Association Between Oxidative Stress and Altered Cholesterol Metabolism in Alzheimer’s Disease Patients

Page: [823 - 834] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Oxidative stress is the main feature of several diseases including Alzheimer’s disease (AD). The involvement of oxysterols derivates has been recently reported.

Objective: The aim of this study was to evaluate the implication of oxidative stress in cholesterol impairment in AD patients.

Methods: A case-control study was conducted on 56 AD patients and 97 controls. Levels of oxidative biomarkers, including lipid peroxidation products and antioxidant enzyme activities were measured with spectrophotometric methods on red blood cells (RBCs) and plasma. Cholesterol precursors and oxysterols (7-Ketocholeterol (7KC), 7α-hydroxycholesterol (7α-OHC), 7β-hydroxycholesterol (7β-OHC), 24Shydroxycholesterol (24S-OH), 25-hyroxycholesterol (25-OHC), and 27-hydroxycholesterol (27-OHC), in plasma were quantified by gas chromatography coupled with mass spectrometry.

Results: In RBCs and plasma of AD patients, a significant decrease of glutathione peroxidase (GPx) activity was detected associated with raised levels of malondialdehyde (MDA). A decreased level of lanosterol and an accumulation of 7β-OHC, 24S-OHC, 27-OHC, and 25-OHC that were higher in plasma of AD patients, compared to controls, were also observed in AD patients. Mini-Mental State Examination (MMSE) score was correlated with MDA and conjugated dienes (CD) levels in plasma. Besides, the MDA level in RBCs was correlated with 7β-OHC. Binary logistic regression revealed an association between GPx activity and AD (OR=0.895, 95%CI: 0.848-0.945. P<0.001).

Conclusion: Our data consolidate the relationship between the rupture of redox homeostasis and lipid and cholesterol oxidation in AD.

Keywords: Alzheimer's disease, oxidative stress, oxysterols, lipid peroxidation, antioxydant enzymes, cholesterol.

[1]
Sies H, Jones D. Oxidative stress Encyclopedia of stress Fink G Ed 2nd ed Elsevier: Amsterdam 2007; 3: pp.: 45-8.
[http://dx.doi.org/10.1016/B978-012373947-6.00285-3]
[2]
Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 2005; 70(2): 200-14.
[http://dx.doi.org/10.1007/s10541-005-0102-7 ] [PMID: 15807660]
[3]
Karelson E, Bogdanovic N, Garlind A, et al. The cerebrocortical areas in normal brain aging and in Alzheimer’s disease: Noticeable differences in the lipid peroxidation level and in antioxidant defense. Neurochem Res 2001; 26(4): 353-61.
[http://dx.doi.org/10.1023/A:1010942929678 ] [PMID: 11495345]
[4]
Siems W, Grune T. Lipid peroxidation measurements – methodological approaches and clinical importance Free radicals and diseases: Gene expression cellular metabolism and pathophysiology Grune T. Amsterdam, Berlin, Oxford, Tokyo, Washington: IOS Press 2005; Vol. 367: pp. 11-22.
[5]
Doorn JA, Petersen DR. Covalent modification of amino acid nucleophiles by the lipid peroxidation products 4-hydroxy-2-nonenal and 4-oxo-2-nonenal. Chem Res Toxicol 2002; 15(11): 1445-50.
[http://dx.doi.org/10.1021/tx025590o ] [PMID: 12437335]
[6]
Skoumalová A, Mádlová P, Topinková E. End products of lipid peroxidation in erythrocyte membranes in Alzheimer’s disease. Cell Biochem Funct 2012; 30(3): 205-10.
[http://dx.doi.org/10.1002/cbf.1836 ] [PMID: 22161584]
[7]
Kosenko EA, Aliev G, Tikhonova LA, Li Y, Poghosyan AC, Kaminsky YG. Antioxidant status and energy state of erythrocytes in Alzheimer dementia: Probing for markers. CNS Neurol Disord Drug Targets 2012; 11(7): 926-32.
[http://dx.doi.org/10.2174/1871527311201070926 ] [PMID: 22998137]
[8]
Kim TS, Pae CU, Yoon SJ, et al. Decreased plasma antioxidants in patients with Alzheimer’s disease. Int J Geriatr Psychiatry 2006; 21(4): 344-8.
