Modern Strategies for Synthesis of Functionalized Bio-molecules

Page: [2525 - 2526] Pages: 2

  • * (Excluding Mailing and Handling)

[1]
Saha, A.; Payra, S.; Banerjee, S. One-pot multicomponent synthesis of highly functionalized bio-active pyrano[2,3-c]pyrazole and benzylpyrazolylcoumarin derivatives using ZrO2 nanoparticles as a reusable catalyst. Green Chem., 2015, 17, 2859-2866.
[http://dx.doi.org/doi.org/10.1039/C4GC02420F]
[2]
Payra, S.; Saha, A.; Banerjee, S. Nano-NiFe2O4 catalyzed microwave assisted one-pot regioselective synthesis of novel 2-alkoxyimidazo[1,2-a]pyridines under aerobic conditions. RSC Advances, 2016, 6, 12402-12407.
[http://dx.doi.org/doi.org/10.1039/C5RA25540F]
[3]
Patel, A.R.; Patel, G.; Banerjee, S. Visible light-emitting diode light-driven Cu0.9Fe0.1@RCAC catalyzed highly selective aerobic oxidation of alcohols and oxidative azo-coupling of anilines: tandem one pot oxidation-condensation to imidazoles and imines. ACS Omega, 2019, 4(27), 22445-22455.
[http://dx.doi.org/doi.org/10.1021/acsomega.9b03096]
[4]
Payra, S.; Saha, A.; Banerjee, S. Magnetically recoverable Fe3O4 nanoparticles for the one‐pot synthesis of coumarin‐3‐carboxamide derivatives in aqueous ethanol. ChemistrySelect, 2018, 3, 7535-7540.
[http://dx.doi.org/doi.org/10.1002/slct.201800523]
[5]
Payra, S.; Saha, A.; Banerjee, S. Nano-NiFe2O4 as an efficient catalyst for regio- and chemoselective transfer hydrogenation of olefins/alkynes and dehydrogenation of alcohols under Pd-/Ru-free conditions. RSC Advances, 2016, 6, 52495-52499.
[http://dx.doi.org/doi.org/10.1039/C6RA09659J]
[6]
Payra, S.; Saha, A.; Banerjee, S. Magnetically recoverable Fe3O4 nanoparticle-catalyzed one-pot synthesis of coumarin-3-carboxamide derivatives in aqueous ethanol. ChemistrySelect, 2018, 3, 7535-7540.
[http://dx.doi.org/doi.org/10.1002/slct.201800523]
[7]
Saha, A.; Payra, S.; Wu, C.M.; Selvaratnam, B.; Dramstad, T.; Mahoney, T.; Verma, S.K.; Thareja, S.; Koodali, R.; Banerjee, S. Fe-SBA-15 catalyzed synthesis of 2-alkoxyimidazo [1, 2-a] pyridines and screening of their in silico selectivity and binding affinity to biological targets. New J. Chem., 2016, 40, 9753-9760.
[http://dx.doi.org/doi.org/10.1039/C6NJ02134D]
[8]
Saha, A.; Payra, S.; Selvaratnam, B.; Bhattacharya, S.; Pal, S.; Koodali, R.T.; Banerjee, S. Hierarchical mesoporous RuO2/Cu2O nanoparticle-catalyzed oxidative homo/hetero azo-coupling of anilines. ACS Sustain. Chem.& Eng., 2018, 6(9), 11345-11352.
[http://dx.doi.org/doi.org/10.1021/acssuschemeng.8b01179]
[9]
Patel, G.; Patel, A.R.; Lambat, T.L.; Mahmood, S.; Banerjee, S. Rice husk derived nano-NiFe2O4@ CAGC-catalyzed direct oxidation of toluene to benzyl benzoate under visible LED light. FlatChem, 2020, 2020100163
[http://dx.doi.org/doi.org/10.1016/j.flatc.2020.100163]
[10]
Saha, A.; Payra, S.; Akhtar, A.; Banerjee, S. Fabrication of nano-CuO@ZnO for the synthesis of functionalized β-enaminone derivatives from β-nitrostyrenes, aliphatic/aromatic amines and 1,3-dicarbonyl/4-hydroxy coumarin. ChemistrySelect, 2017, 2, 7319-7324.
[http://dx.doi.org/doi.org/10.1002/slct.201700890]
[11]
Lambat, T.L.; Chaudhary, R.G.; Abdala, A.A.; Mishra, R.K.; Sami, M.; Banerjee, S. Mesoporous PbO nanoparticles-catalyzed arylbenzodioxy xanthenedione scaffolds under solvent-less conditions in a ball mill. RSC Advances, 2019, 9, 31683-31690.
[http://dx.doi.org/doi.org/10.1039/C9RA05903B]
[12]
Saha, A.; Wu, C.M.; Peng, R.; Koodali, R.; Banerjee, S. Facile synthesis of 1,3,5‐triarylbenzenes and 4‐aryl‐NH‐1,2,3‐triazoles using mesoporous Pd‐MCM‐41 as reusable catalyst. Eur. J. Org. Chem., 2019, 2019(1), 104-111.
[http://dx.doi.org/doi.org/10.1002/ejoc.201801290]
[13]
Lambat, T.L.; Chopra, P.K.P.G.; Mahmood, S.H. Microwave: a green contrivance for the synthesis of N-heterocyclic compounds. Curr. Org. Chem., 2020, 24(22), 2527-2554.
[http://dx.doi.org/doi.org/10.2174/1385272824999200622114919]
[14]
Sharma, A.; Wakode, S.; Sharma, S.; Fayaz, F.; Pottoo, F.H. Methods and strategies used in green chemistry: a review. Curr. Org. Chem., 2020, 24(22), 2555-2565.
[http://dx.doi.org/doi.org/10.2174/1385272824999200802025233.]
[15]
Patel, G.; Banerjee, S. Review on synthesis of bio-active coumarin-fused heterocyclic molecules. Curr. Org. Chem., 2020, 24(22), 2566-2587.
[http://dx.doi.org/doi.org/10.2174/1385272824999200709125717]
[16]
Khedkar, M.V.; Khan, S.R.; Lambat, T.L.; Chaudhary, R.G.; Abdala, A.A.C.O. Surrogates: a green alternative in palladium catalyzed CO gas free carbonylation reactions. Curr. Org. Chem., 2020, 24(22), 2588-2600.
[http://dx.doi.org/doi.org/10.2174/1385272824999200622115655]
[17]
Chandrakar, K.; Patel, L.J.; Mahapatra, S.P.; Penta, S. Recent advances in on-water multicomponent synthesis of coumarin derivatives. Curr. Org. Chem., 2020, 24(22), 2601-2611.
[18]
Dinda, E.; Bhunia, K.S.; Jana, R. Palladium-catalyzed cascade reactions for annulative π-extension of indoles to carbazoles through C-H Bond activation. Curr. Org. Chem., 2020, 24(22), 2612-2633.
[http://dx.doi.org/doi.org/10.2174/1385272824999200817170058.]
[19]
Adak, L.; Ghosh, T. Modern progress in iron-catalyzed reactions towards the synthesis of bioactive five- and six-membered heterocycles. Curr. Org. Chem., 2020, 24(22), 2634-2664.
[http://dx.doi.org/doi.org/10.2174/1385272824999200714102103.]
[20]
Mondal, D.; Kalar, L.P.; Kori, S.; Gayen, S.; Das, K. Green approaches for the synthesis of indole derivatives and their pharmaceutical applications: last ten years developments. Curr. Org. Chem., 2020, 24(22), 2665-2693.