Gold Nanoparticles Conjugated L-Lysine for Improving Cisplatin Delivery to Human Breast Cancer Cells

Page: [753 - 760] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Nano drug delivery is a broad field of research on the development of novel nano- carrier systems for effective therapeutic delivery of drugs. Here, an anticancer drug, cisplatin (CDDP) conjugated Gold Nanoparticles (GNPs) via L-Lysine (Lys) linker.

Methods: The produced nanodrug (GNPs-Lys-CDDP) was characterized by UV-Vis spectroscopy, Dynamic Light Scattering (DLS), Zeta potentials and electron force microscopy. The cytotoxic efficacy of the GNPs-Lys-CDDP against human breast cancer cells (SKBR3) and normal cells (MCF- 10A) was evaluatedby MTT assay. Cell apoptosis and morphology changes were assessed by flowcytometery and Acridine Orange/Ethidium Bromide (AO/EtBr) staining, respectively.

Results: It was found that the GNPs-Lys-CDDP with a size of 85 nm and negatively charged with a zeta-potential of about -25 mV could be taken up by tumor cells. A marked change in the UV spectrum of GNPs-Lys-CDDP compare to GNPs showed a strong absorption shift in the 525 nm region. The LD 50 of GNPs-Lys-CDDP against SKBR3 (1 μg.mL -1), was found to be 8 times lower than that of naked CDDP against SKBR3 (8 μg.mL -1). The nanocomplex GNPs-Lys-CDDP also significantly increased the apoptosis of SKBR3 with the lowest cytotoxic effects on normal cells.

Discussion: This work indicates that GNPs effectively could decrease the lethal dose of CDDP to 87%. Hence, GNPs modified by Lys, could be a good nano-carrier for chemotherapeutic drugs.

Keywords: Drug delivery, gold nanoparticles, cancer treatment drug, l-lysine, cisplatin, spectroscopy.