[http://dx.doi.org/10.1002/gps.1469 ] [PMID: 16534775]
[9]
Ačimovič J, Rozman D. Steroidal triterpenes of cholesterol synthesis. Molecules 2013; 18(4): 4002-17.
[http://dx.doi.org/10.3390/molecules18044002 ] [PMID: 23558541]
[10]
Lütjohann D, Brzezinka A, Barth E, et al. Profile of cholesterol-related sterols in aged amyloid precursor protein transgenic mouse brain. J Lipid Res 2002; 43(7): 1078-85.
[http://dx.doi.org/10.1194/jlr.M200071-JLR200 ] [PMID: 12091492]
[11]
Hannaoui S, Shim SY, Cheng YC, Corda E, Gilch S. Cholesterol balance in prion diseases and Alzheimer’s disease. Viruses 2014; 6(11): 4505-35.
[http://dx.doi.org/10.3390/v6114505 ] [PMID: 25419621]
[12]
Yousuf FA, Iqbal MP. Review: Apolipoprotein E (Apo E) gene polymorphism and coronary heart disease in Asian populations. Pak J Pharm Sci 2015; 28(4): 1439-44.
[PMID: 26142535]
[13]
Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993; 261(5123): 921-3.
[http://dx.doi.org/10.1126/science.8346443 ] [PMID: 8346443]
[14]
Lütjohann D, Björkhem I, Locatelli S, et al. Cholesterol dynamics in the foetal and neonatal brain as reflected by circulatory levels of 24S-hydroxycholesterol. Acta Paediatr 2001; 90(6): 652-7.
[http://dx.doi.org/10.1080/080352501750258720 ] [PMID: 11440099]
[15]
Olkkonen VM, Béaslas O, Nissilä E. Oxysterols and their cellular effectors. Biomolecules 2012; 2(1): 76-103.
[http://dx.doi.org/10.3390/biom2010076 ] [PMID: 24970128]
[16]
Schenck GO, Gollnick K, Neümuller OA. Photosensitized autoxidation of steroids preparation of steroid hydroperoxides by means of phototoxic photosentitizers. Liebigs Ann 1957; 603: 46.
[http://dx.doi.org/10.1002/jlac.19576030108]
[17]
Larsson H, Böttiger Y, Iuliano L, Diczfalusy U. In vivo interconversion of 7beta-hydroxycholesterol and 7-ketocholesterol, potential surrogate markers for oxidative stress. Free Radic Biol Med 2007; 43(5): 695-701.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.04.033 ] [PMID: 17664133]
[18]
Hascalovici JR, Vaya J, Khatib S, et al. Brain sterol dysregulation in sporadic AD and MCI: Relationship to heme oxygenase-1. J Neurochem 2009; 110(4): 1241-53.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06213.x ] [PMID: 19522732]
[19]
Gamba P, Testa G, Gargiulo S, Staurenghi E, Poli G, Leonarduzzi G. Oxidized cholesterol as the driving force behind the development of Alzheimer’s disease. Front Aging Neurosci 2015; 7: 119.
[http://dx.doi.org/10.3389/fnagi.2015.00119 ] [PMID: 26150787]
[20]
Testa G, Staurenghi E, Zerbinati C, et al. Changes in brain oxysterols at different stages of Alzheimer’s disease: Their involvement in neuroinflammation. Redox Biol 2016; 10: 24-33.
[http://dx.doi.org/10.1016/j.redox.2016.09.001 ] [PMID: 27687218]
[21]
Lizard G, Monier S, Cordelet C, et al. Characterization and comparison of the mode of cell death, apoptosis versus necrosis, induced by 7beta-hydroxycholesterol and 7-ketocholesterol in the cells of the vascular wall. Arterioscler Thromb Vasc Biol 1999; 19(5): 1190-200.
[http://dx.doi.org/10.1161/01.ATV.19.5.1190 ] [PMID: 10323769]
[22]
Ragot K, Mackrill JJ, Zarrouk A, et al. Absence of correlation between oxysterol accumulation in lipid raft microdomains, calcium increase, and apoptosis induction on 158N murine oligodendrocytes. Biochem Pharmacol 2013; 86(1): 67-79.
[http://dx.doi.org/10.1016/j.bcp.2013.02.028 ] [PMID: 23473804]
[23]
Nury T, Samadi M, Zarrouk A, Riedinger JM, Lizard G. Improved synthesis and in vitro evaluation of the cytotoxic profile of oxysterols oxidized at C4 (4α- and 4β-hydroxycholesterol) and C7 (7-ketocholesterol, 7α- and 7β-hydroxycholesterol) on cells of the central nervous system. Eur J Med Chem 2013; 70: 558-67.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.028 ] [PMID: 24211631]
[24]
Gargiulo S, Testa G, Gamba P, Staurenghi E, Poli G, Leonarduzzi G. Oxysterols and 4-hydroxy-2-nonenal contribute to atherosclerotic plaque destabilization. Free Radic Biol Med 2017; 111: 140-50.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.12.037 ] [PMID: 28057601]
[25]
Poli G, Biasi F, Leonarduzzi G. Oxysterols in the pathogenesis of major chronic diseases. Redox Biol 2013; 1: 125-30.
[http://dx.doi.org/10.1016/j.redox.2012.12.001 ] [PMID: 24024145]
[26]
Vaya J, Schipper HM. Oxysterols, cholesterol homeostasis, and Alzheimer disease. J Neurochem 2007; 102(6): 1727-37.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04689.x ] [PMID: 17573819]
[27]
Iuliano L, Monticolo R, Straface G, et al. Vitamin E and enzymatic/oxidative stress-driven oxysterols in amnestic mild cognitive impairment subtypes and Alzheimer’s disease. J Alzheimers Dis 2010; 21(4): 1383-92.
[http://dx.doi.org/10.3233/JAD-2010-100780 ] [PMID: 21504117]
[28]
Shafaati M, Marutle A, Pettersson H, et al. Marked accumulation of 27-hydroxycholesterol in the brains of Alzheimer’s patients with the Swedish APP 670/671 mutation. J Lipid Res 2011; 52(5): 1004-10.
[http://dx.doi.org/10.1194/jlr.M014548 ] [PMID: 21335619]
[29]
Yoshioka T, Kawada K, Shimada T, Mori M. Lipid peroxidation in maternal and cord blood and protective mechanism against activated-oxygen toxicity in the blood. Am J Obstet Gynecol 1979; 135(3): 372-6.
[http://dx.doi.org/10.1016/0002-9378(79)90708-7 ] [PMID: 484629]
[30]
Esterbauer H, Striegl G, Puhl H, Rotheneder M. Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic Res Commun 1989; 6(1): 67-75.
[http://dx.doi.org/10.3109/10715768909073429 ] [PMID: 2722022]
[31]
Starke PE, Oliver CN, Stadtman ER. Modification of hepatic proteins in rats exposed to high oxygen concentration. FASEB J 1987; 1(1): 36-9.
[http://dx.doi.org/10.1096/fasebj.1.1.2886388 ] [PMID: 2886388]
[32]
Clairbone A. Catalase activity. CRC Handbook of Methods for Oxygen Radical Research Robert A G Ed. CRC Press: Boca Raton1985; pp. 283-4.
[33]
Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem 1971; 44(1): 276-87.
[http://dx.doi.org/10.1016/0003-2697(71)90370-8 ] [PMID: 4943714]
[34]
Flohé L, Günzler WA. Assays of glutathione peroxidase. Methods Enzymol 1984; 105: 114-21.
[http://dx.doi.org/10.1016/S0076-6879(84)05015-1 ] [PMID: 6727659]
[35]
Davies MH, Birt DF, Schnell RC. Direct enzymatic assay for reduced and oxidized glutathione. J Pharmacol Methods 1984; 12(3): 191-4.
[http://dx.doi.org/10.1016/0160-5402(84)90059-7 ] [PMID: 6536823]
[36]
Torres LL, Quaglio NB, de Souza GT, et al. Peripheral oxidative stress biomarkers in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 2011; 26(1): 59-68.
[http://dx.doi.org/10.3233/JAD-2011-110284 ] [PMID: 21593563]
[37]
Solfrizzi V, D’Introno A, Colacicco AM, et al. Circulating biomarkers of cognitive decline and dementia. Clin Chim Acta 2006; 364(1-2): 91-112.
[http://dx.doi.org/10.1016/j.cca.2005.06.015 ] [PMID: 16139826]
[38]
Smith MA, Taneda S, Richey PL, et al. Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc Natl Acad Sci USA 1994; 91(12): 5710-4.
[http://dx.doi.org/10.1073/pnas.91.12.5710 ] [PMID: 8202552]
[39]
Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 2005; 15(4): 316-28.
[http://dx.doi.org/10.1016/j.numecd.2005.05.003 ] [PMID: 16054557]
[40]
Panza F, D’Introno A, Colacicco AM, et al. Lipid metabolism in cognitive decline and dementia. Brain Res Brain Res Rev 2006; 51(2): 275-92.
[http://dx.doi.org/10.1016/j.brainresrev.2005.11.007 ] [PMID: 16410024]
[41]
Solomon A, Kivipelto M, Wolozin B, Zhou J, Whitmer RA. Midlife serum cholesterol and increased risk of Alzheimer’s and vascular dementia three decades later. Dement Geriatr Cogn Disord 2009; 28(1): 75-80.
[http://dx.doi.org/10.1159/000231980 ] [PMID: 19648749]
[42]
Poirier J. Apolipoprotein E in animal models of CNS injury and in Alzheimer’s disease. Trends Neurosci 1994; 17(12): 525-30.
[http://dx.doi.org/10.1016/0166-2236(94)90156-2 ] [PMID: 7532337]
[43]
Holtzman DM, Bales KR, Tenkova T, et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 2000; 97(6): 2892-7.
[http://dx.doi.org/10.1073/pnas.050004797 ] [PMID: 10694577]
[44]
Nelson TJ, Alkon DL. Oxidation of cholesterol by amyloid precursor protein and beta-amyloid peptide. J Biol Chem 2005; 280(8): 7377-87.
[http://dx.doi.org/10.1074/jbc.M409071200 ] [PMID: 15591071]
[45]
Baierle M, Nascimento SN, Moro AM, et al. Relationship between inflammation and oxidative stress and cognitive decline in the institutionalized elderly. Oxid Med Cell Longev 2015; 2015804198
[http://dx.doi.org/10.1155/2015/804198 ] [PMID: 25874023]
[46]
Gil P, Fariñas F, Casado A, López-Fernández E. Malondialdehyde: A possible marker of ageing. Gerontology 2002; 48: 209-14.
[47]
Casado A, Encarnación López-Fernández M, Concepción Casado M, de La Torre R. Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem Res 2008; 33(3): 450-8.
[http://dx.doi.org/10.1007/s11064-007-9453-3 ] [PMID: 17721818]
[48]
François M, Leifert W, Hecker J, et al. Altered cytological parameters in buccal cells from individuals with mild cognitive impairment and Alzheimer’s disease. Cytometry A 2014; 85(8): 698-708.
[http://dx.doi.org/10.1002/cyto.a.22453 ] [PMID: 24616437]
[49]
Aldred S, Bennett S, Mecocci P. Increased low-density lipoprotein oxidation, but not total plasma protein oxidation, in Alzheimer’s disease. Clin Biochem 2010; 43(3): 267-71.
[http://dx.doi.org/10.1016/j.clinbiochem.2009.08.021 ] [PMID: 19733555]
[50]
Bermejo P, Martín-Aragón S, Benedí J, et al. Peripheral levels of glutathione and protein oxidation as markers in the development of Alzheimer’s disease from Mild Cognitive Impairment. Free Radic Res 2008; 42(2): 162-70.
[http://dx.doi.org/10.1080/10715760701861373 ] [PMID: 18297609]
[51]
de la Torre MR, Casado A, López-Fernández ME, et al. Human aging brain disorders: Role of antioxidant enzymes. Neurochem Res 1996; 21(8): 885-8.
[http://dx.doi.org/10.1007/BF02532336 ] [PMID: 8895840]
[52]
Annerén G, Gardner A, Lundin T. Increased glutathione peroxidase activity in erythrocytes in patients with Alzheimer’s disease/senile dementia of Alzheimer’s type. Acta Neurol Scand 1986; 73(6): 586-9.
[http://dx.doi.org/10.1111/j.1600-0404.1986.tb04604.x ] [PMID: 3751499]
[53]
Subash S, Essa MM, Al-Asmi A, et al. Pomegranate from oman alleviates the brain oxidative damage in transgenic mouse model of Alzheimer’s disease. J Tradit Complement Med 2014; 4(4): 232-8.
[http://dx.doi.org/10.4103/2225-4110.139107 ] [PMID: 25379464]
[54]
Ishrat T, Hoda MN, Khan MB, et al. Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer’s type (SDAT). Eur Neuropsychopharmacol 2009; 19(9): 636-47.
[http://dx.doi.org/10.1016/j.euroneuro.2009.02.002 ] [PMID: 19329286]
[55]
Mantzavinos V, Alexiou A. Biomarkers for Alzheimer’s disease diagnosis. Curr Alzheimer Res 2017; 14(11): 1149-54.
[http://dx.doi.org/10.2174/1567205014666170203125942 ] [PMID: 28164766]
[56]
Meister A, Anderson ME. Glutathione. Annu Rev Biochem 1983; 52: 711-60.
[http://dx.doi.org/10.1146/annurev.bi.52.070183.003431 ] [PMID: 6137189]
[57]
Perrin R, Briançon S, Jeandel C, et al. Blood activity of Cu/Zn superoxide dismutase, glutathione peroxidase and catalase in Alzheimer’s disease: A case-control study. Gerontology 1990; 36(5-6): 306-13.
[http://dx.doi.org/10.1159/000213215 ] [PMID: 2076828]
[58]
Trompier D, Vejux A, Zarrouk A, et al. Brain peroxisomes. Biochimie 2014; 98: 102-10.
[http://dx.doi.org/10.1016/j.biochi.2013.09.009]
[59]
Yoshida Y, Yoshikawa A, Kinumi T, et al. Hydroxyoctadecadienoic acid and oxidatively modified peroxiredoxins in the blood of Alzheimer’s disease patients and their potential as biomarkers. Neurobiol Aging 2009; 30(2): 174-85.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.06.012 ] [PMID: 17688973]
[60]
Lütjohann D, Papassotiropoulos A, Björkhem I, et al. Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients. J Lipid Res 2000; 41(2): 195-8.
[PMID: 10681402]
[61]
Jessica L. Fleming, Christopher J. Phiel, Amanda Ewart Toland. The role for oxidative Stress in aberrant DNA methylation in Alzheimer’s disease. Curr Alzheimer Res 2012; 9: 1077-96.
[http://dx.doi.org/10.2174/156720512803569000]
[62]
Stevenson A, Lopez D, Khoo P, Kalaria RN, Mukaetova-Ladinska EB, Ladinska M. Exploring erythrocytes as blood biomarkers for alzheimer’s disease. J Alzheimers Dis 2017; 60(3): 845-57.
[http://dx.doi.org/10.3233/JAD-170363 ] [PMID: 28984593]
[63]
Solomon A, Leoni V, Kivipelto M, et al. Plasma levels of 24S-hydroxycholesterol reflect brain volumes in patients without objective cognitive impairment but not in those with Alzheimer’s disease. Neurosci Lett 2009; 462(1): 89-93.
[http://dx.doi.org/10.1016/j.neulet.2009.06.073 ] [PMID: 19560513]
[64]
Kölsch H, Heun R, Jessen F, et al. Alterations of cholesterol precursor levels in Alzheimer’s disease. Biochim Biophys Acta 2010; 1801(8): 945-50.
[http://dx.doi.org/10.1016/j.bbalip.2010.03.001 ] [PMID: 20226877]
[65]
Andreyev AY, Fahy E, Guan Z, et al. Subcellular organelle lipidomics in TLR-4-activated macrophages. J Lipid Res 2010; 51(9): 2785-97.
[http://dx.doi.org/10.1194/jlr.M008748 ] [PMID: 20574076]
[66]
Lim L, Jackson-Lewis V, Wong LC, et al. Lanosterol induces mitochondrial uncoupling and protects dopaminergic neurons from cell death in a model for Parkinson’s disease. Cell Death Differ 2012; 19(3): 416-27.
[http://dx.doi.org/10.1038/cdd.2011.105 ] [PMID: 21818119]
[67]
Upadhyay A, Amanullah A, Mishra R, Kumar A, Mishra A. Lanosterol suppresses the aggregation and cytotoxicity of misfolded proteins linked with neurodegenerative diseases. Mol Neurobiol 2018; 55(2): 1169-82.
[http://dx.doi.org/10.1007/s12035-016-0377-2 ] [PMID: 28102469]
[68]
Heverin M, Bogdanovic N, Lütjohann D, et al. Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer’s disease. J Lipid Res 2004; 45(1): 186-93.
[http://dx.doi.org/10.1194/jlr.M300320-JLR200 ] [PMID: 14523054]
[69]
Leoni V, Caccia C. Relationship between cholesterol metabolism ApoE and brain volumes in Alzheimer’s disease. Future Neurol 2011; 6: 613-26.
[http://dx.doi.org/10.2217/fnl.11.38]
[70]
Schultz BG, Patten DK, Berlau DJ. The role of statins in both cognitive impairment and protection against dementia: A tale of two mechanisms. Transl Neurodegener 2018; 7: 5.
[http://dx.doi.org/10.1186/s40035-018-0110-3 ] [PMID: 29507718]
[71]
Wang J. Megha, London E. Relationship between sterol/steroid structure and participation in ordered lipid domains (lipid rafts): Implications for lipid raft structure and function. Biochemistry 2004; 43(4): 1010-8.
[http://dx.doi.org/10.1021/bi035696y ] [PMID: 14744146]
[72]
Kim DH, Frangos JA. Effects of amyloid beta-peptides on the lysis tension of lipid bilayer vesicles containing oxysterols. Biophys J 2008; 95(2): 620-8.
[http://dx.doi.org/10.1529/biophysj.107.114983 ] [PMID: 18390616]
[73]
Ragot K, Delmas D, Athias A, Nury T, Baarine M, Lizard G. α-Tocopherol impairs 7-ketocholesterol-induced caspase-3-dependent apoptosis involving GSK-3 activation and Mcl-1 degradation on 158N murine oligodendrocytes. Chem Phys Lipids 2011; 164(6): 469-78.
[http://dx.doi.org/10.1016/j.chemphyslip.2011.04.014 ] [PMID: 21575614]
[74]
Gregorio-King CC, Gough T, Van Der Meer GJ, et al. Mechanisms of resistance to the cytotoxic effects of oxysterols in human leukemic cells. J Steroid Biochem Mol Biol 2004; 88(3): 311-20.
[http://dx.doi.org/10.1016/j.jsbmb.2003.12.007 ] [PMID: 15120425]
[75]
Ryan L, O’Callaghan YC, O’Brien NM. Involvement of calcium in 7beta -hydroxycholesterol and cholesterol-5beta, 6beta -epoxide-induced apoptosis. Int J Toxicol 2006; 25(1): 35-9.
[http://dx.doi.org/10.1080/10915810500488387 ] [PMID: 16510355]
[76]
Li W, Johnson H, Yuan X-M, Jonasson L. 7beta-hydroxycholesterol induces natural killer cell death via oxidative lysosomal destabilization. Free Radic Res 2009; 43(11): 1072-9.
[http://dx.doi.org/10.1080/10715760903176919 ] [PMID: 19707922]
[77]
Clarion L, Schindler M, de Weille J, et al. 7β-Hydroxycholesterol-induced energy stress leads to sequential opposing signaling responses and to death of C6 glioblastoma cells. Biochem Pharmacol 2012; 83(1): 37-46.
[http://dx.doi.org/10.1016/j.bcp.2011.09.022 ] [PMID: 21983033]
[78]
Debbabi M, Nury T, Zarrouk A, et al. Protective effects of α-tocopherol, γ-Ttocopherol and oleic acid, three compounds of olive oils, and no effect of trolox, on 7-ketocholesterol-induced mitochondrial and peroxisomal dysfunction in microglial BV-2 Cells. Int J Mol Sci 2016; 17(12): 1973.
[http://dx.doi.org/10.3390/ijms17121973 ] [PMID: 27897980]
[79]
Sottero B, Gamba P, Gargiulo S, Leonarduzzi G, Poli G. Cholesterol oxidation products and disease: An emerging topic of interest in medicinal chemistry. Curr Med Chem 2009; 16(6): 685-705.
[http://dx.doi.org/10.2174/092986709787458353 ] [PMID: 19199932]
[80]
Noguchi N, