Huntingtin Levels are Elevated in Hippocampal Post-Mortem Samples of Alzheimer’s Disease Brain

Page: [858 - 867] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: We have recently identified Huntingtin (Htt), the pathogenic protein in Huntington’s disease, as a mediator of Alzheimer’s disease (AD) pathology in an amyloid precursor protein (APP) knock-in mouse model of AD. That finding prompted us to examine if Htt is accumulated in the brains of AD patients and in which cell type Htt is present in the AD brain.

Objective: To investigate whether location and levels of Htt are affected in hippocampus and frontal cortex in AD.

Methods: Brains from AD patients (n=11) and controls (n=11) were stained for Htt using immunohistochemistry and signal intensity of Htt was quantified and localized in subregions and neurons. Confocal microscopy was used to characterize neuronal Htt localisation and its relationship with tau tangles and astrocytes.

Results: Htt levels were increased in neuronal cells in the granular layer of the dentate gyrus, in CA1 and CA3 in hippocampus and in layer III of the frontal cortex. Htt was found in the soma, perinuclear space, thin neurites and nucleus of pyramidal neurons. Htt was present in neurons containing tau tangles but did not colocalize with astrocytes.

Conclusion: Htt accumulates in pyramidal neuron-rich areas including hippocampal subregions associated with memory and frontal cortex layer III. The accumulation of Htt in AD shows distinct cellular and morphological patterns and is not present in astrocytes. Clearly, further research is warranted to elucidate the role of Htt as a mediator of AD pathology and the potential use of Htt as a target in future therapeutic strategies.

Keywords: Alzheimer's disease, confocal microscopy, GFAP, hippocampus, human brain, huntingtin, immunohistochemistry, post-mortem.

[1]
Prince MJ. World Alzheimer Report 2015. The Global Impact of Dementia 2015 https://www.alz.co.uk/research/world-report-2015
[2]
Nichols E, Szoeke CEI, Vollset SE, et al. GBD 2016 Dementia Collaborators Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18(1): 88-106.
[http://dx.doi.org/10.1016/S1474-4422(18)30403-4 ] [PMID: 30497964]
[3]
Winblad B, Amouyel P, Andrieu S, et al. Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol 2016; 15(5): 455-532.
[http://dx.doi.org/10.1016/S1474-4422(16)00062-4 ] [PMID: 26987701]
[4]
Wimo A, Guerchet M, Ali G-C, et al. The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement 2017; 13(1): 1-7.
[http://dx.doi.org/10.1016/j.jalz.2016.07.150 ] [PMID: 27583652]
[5]
Mehta D, Jackson R, Paul G, Shi J, Sabbagh M. Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert Opin Investig Drugs 2017; 26(6): 735-9.
[http://dx.doi.org/10.1080/13543784.2017.1323868 ] [PMID: 28460541]
[6]
Yiannopoulou KG, Papageorgiou SG. Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disorder 2013; 6(1): 19-33.
[http://dx.doi.org/10.1177/1756285612461679 ] [PMID: 23277790]
[7]
Brotchie J, Bezard E, Jenner P. Pathophysiology, pharmacology and biochemistry of dyskinesia. Academic Press 2011.
[8]
Daldin M, Fodale V, Cariulo C, et al. Polyglutamine expansion affects huntingtin conformation in multiple Huntington’s disease models Sci Rep 7(1): 2017; 5070https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5505970/
[http://dx.doi.org/10.1038/s41598-017-05336-7]
[9]
Fodale V, Kegulian NC, Verani M, et al. Polyglutamine- and temperature-dependent conformational rigidity in mutant huntingtin revealed by immunoassays and circular dichroism spectroscopy. PLoS One 2014; 9(12)e112262
[http://dx.doi.org/10.1371/journal.pone.0112262 ] [PMID: 25464275]
[10]
Bano D, Zanetti F, Mende Y, Nicotera P. Neurodegenerative processes in Huntington’s disease. Cell Death Dis 2011; 2e228
[http://dx.doi.org/10.1038/cddis.2011.112 ] [PMID: 22071633]
[11]
El-Daher M-T, Hangen E, Bruyère J, et al. Huntingtin proteolysis releases non-polyQ fragments that cause toxicity through dynamin 1 dysregulation. EMBO J 2015; 34(17): 2255-71.
[http://dx.doi.org/10.15252/embj.201490808 ] [PMID: 26165689]
[12]
Aziz NA, van der Burg JMM, Tabrizi SJ, Landwehrmeyer GB. Overlap between age-at-onset and disease-progression determinants in Huntington disease. Neurology 2018; 90(24): e2099-106.
[http://dx.doi.org/10.1212/WNL.0000000000005690 ] [PMID: 29743208]
[13]
Tan Z, Dai W, van Erp TGM, et al. Huntington’s disease cerebrospinal fluid seeds aggregation of mutant huntingtin. Mol Psychiatry 2015; 20(11): 1286-93.
[http://dx.doi.org/10.1038/mp.2015.81 ] [PMID: 26100538]
[14]
Niemelä V, Landtblom A-M, Blennow K, Sundblom J. Tau or neurofilament light-Which is the more suitable biomarker for Huntington’s disease? PLoS One 2017; 12(2)e0172762
[http://dx.doi.org/10.1371/journal.pone.0172762 ] [PMID: 28241046]
[15]
Rodrigues FB, Byrne L, McColgan P, et al. Cerebrospinal fluid total tau concentration predicts clinical phenotype in Huntington’s disease. J Neurochem 2016; 139(1): 22-5.
[http://dx.doi.org/10.1111/jnc.13719 ] [PMID: 27344050]
[16]
Singhrao SK, Thomas P, Wood JD, et al. Huntingtin protein colocalizes with lesions of neurodegenerative diseases: An investigation in Huntington’s, Alzheimer’s, and Pick’s diseases. Exp Neurol 1998; 150(2): 213-22.
[http://dx.doi.org/10.1006/exnr.1998.6778 ] [PMID: 9527890]
[17]
Förstl H, Kurz A. Clinical features of Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 1999; 249(6): 288-90.
[http://dx.doi.org/10.1007/s004060050101 ] [PMID: 10653284]
[18]
Roos RA. Huntington’s disease: A clinical review. Orphanet J Rare Dis 2010; 5: 40.
[http://dx.doi.org/10.1186/1750-1172-5-40 ] [PMID: 21171977]
[19]
De Strooper B, Vassar R, Golde T. The secretases: Enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 2010; 6(2): 99-107.
[http://dx.doi.org/10.1038/nrneurol.2009.218 ] [PMID: 20139999]
[20]
Reiner A, Dragatsis I, Zeitlin S, Goldowitz D. Wild-type huntingtin plays a role in brain development and neuronal survival. Mol Neurobiol 2003; 28(3): 259-76.
[http://dx.doi.org/10.1385/MN:28:3:259 ] [PMID: 14709789]
[21]
Nicolas M, Hassan BA. Amyloid precursor protein and neural development. Development 2014; 141(13): 2543-8.
[http://dx.doi.org/10.1242/dev.108712 ] [PMID: 24961795]
[22]
Menéndez-González M, Clarimón J, Rosas-Allende I, et al. HTT gene intermediate alleles in neurodegeneration: Evidence for association with Alzheimer’s disease. Neurobiol Aging 2019; 76: 215.e9-215.e14.
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.11.014 ] [PMID: 30583877]
[23]
Hartlage-Rübsamen M, Ratz V, Zeitschel U, et al. Endogenous mouse huntingtin is highly abundant in cranial nerve nuclei, co-aggregates to Abeta plaques and is induced in reactive astrocytes in a transgenic mouse model of Alzheimer’s disease. Acta Neuropathol Commun 2019; 7(1): 79.
[http://dx.doi.org/10.1186/s40478-019-0726-2 ] [PMID: 31109380]
[24]
Wood TE, Barry J, Yang Z, Cepeda C, Levine MS, Gray M. Mutant huntingtin reduction in astrocytes slows disease progression in the BACHD conditional Huntington’s disease mouse model. Hum Mol Genet 2019; 28(3): 487-500.
[PMID: 30312396]
[25]
Bradford J, Shin J-Y, Roberts M, Wang C-E, Li X-J, Li S. Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci USA 2009; 106(52): 22480-5.
[http://dx.doi.org/10.1073/pnas.0911503106 ] [PMID: 20018729]
[26]
Garcia VJ, Rushton DJ, Tom CM, et al. Huntington’s disease patient-derived astrocytes display electrophysiological impairments and reduced neuronal support Front Neurosci 2019; 13: 669https://www.frontiersin.org/articles/10.3389/fnins.2019.00669/full
[http://dx.doi.org/10.3389/fnins.2019.00669]
[27]
Morris JC, Heyman A, Mohs RC, et al. The consortium to establish a registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 1989; 39(9): 1159-65.
[http://dx.doi.org/10.1212/WNL.39.9.1159 ] [PMID: 2771064]
[28]
Mann DM. Pyramidal nerve cell loss in Alzheimer’s disease. Neurodegeneration 1996; 5(4): 423-7.
[http://dx.doi.org/10.1006/neur.1996.0057 ] [PMID: 9117557]
[29]
Cowan CM, Raymond LA. Selective neuronal degeneration in Huntington’s disease. Curr Top Dev Biol 2006; 75: 25-71.
[http://dx.doi.org/10.1016/S0070-2153(06)75002-5 ] [PMID: 16984809]
[30]
Bartus RT, Dean RL III, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982; 217(4558): 408-14.
[http://dx.doi.org/10.1126/science.7046051 ] [PMID: 7046051]
[31]
Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer’s disease: Targeting the cholinergic system. Curr Neuropharmacol 2016; 14(1): 101-15.
[http://dx.doi.org/10.2174/1570159X13666150716165726 ] [PMID: 26813123]
[32]
Dannenberg H, Young K, Hasselmo M. Modulation of hippocampal circuits by muscarinic and nicotinic receptors Front Neural Circuits 2017; 11: 102.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5733553/
[http://dx.doi.org/10.3389/fncir.2017.00102 ]
[33]
Arendt T, Brückner MK, Morawski M, Jäger C, Gertz H-J. Early neurone loss in Alzheimer’s disease: Cortical or subcortical? Acta Neuropathol Commun 2015; 3: 10.
[http://dx.doi.org/10.1186/s40478-015-0187-1]
[34]
Estrada-Sánchez AM, Rebec GV. Role of cerebral cortex in the neuropathology of Huntington’s disease Front Neural Circuits 2013; 7: 19.https://www.frontiersin.org/articles/10.3389/fncir.2013.00019/full
[http://dx.doi.org/10.3389/fncir.2013.00019]
[35]
Palpagama TH, Waldvogel HJ, Faull RLM, Kwakowsky A. The role of microglia and astrocytes in Huntington’s disease Front Mol Neurosci 2019; 12: 258.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6824292/
[http://dx.doi.org/10.3389/fnmol.2019.00258]
[36]
Gray M. Astrocytes in Huntington’s Disease. Adv Exp Med Biol 2019; 1175: 355-81.
[http://dx.doi.org/10.1007/978-981-13-9913-8_14 ] [PMID: 31583595]
[37]
Chun H, Lee CJ. Reactive astrocytes in Alzheimer’s disease: A double-edged sword. Neurosci Res 2018; 126: 44-52.
[http://dx.doi.org/10.1016/j.neures.2017.11.012 ] [PMID: 29225140]
[38]
Ehrnhoefer DE, Butland SL, Pouladi MA, Hayden MR. Mouse models of Huntington disease: Variations on a theme. Dis Model Mech 2009; 2(3-4): 123-9.
[http://dx.doi.org/10.1242/dmm.002451 ] [PMID: 19259385]
[39]
Aronin N, Chase K, Young C, et al. CAG expansion affects the expression of mutant Huntingtin in the Huntington’s disease brain. Neuron 1995; 15(5): 1193-201.
[http://dx.doi.org/10.1016/0896-6273(95)90106-X ] [PMID: 7576661]
[40]
Boutell JM, Thomas P, Neal JW, et al. Aberrant interactions of transcriptional repressor proteins with the Huntington’s disease gene product, huntingtin. Hum Mol Genet 1999; 8(9): 1647-55.
[http://dx.doi.org/10.1093/hmg/8.9.1647 ] [PMID: 10441327]
[41]
Xia J, Lee DH, Taylor J, Vandelft M, Truant R. Huntingtin contains a highly conserved nuclear export signal. Hum Mol Genet 2003; 12(12): 1393-403.
[http://dx.doi.org/10.1093/hmg/ddg156 ] [PMID: 12783847]
[42]
Scherzinger E, Sittler A, Schweiger K, et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: Implications for Huntington’s disease pathology. Proc Natl Acad Sci USA 1999; 96(8): 4604-9.
[http://dx.doi.org/10.1073/pnas.96.8.4604 ] [PMID: 10200309]
[43]
Schedin-Weiss S, Nilsson P, Sandebring-Matton A, et al. Proteomics time-course study of App knock-in mice reveals novel presymptomatic Aβ42-induced pathways to Alzheimer’s disease pathology. J Alzheimers Dis 2020; 75(1): 321-35.
[http://dx.doi.org/10.3233/JAD-200028 ] [PMID: 32280097]
[44]
Debatin L, Streffer J, Geissen M, Matschke J, Aguzzi A, Glatzel M. Association between deposition of beta-amyloid and pathological prion protein in sporadic Creutzfeldt-Jakob disease. Neurodegener Dis 2008; 5(6): 347-54.
[http://dx.doi.org/10.1159/000121389 ] [PMID: 18349519]
[45]
Hamilton RL. Lewy bodies in Alzheimer’s disease: A neuropathological review of 145 cases using alpha-synuclein immunohistochemistry. Brain Pathol 2000; 10(3): 378-84.
[http://dx.doi.org/10.1111/j.1750-3639.2000.tb00269.x ] [PMID: 10885656]
[46]
Hainfellner JA, Wanschitz J, Jellinger K, Liberski PP, Gullotta F, Budka H. Coexistence of Alzheimer-type neuropathology in Creutzfeldt-Jakob disease. Acta Neuropathol 1998; 96(2): 116-22.
[http://dx.doi.org/10.1007/s004010050870 ] [PMID: 9705125]
[47]
Borrell-Pagès M, Zala D, Humbert S, Saudou F. Huntington’s disease: From huntingtin function and dysfunction to therapeutic strategies. Cell Mol Life Sci 2006; 63(22): 2642-60.
[http://dx.doi.org/10.1007/s00018-006-6242-0 ] [PMID: 17041811]
[48]
Schulte J, Littleton JT. The biological function of the Huntingtin protein and its relevance to Huntington’s Disease pathology. Curr Trends Neurol 2011; 5: 65-78.
[PMID: 22180703]
[49]
Atwal RS, Xia J, Pinchev D, Taylor J, Epand RM, Truant R. Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum Mol Genet 2007; 16(21): 2600-15.
[http://dx.doi.org/10.1093/hmg/ddm217 ] [PMID: 17704510]
[50]
A study to evaluate the efficacy and safety of intrathecally administered RO7234292 (RG6042) in patients with manifest Huntington’s disease. Available from: https://clinicaltrials.gov/ct2/show/study/NCT03761849
[51]
Safety and proof-of-concept (POC) study with amt-130 in adults with early manifest Huntington disease. https://clinicaltrials.gov/ct2/show/NCT04120493