Graphical Abstract

[1]
Huang, X.; El-Sayed, M.A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res., 2010, 1(1), 13-28.
[http://dx.doi.org/10.1016/j.jare.2010.02.002]
[2]
Dashtestani, F.; Ghourchian, H.; Najafi, A. Silver-gold-apoferritin nanozyme for suppressing oxidative stress during cryopreservation. Mater. Sci. Eng. C, 2019, 94, 831-840.
[http://dx.doi.org/10.1016/j.msec.2018.10.008] [PMID: 30423769]
[3]
Zarei-Ghobadi, M.; Mozhgani, S-H.; Dashtestani, F.; Yadegari, A.; Hakimian, F.; Norouzi, M.; Ghourchian, H. A genosensor for detection of HTLV-I based on photoluminescence quenching of fluorescent carbon dots in presence of iron magnetic nanoparticle- capped Au. Sci. Rep., 2018, 8(1), 15593.
[http://dx.doi.org/10.1038/s41598-018-32756-w] [PMID: 30348974]
[4]
Mekheimer, K.S.; Hasona, W.; Abo-Elkhair, R.; Zaher, A. Peristaltic blood flow with gold nanoparticles as a third grade nanofluid in catheter: Application of cancer therapy. Phys. Lett. A, 2018, 382(2-3), 85-93.
[http://dx.doi.org/10.1016/j.physleta.2017.10.042]
[5]
Bergen, J.M.; von Recum, H.A.; Goodman, T.T.; Massey, A.P.; Pun, S.H. Gold nanoparticles as a versatile platform for optimizing physicochemical parameters for targeted drug delivery. Macromol. Biosci., 2006, 6(7), 506-516.
[http://dx.doi.org/10.1002/mabi.200600075] [PMID: 16921538]
[6]
Bahrami, B.; Hojjat-Farsangi, M.; Mohammadi, H.; Anvari, E.; Ghalamfarsa, G.; Yousefi, M.; Jadidi-Niaragh, F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett., 2017, 190, 64-83.
[http://dx.doi.org/10.1016/j.imlet.2017.07.015] [PMID: 28760499]
[7]
Giljohann, D.A.; Seferos, D.S.; Daniel, W.L.; Massich, M.D.; Patel, P.C.; Mirkin, C.A. Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed., 2010, 49(19), 3280-3294.
[http://dx.doi.org/10.1002/anie.200904359] [PMID: 20401880]
[8]
Duan, X.; He, C.; Kron, S.J.; Lin, W. Nanoparticle formulations of cisplatin for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(5), 776-791.
[http://dx.doi.org/10.1002/wnan.1390] [PMID: 26848041]
[9]
Aryal, S.; Grailer, J.J.; Pilla, S.; Steeber, D.A.; Gong, S. Doxorubicin conjugated gold nanoparticles as water-soluble and pH-responsive anticancer drug nanocarriers. J. Mater. Chem., 2009, 19(42), 7879-7884.
[http://dx.doi.org/10.1039/b914071a]
[10]
Kim, M.; Ock, K.; Cho, K.; Joo, S-W.; Lee, S.Y. Live-cell monitoring of the glutathione-triggered release of the anticancer drug topotecan on gold nanoparticles in serum-containing media. Chem. Commun. (Camb.), 2012, 48(35), 4205-4207.
[http://dx.doi.org/10.1039/c2cc30679d] [PMID: 22441353]
[11]
Heo, D.N.; Yang, D.H.; Moon, H-J.; Lee, J.B.; Bae, M.S.; Lee, S.C.; Lee, W.J.; Sun, I.C.; Kwon, I.K. Gold nanoparticles surface- functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy. Biomaterials, 2012, 33(3), 856-866.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.064] [PMID: 22036101]
[12]
Lam, A.T.N.; Yoon, J.; Ganbold, E-O.; Singh, D.K.; Kim, D.; Cho, K-H.; Lee, S.Y.; Choo, J.; Lee, K.; Joo, S.W. Colloidal gold nanoparticle conjugates of gefitinib. Colloids Surf. B Biointerfaces, 2014, 123, 61-67.
[http://dx.doi.org/10.1016/j.colsurfb.2014.08.021] [PMID: 25216919]
[13]
Dreaden, E.C.; Mwakwari, S.C.; Sodji, Q.H.; Oyelere, A.K.; El-Sayed, M.A. Tamoxifen-poly(ethylene glycol)-thiol gold nanoparticle conjugates: enhanced potency and selective delivery for breast cancer treatment. Bioconjug. Chem., 2009, 20(12), 2247-2253.
[http://dx.doi.org/10.1021/bc9002212] [PMID: 19919059]
[14]
Labala, S.; Mandapalli, P.K.; Kurumaddali, A.; Venuganti, V.V.K. Layer-by-layer polymer coated gold nanoparticles for topical delivery of imatinib mesylate to treat melanoma. Mol. Pharm., 2015, 12(3), 878-888.
[http://dx.doi.org/10.1021/mp5007163] [PMID: 25587849]
[15]
Zare-Zardini, H.; Taheri-Kafrani, A.; Amiri, A.; Bordbar, A-K. New generation of drug delivery systems based on ginsenoside Rh2-, Lysine- and Arginine-treated highly porous graphene for improving anticancer activity. Sci. Rep., 2018, 8(1), 586.
[http://dx.doi.org/10.1038/s41598-017-18938-y] [PMID: 29330486]
[16]
Farjadian, F.; Rezaeifard, S.; Naeimi, M.; Ghasemi, S.; Mohammadi-Samani, S.; Welland, M.E.; Tayebi, L. Temperature and pH-responsive nano-hydrogel drug delivery system based on lysine- modified poly (vinylcaprolactam). Int. J. Nanomedicine, 2019, 14, 6901-6915.
[http://dx.doi.org/10.2147/IJN.S214467] [PMID: 31564860]
[17]
Florea, A-M.; Büsselberg, D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel), 2011, 3(1), 1351-1371.
[http://dx.doi.org/10.3390/cancers3011351] [PMID: 24212665]
[18]
Xiong, X.; Arvizo, R.R.; Saha, S.; Robertson, D.J.; McMeekin, S.; Bhattacharya, R.; Mukherjee, P. Sensitization of ovarian cancer cells to cisplatin by gold nanoparticles. Oncotarget, 2014, 5(15), 6453-6465.
[http://dx.doi.org/10.18632/oncotarget.2203] [PMID: 25071019]
[19]
Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B, 2006, 110(32), 15700-15707.
[http://dx.doi.org/10.1021/jp061667w] [PMID: 16898714]
[20]
Van Meerloo, J.; Kaspers, G.J.; Cloos, J. Cell sensitivity assays: the MTT assay.Cancer cell culture; Springer, 2011, pp. 237-245.
[http://dx.doi.org/10.1007/978-1-61779-080-5_20]
[21]
James, A.E.; Driskell, J.D. Monitoring gold nanoparticle conjugation and analysis of biomolecular binding with Nanoparticle Tracking Analysis (NTA) and Dynamic Light Scattering (DLS). Analyst (Lond.), 2013, 138(4), 1212-1218.
[http://dx.doi.org/10.1039/c2an36467k] [PMID: 23304695]
[22]
Attia, M.F.; Anton, N.; Wallyn, J.; Omran, Z.; Vandamme, T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol., 2019, 71(8), 1185-1198.
[http://dx.doi.org/10.1111/jphp.13098] [PMID: 31049986]