxacin derivatives: Synthesis, antimycobacterial activities, and inhibition of Mycobacterium tuberculosis DNA gyrase. Bioorg. Med. Chem. Lett., 2006, 16(11), 2982-2985.
[http://dx.doi.org/10.1016/j.bmcl.2006.02.065] [PMID: 16554151]
[69]
Xu, Z.; Zhang, S.; Song, X.; Qiang, M.; Lv, Z. Design, synthesis and in vitro anti-mycobacterial evaluation of gatifloxacin-1H-1,2,3-triazole-isatin hybrids. Bioorg. Med. Chem. Lett., 2017, 27(16), 3643-3646.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.023] [PMID: 28720502]
[70]
Mdluli, K.; Ma, Z. Mycobacterium tuberculosis DNA gyrase as a target for drug discovery. Infect. Disord. Drug Targets, 2007, 7(2), 159-168.
[http://dx.doi.org/10.2174/187152607781001763] [PMID: 17970226]
[71]
Xu, Z.; Song, X.F.; Qiang, M.; Lv, Z.S. 1H-1,2,3-triazole-tethered 8-OMe ciprofloxacin and isatin hybrids: Design, synthesis and in vitro anti-mycobacterial activities. J. Heterocycl. Chem., 2017, 54, 3735-3741.
[http://dx.doi.org/10.1002/jhet.2980]
[72]
Wang, R.; Yin, X.; Zhang, Y.; Yan, W. Design, synthesis and antimicrobial evaluation of propylene-tethered ciprofloxacin-isatin hybrids. Eur. J. Med. Chem., 2018, 156, 580-586.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.025] [PMID: 30025351]
[73]
Sriram, D.; Yogeeswari, P.; Basha, J.S.; Radha, D.R.; Nagaraja, V. Synthesis and antimycobacterial evaluation of various 7-substituted ciprofloxacin derivatives. Bioorg. Med. Chem., 2005, 13(20), 5774-5778.
[http://dx.doi.org/10.1016/j.bmc.2005.05.063] [PMID: 16039859]
[74]
Gao, T.; Hu, W.; Zeng, Z.; Sun, S.; Wang, R. Design, synthesis, and evaluation of tetraethylene glycol tethered ciprofloxacin–isatin hybrids as novel antitubercular agents. J. Heterocycl. Chem., 2019, 56, 306-311.
[http://dx.doi.org/10.1002/jhet.3338]
[75]
Khan, M.Y.; Gruninger, R.P.; Nelson, S.M.; Klicker, R.E. Comparative in vitro activity of norfloxacin (MK-0366) and ten other oral antimicrobial agents against urinary bacterial isolates. Antimicrob. Agents Chemother., 1982, 21(5), 848-851.
[http://dx.doi.org/10.1128/AAC.21.5.848] [PMID: 6213200]
[76]
Drlica, K.; Zhao, X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev., 1997, 61(3), 377-392.
[http://dx.doi.org/10.1128/.61.3.377-392.1997] [PMID: 9293187]
[77]
Pandeya, S.N.; Sriram, D.; Yogeeswari, P.; Ananthan, S. Antituberculous activity of norfloxacin mannich bases with isatin derivatives. Chemotherapy, 2001, 47(4), 266-269.
[http://dx.doi.org/10.1159/000048533] [PMID: 11399863]
[78]
Ball, P.; Mandell, L.; Niki, Y.; Tillotson, G. Comparative tolerability of the newer fluoroquinolone antibacterials. Drug Saf., 1999, 21(5), 407-421.
[http://dx.doi.org/10.2165/00002018-199921050-00005] [PMID: 10554054]
[79]
Tortoli, E.; Dionisio, D.; Fabbri, C. Evaluation of moxifloxacin activity in vitro against Mycobacterium tuberculosis, including resistant and multidrug-resistant strains. J. Chemother., 2004, 16(4), 334-336.
[http://dx.doi.org/10.1179/joc.2004.16.4.334] [PMID: 15332706]
[80]
Opal, S.M.; Lim, Y.P.; Cristofaro, P.; Artenstein, A.W.; Kessimian, N.; Delsesto, D.; Parejo, N.; Palardy, J.E.; Siryaporn, E. Inter-α inhibitor proteins: A novel therapeutic strategy for experimental anthrax infection. Shock, 2011, 35(1), 42-44.
[http://dx.doi.org/10.1097/SHK.0b013e3181e83204] [PMID: 20523269]
[81]
Woehrl, B.; Klein, M.; Grandgirard, D.; Koedel, U.; Leib, S. Bacterial meningitis: Current therapy and possible future treatment options. Expert Rev. Anti Infect. Ther., 2011, 9(11), 1053-1065.
[http://dx.doi.org/10.1586/eri.11.129] [PMID: 22029523]
[82]
Hu, Y.Q.; Fan, J.; Song, X.F. Design, synthesis and in vitro anti-mycobacterial activity of propylene-1H-1,2,3-triazole-4-methylene-tethered isatin-moxifloxacin hybrids. J. Heterocycl. Chem., 2018, 55, 246-250.
[http://dx.doi.org/10.1002/jhet.3032]
[83]
Xu, Z.; Zhao, S.J.; Deng, J.L.; Wang, Q.; Lv, Z.S. Design, synthesis, and antimycobacterial activities of diethylene glycol tethered moxifloxacin–isatin hybrids. J. Heterocycl. Chem., 2019, 56, 325-330.
[http://dx.doi.org/10.1002/jhet.3383]
[84]
Fan, J.; Sheng, Z.; Xu, Z.; Design, X.F.S. Synthesis, and in vitro anti-mycobacterial evaluation of propylene-1H-1,2,3-triazole-4-methylene-tethered (thio)semicarbazone-isatin-moxifloxacin hybrids. J. Heterocycl. Chem., 2018, 77, 77-82.
[http://dx.doi.org/10.1002/jhet.3004]
[85]
Gao, F.; Chen, Z.; Ma, L.; Fan, Y.; Chen, L.; Lu, G. Synthesis and biological evaluation of moxifloxacin-acetyl-1,2,3-1H-triazole-methylene-isatin hybrids as potential anti-tubercular agents against both drug-susceptible and drug-resistant Mycobacterium tuberculosis strains. Eur. J. Med. Chem., 2019, 180, 648-655.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.057] [PMID: 31352245]
[86]
Gao, F.; Ye, L.; Kong, F.; Huang, G.; Xiao, J. Design, synthesis and antibacterial activity evaluation of moxifloxacin-amide-1,2,3-triazole-isatin hybrids. Bioorg. Chem., 2019, 91103162
[http://dx.doi.org/10.1016/j.bioorg.2019.103162] [PMID: 31382058]
[87]
Feng, L.S.; Liu, M.L.; Wang, B.; Chai, Y.; Hao, X.Q.; Meng, S.; Guo, H.Y. Synthesis and in vitro antimycobacterial activity of balofloxacin ethylene isatin derivatives. Eur. J. Med. Chem., 2010, 45(8), 3407-3412.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.027] [PMID: 20493593]
[88]
Biochemistry. Cengage Learning,, 2013.
[89]
El-Kalyoubi, S.; Agili, F. A novel synthesis of fused uracils: Indenopyrimidopyridazines, pyrimidopyridazines, and pyrazolopyrimidines for antimicrobial and antitumor evalution. Molecules, 2016, 21(12), 1-14.
[http://dx.doi.org/10.3390/molecules21121714] [PMID: 27983644]
[90]
Varpe, B.D.; Jadhav, S.B.; Chatale, B.C.; Jadhav, S.Y.; Kulkarni, A.A. 3D-QSAR and pharmacophore modeling of 3,5-disubstituted indole derivatives as pim kinase inhibitors. Struct. Chem., 2020, 31(5), 1675-1690.
[http://dx.doi.org/10.1007/s11224-020-01503-1]
[91]
Almutairi, M.S.; Zakaria, A.S.; Ignasius, P.P.; Al-Wabli, R.I.; Joe, I.H.; Attia, M.I. Synthesis, spectroscopic investigations, DFT studies, molecular docking and antimicrobial potential of certain new indole-isatin molecular hybrids: Experimental and theoretical approaches. J. Mol. Struct., 2018, 1153, 333-345.
[http://dx.doi.org/10.1016/j.molstruc.2017.10.025]
[92]
Elander, R.P. Industrial production of β-lactam antibiotics. Appl. Microbiol. Biotechnol., 2003, 61(5-6), 385-392.
[http://dx.doi.org/10.1007/s00253-003-1274-y] [PMID: 12679848]
[93]
Nisha; Mehra, V; Hopper, M.; Patel, N.; Hall, D.; Wrischnik, L.A.; Land, K.M.; Kumar, V. Design and synthesis of β-amino alcohol based β-lactam-isatin chimeras and preliminary analysis of in vitro activity against the protozoal pathogen Trichomonas vaginalis. MedChemComm, 2013, 4, 1018-1024.
[http://dx.doi.org/10.1039/c3md00057e]
[94]
Raj, R.; Singh, P.; Haberkern, N.T.; Faucher, R.M.; Patel, N.; Land, K.M.; Kumar, V. Synthesis of 1H-1,2,3-triazole linked β-lactam-isatin bi-functional hybrids and preliminary analysis of in vitro activity against the protozoal parasite Trichomonas vaginalis. Eur. J. Med. Chem., 2013, 63, 897-906.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.019] [PMID: 23631874]
[95]
Sriram, D.; Yogeeswari, P.; Gopal, G. Synthesis, anti-HIV and antitubercular activities of lamivudine prodrugs. Eur. J. Med. Chem., 2005, 40(12), 1373-1376.
[http://dx.doi.org/10.1016/j.ejmech.2005.07.006] [PMID: 16129516]
[96]
Pandeya, S.N.; Sriram, D.; Nath, G.; DeClercq, E. Synthesis, antibacterial, antifungal and anti-HIV activities of Schiff and Mannich bases derived from isatin derivatives and N-[4-(4′-chlorophenyl)thiazol-2-yl] thiosemicarbazide. Eur. J. Pharm. Sci., 1999, 9(1), 25-31.
[http://dx.doi.org/10.1016/S0928-0987(99)00038-X] [PMID: 10493993]
[97]
Gao, T.; Zeng, Z.; Wang, G.; Sun, S.Y.L. Synthesis of ethylene tethered isatin-coumarin hybrids and evaluation of their in vitro antimycobacterial activities. J. Heterocycl. Chem., 2018, 55, 1484-1488.
[http://dx.doi.org/10.1002/jhet.3161]
[98]
Silvia, H. M.B.B., Cardoso; o, M.C.S, Lourenc; M. das, Gracas; Henriques, M. de O.; P.C., A.L.; C.R.K, N.; de Souza, M. V. Antitubercular activity of new coumarins. Chem. Biol. Drug Des., 2011, 77, 489-493.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01120.x]
[99]
Shiradkar, M.; Suresh Kumar, G.V.; Dasari, V.; Tatikonda, S.; Akula, K.C.; Shah, R. Clubbed triazoles: A novel approach to antitubercular drugs. Eur. J. Med. Chem., 2007, 42(6), 807-816.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.001] [PMID: 17239490]
[100]
Liu, B.; Hu, G.; Tang, X.; Wang, G.; Xu, Z. 1H-1,2,3-triazole-tethered isatin-coumarin hybrids: Design, synthesis and in vitro anti-mycobacterial evaluation. J. Heterocycl. Chem., 2018, 55, 775-780.
[http://dx.doi.org/10.1002/jhet.3093]
[101]
Jitendra Sainy, R.S. Synthesis, antimalarial evaluation and molecular docking studies of some thiolactone derivatives. J. Mol. Struct., 2017, 1134, 350-359.
[http://dx.doi.org/10.1016/j.molstruc.2016.12.095]
[102]
Roy, K.K.; Bhunia, S.S.; Saxena, A.K. CoMFA, CoMSIA, and docking studies on thiolactone-class of potent anti-malarials: Identification of essential structural features modulating anti-malarial activity. Chem. Biol. Drug Des., 2011, 78(3), 483-493.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01158.x] [PMID: 21672165]
[103]
Hans, R.H.; Wiid, I.J.F.; van Helden, P.D.; Wan, B.; Franzblau, S.G.; Gut, J.; Rosenthal, P.J.; Chibale, K. Novel thiolactone-isatin hybrids as potential antimalarial and antitubercular agents. Bioorg. Med. Chem. Lett., 2011, 21(7), 2055-2058.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.008] [PMID: 21376591]
[104]
Gao, F.; Yang, H.; Lu, T.; Chen, Z.; Ma, L.; Xu, Z.; Schaffer, P.; Lu, G. Design, synthesis and anti-mycobacterial activity evaluation of benzofuran-isatin hybrids. Eur. J. Med. Chem., 2018, 159, 277-281.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.049] [PMID: 30296686]
[105]
Gao, F.; Wang, T.; Gao, M.; Zhang, X.; Liu, Z.; Zhao, S.; Lv, Z.; Xiao, J. Benzofuran-isatin-imine hybrids tethered via different length alkyl linkers: Design, synthesis and in vitro evaluation of anti-tubercular and anti-bacterial activities as well as cytotoxicity. Eur. J. Med. Chem., 2019, 165, 323-331.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.042] [PMID: 30690301]
[106]
Gao, F.; Chen, Z.; Ma, L.; Qiu, L.; Lin, J.; Lu, G. Benzofuran-isatin hybrids tethered via different length alkyl linkers and their in vitro anti-mycobacterial activities. Bioorg. Med. Chem., 2019, 27(12), 2652-2656.
[http://dx.doi.org/10.1016/j.bmc.2019.04.017] [PMID: 30992202]
[107]
Gao, F.; Ye, L.; Wang, Y.; Kong, F.; Zhao, S.; Xiao, J.; Huang, G. Benzofuran-isatin hybrids and their in vitro anti-mycobacterial activities against multi-drug resistant Mycobacterium tuberculosis. Eur. J. Med. Chem., 2019, 183, 11678.
[http://dx.doi.org/10.1016/j.ejmech.2019.111678] [PMID: 31525660]
[108]
Kumar, S.; Bains, T.; Won Kim, A.S.; Tam, C.; Kim, J.; Cheng, L.W.; Land, K.M.; Debnath, A.; Kumar, V. Highly potent 1H-1,2,3-triazole-tethered isatin-metronidazole conjugates against anaerobic foodborne, waterborne, and sexually-transmitted protozoal parasites. Front. Cell. Infect. Microbiol., 2018, 8, 380.
[http://dx.doi.org/10.3389/fcimb.2018.00380] [PMID: 30425970]
[109]
Aboul-Fadl, T.; Bin-Jubair, F.A.S.; Aboul-Wafa, O. Schiff bases of indoline-2,3-dione (isatin) derivatives and nalidixic acid carbohydrazide, synthesis, antitubercular activity and pharmacophoric model building. Eur. J. Med. Chem., 2010, 45(10), 4578-4586.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.020] [PMID: 20696500]
[110]
Akhaja, T.N.; Raval, J.P. 1,3-Dihydro-2H-indol-2-ones derivatives: Design, synthesis, in vitro antibacterial, antifungal and antitubercular study. Eur. J. Med. Chem., 2011, 46(11), 5573-5579.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.023] [PMID: 21981980]
[111]
Brogden, R.N.; Carmine, A.A.; Heel, R.C.; Speight, T.M.; Avery, G.S. Trimethoprim: A review of its antibacterial activity, pharmacokinetics and therapeutic use in urinary tract infections. Drugs, 1982, 23(6), 405-430.
[http://dx.doi.org/10.2165/00003495-198223060-00001] [PMID: 7049657]
[112]
Pourshab, M.; Asghari, S.; Mohseni, M. Synthesis and antibacterial evaluation of novel spiro[indole-pyrimidine]ones. J. Heterocycl. Chem., 2018, 55, 173-180.
[http://dx.doi.org/10.1002/jhet.3021]
[113]
Selvam, P.; Chandramohan, M.; Hurst, B.L.; Smee, D.F. Activity of isatine-sulfadimidine derivatives against 2009 pandemic H1N1 influenza virus in cell culture. Antivir. Chem. Chemother., 2010, 20(3), 143-146.
[http://dx.doi.org/10.3851/IMP1471] [PMID: 20054101]
[114]
Fan, Y-L.; Huang, Z-P.; Design, M.L. Synthesis and antitumor activities of 1, 2, 3-triazole-diethylene glycol tethered isatin dimers. J. Heterocycl. Chem., 2018, 55, 2990-2995.
[http://dx.doi.org/10.1002/jhet.3330]
[115]
Xu, Z.; Zhao, S.J.; Lv, Z.S.; Gao, F.; Wang, Y.L.; Zhang, F.; Bai, L.Y.; Deng, J.L.; Wang, Q.; Fan, Y.L. Design, synthesis, and evaluation of tetraethylene glycol-tethered isatin–1,2,3-triazole–coumarin hybrids as novel anticancer agents. J. Heterocycl. Chem., 2019, 56, 1127-1132.
[http://dx.doi.org/10.1002/jhet.3475]
[116]
Xu, Z.; Zhao, S.J.; Deng, J.L.; Wang, Q.; Lv, Z.S.; Fan, Y.L. Design, synthesis, and evaluation of tetraethylene glycol tethered isatin–coumarin hybrids as novel anticancer agents. J. Heterocycl. Chem., 2019, 56, 400-405.
[http://dx.doi.org/10.1002/jhet.3411]
[117]
Abdel-Aziz, H.A.; Eldehna, W.M.; Keeton, A.B.; Piazza, G.A.; Kadi, A.A.; Attwa, M.W.; Abdelhameed, A.S.; Attia, M.I. Isatin-benzoazine molecular hybrids as potential antiproliferative agents: Synthesis and in vitro pharmacological profiling. Drug Des. Devel. Ther., 2017, 11, 2333-2346.
[http://dx.doi.org/10.2147/DDDT.S140164] [PMID: 28848327]
[118]
Yu, B.; Wang, S.Q.; Qi, P.P.; Yang, D.X.; Tang, K.; Liu, H.M. Design and synthesis of isatin/triazole conjugates that induce apoptosis and inhibit migration of MGC-803 cells. Eur. J. Med. Chem., 2016, 124, 350-360.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.065] [PMID: 27597411]
[119]
Taher, A.T.; Khalil, N.A.; Ahmed, E.M. Synthesis of novel isatin-thiazoline and isatin-benzimidazole conjugates as anti-breast cancer agents. Arch. Pharm. Res., 2011, 34(10), 1615-1621.
[http://dx.doi.org/10.1007/s12272-011-1005-3] [PMID: 22076761]
[120]
Kaminskyy, D.; Khyluk, D.; Vasylenko, O.; Zaprutko, L.; Lesyk, R. A facile synthesis and anticancer activity evaluation of spiro[thiazolidinone-isatin] conjugates. Sci. Pharm., 2011, 79(4), 763-777.
[http://dx.doi.org/10.3797/scipharm.1109-14] [PMID: 22145104]
[121]
Ramshid, P.K.; Jagadeeshan, S.; Krishnan, A.; Mathew, M.; Nair, S.A.; Pillai, M.R. Synthesis and in vitro evaluation of some isatin-thiazolidinone hybrid analogues as anti-proliferative agents. Med. Chem., 2010, 6(5), 306-312.
[http://dx.doi.org/10.2174/157340610793358909] [PMID: 21073435]
[122]
Kumar, K.; Sagar, S.; Esau, L.; Kaur, M.; Kumar, V. Synthesis of novel 1H-1,2,3-triazole tethered C-5 substituted uracil-isatin conjugates and their cytotoxic evaluation. Eur. J. Med. Chem., 2012, 58, 153-159.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.008] [PMID: 23124212]
[123]
Sharma, P.; Senwar, K.R.; Jeengar, M.K.; Reddy, T.S.; Naidu, V.G.M.; Kamal, A.; Shankaraiah, N. H2O-mediated isatin spiro-epoxide ring opening with NaCN: Synthesis of novel 3-tetrazolylmethyl-3-hydroxy-oxindole hybrids and their anticancer evaluation. Eur. J. Med. Chem., 2015, 104, 11-24.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.025] [PMID: 26413726]
[124]
Singh, P.; Kaur, S.; Kumar, V.; Bedi, P.M.S.; Mahajan, M.P.; Sehar, I.; Pal, H.C.; Saxena, A.K. Synthesis and in vitro cytotoxic evaluation of N-alkylbromo and N-alkylphthalimido-isatins. Bioorg. Med. Chem. Lett., 2011, 21(10), 3017-3020.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.043] [PMID: 21482109]
[125]
Havrylyuk, D.; Kovach, N.; Zimenkovsky, B.; Vasylenko, O.; Lesyk, R. Synthesis and anticancer activity of isatin-based pyrazolines and thiazolidines conjugates. Arch. Pharm. (Weinheim), 2011, 344(8), 514-522.
[http://dx.doi.org/10.1002/ardp.201100055] [PMID: 21681810]
[126]
Solomon, V.R.; Hu, C.; Lee, H. Hybrid pharmacophore design and synthesis of isatin-benzothiazole analogs for their anti-breast cancer activity. Bioorg. Med. Chem., 2009, 17(21), 7585-7592.
[http://dx.doi.org/10.1016/j.bmc.2009.08.068] [PMID: 19804979]
[127]
Eldehna, W.M.; Almahli, H.; Al-Ansary, G.H.; Ghabbour, H.A.; Aly, M.H.; Ismael, O.E.; Al-Dhfyan, A.; Abdel-Aziz, H.A. Synthesis and in vitro anti-proliferative activity of some novel isatins conjugated with quinazoline/phthalazine hydrazines against triple-negative breast cancer MDA-MB-231 cells as apoptosis-inducing agents. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 600-613.
[http://dx.doi.org/10.1080/14756366.2017.1279155] [PMID: 28173708]
[128]
Zou, Y. Benzofuran-isatin conjugates as potent VEGFR-2 and cancer cell growth inhibitors. J. Heterocycl. Chem., 2019, 57, 510-516.
[http://dx.doi.org/10.1002/jhet.3795]
[129]
Rutanen, E.M.; Heikkinen, J.; Halonen, K.; Komi, J.; Lammintausta, R.; Ylikorkala, O. Effects of ospemifene, a novel SERM, on hormones, genital tract, climacteric symptoms, and quality of life in postmenopausal women: A double-blind, randomized trial. Menopause, 2003, 10(5), 433-439.
[http://dx.doi.org/10.1097/01.GME.0000063609.62485.27] [PMID: 14501605]
[130]
Kumar, S.; Gu, L.; Palma, G.; Kaur, M.; Singh-pillay, A.; Singh, P.; Kumar, V. Synthesis, anti-proliferative evaluation and docking studies of 1H-1,2,3-triazole tethered ospemifene–isatin conjugates as selective estrogen receptor modulators. New J. Chem., 2018, 42, 3703-3713.
[http://dx.doi.org/10.1039/C7NJ04964A]
[131]
Ke, S.; Shi, L.; Yang, Z. Discovery of novel isatin-dehydroepiandrosterone conjugates as potential anticancer agents. Bioorg. Med. Chem. Lett., 2015, 25(20), 4628-4631.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.041] [PMID: 26320625]
[132]
Sharma, B.; Singh, A.; Gu, L.; Saha, S.T.; Singh, A.P.; Cele, N.; Singh, P.; Kaur, M.; Kumar, V. Diastereoselective approach to rationally design tetrahydro-b-carboline–isatin conjugates as potential SERMs against breast cancer. RSC Advances, 2019, 9, 9809-9819.
[http://dx.doi.org/10.1039/C9RA00744J]
[133]
El-Azab, A.S.; Al-Dhfyan, A.; Abdel-Aziz, A.A.; Abou-Zeid, L.A.; Alkahtani, H.M.; Al-Obaid, A.M.; Al-Gendy, M.A. Synthesis, anticancer and apoptosis-inducing activities of quinazoline-isatin conjugates: Epidermal growth factor receptor-tyrosine kinase assay and molecular docking studies. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 935-944.
[http://dx.doi.org/10.1080/14756366.2017.1344981] [PMID: 28718672]
[134]
Panga, S.; Podila, N.K.; Ciddi, V. Design, synthesis, characterization, and in vitro evaluation of isatin-pomalidomide hybrids for cytotoxicity against multiple myeloma cell lines. J. Heterocycl. Chem., 2018, 55, 2919-2928.
[http://dx.doi.org/10.1002/jhet.3365]
[135]
Kumar, S.; Saha, S.T.; Gu, L.; Palma, G.; Perumal, S.; Singh-Pillay, A.; Singh, P.; Anand, A.; Kaur, M.; Kumar, V. 1H-1,2,3-triazole tethered nitroimidazole-isatin conjugates: Synthesis, docking, and anti-proliferative evaluation against breast cancer. ACS Omega, 2018, 3(9), 12106-12113.
[http://dx.doi.org/10.1021/acsomega.8b01513] [PMID: 30320289]
[136]
Kasaboina, S.; Bollu, R.; Ramineni, V. Novel benzosuberone conjugates as potential anti-proliferative agents: Design, synthesis and molecular docking studies. J. Mol. Struct., 2018, 1180, 355-362.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.072]
[137]
Kumar, N.; Chandra Shekhar Sharma, H.P.S.; Chauhan, L.S. Synthesis and in vitro evaluation of novel isatin-incorporated thiadiazole hybrids as potential anti-breast cancer agents. Trop. J. Pharm. Res., 2017, 16, 1957-1963.
[http://dx.doi.org/10.4314/tjpr.v16i8.28]
[138]
Sharma, S.; Gupta, M.K.; Saxena, A.K.; Bedi, P.M.S. Triazole linked mono carbonyl curcumin-isatin bifunctional hybrids as novel anti tubulin agents: Design, synthesis, biological evaluation and molecular modeling studies. Bioorg. Med. Chem., 2015, 23(22), 7165-7180.
[http://dx.doi.org/10.1016/j.bmc.2015.10.013] [PMID: 26515041]
[139]
RH, L.; RH, M.; BS, M.; E., P. Antiepileptic Drugs; fifth; Lippincott Williams and Wilkins: Philadelphia, United States, 2002.
[140]
Fauci, A.S.; Kasper, D.L.; Longo, D.L.; Braunwald, E.; Hauser, S.L.; Jameson, J.L.; Loscalzo, J. Harrison’s Principles of Internal Medicine, 16th ed; McGraw-Hill: New York City, United States, 2005.
[141]
Kulkarni, A.A.; Wankhede, S.B.; Dhawale, N.D.; Yadav, P.B.; Deore, V.V.; Gonjari, I.D. Synthesis, characterization and biological behavior of some schiff’s and mannich base derivatives of lamotrigine. Arab. J. Chem., 2017, 10, S184-S189.
[http://dx.doi.org/10.1016/j.arabjc.2012.07.020]
[142]
Sharma, P.K.; Balwani, S.; Mathur, D.; Malhotra, S.; Singh, B.K.; Prasad, A.K.; Len, C.; Van der Eycken, E.V.; Ghosh, B.; Richards, N.G.J.; Parmar, V.S. Synthesis and anti-inflammatory activity evaluation of novel triazolyl-isatin hybrids. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1520-1526.
[http://dx.doi.org/10.3109/14756366.2016.1151015] [PMID: 27146339]
[143]
Cryer, B.; Feldman, M. Cyclooxygenase-1 and cyclooxygenase-2 selectivity of widely used nonsteroidal anti-inflammatory drugs. Am. J. Med., 1998, 104(5), 413-421.
[http://dx.doi.org/10.1016/S0002-9343(98)00091-6] [PMID: 9626023]
[144]
Ibrahim, M.M.; Elsaman, T.; Al-Nour, M.Y. Synthesis, anti-inflammatory activity, and in silico study of novel diclofenac and isatin conjugates.Int. J. Med. Chem.,2018, 2018.
[http://dx.doi.org/10.1155/2018/9139786] [PMID: 30009055]
[145]
Wang, G.; Chen, M.; Qiu, J.; Xie, Z.; Cao, A. Synthesis, in vitro α-glucosidase inhibitory activity and docking studies of novel chromone-isatin derivatives. Bioorg. Med. Chem. Lett., 2018, 28(2), 113-116.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.047] [PMID: 29208524]
[146]
Wang, G.; Wang, J.; He, D.; Li, X.; Li, J.; Peng, Z. Synthesis, in vitro evaluation and molecular docking studies of novel coumarin-isatin derivatives as α-glucosidase inhibitors. Chem. Biol. Drug Des., 2017, 89(3), 456-463.
[http://dx.doi.org/10.1111/cbdd.12867] [PMID: 27616456]
[147]
Panga, S.; Podila, K.; Ciddi, V. Synthesis and ameliorative effect of isatin – mesalamine conjugates on acetic acid-induced colitis in rats. J. Heterocycl. Chem., 2019, 56, 956-967.
[http://dx.doi.org/10.1002/jhet.3474]
[148]
Qizilbash, N.; Whitehead, A.; Higgins, J.; Wilcock, G.; Schneider, L.; Farlow, M. Cholinesterase inhibition for Alzheimer disease: A meta-analysis of the tacrine trials. Dementia Trialists’ Collaboration. JAMA, 1998, 280(20), 1777-1782.
[http://dx.doi.org/10.1001/jama.280.20.1777] [PMID: 9842955]
[149]
Cacabelos, R.; Pablo Cacabelos, C.T. Handbook of Pharmacogenomics and Stratified Medicine; Academic Press, 2014.
[150]
Riazimontazer, E.; Sadeghpour, H.; Nadri, H.; Sakhteman, A.; Tüylü Küçükkılınç, T.; Miri, R.; Edraki, N. Design, synthesis and biological activity of novel tacrine-isatin Schiff base hybrid derivatives. Bioorg. Chem., 2019, 89103006
[http://dx.doi.org/10.1016/j.bioorg.2019.103006] [PMID: 31158577]
[151]
Khaldoun, K.; Safer, A.; Boukabcha, N.; Dege, N.; Ruchaud, S.; Souab, M.; Bach, S.; Chouaih, A.; Saidi-Besbes, S. Synthesis and evaluation of new isatin-aminorhodanine hybrids as PIM1 and CLK1 kinase inhibitors. J. Mol. Struct., 2019, 1192, 82-90.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.122]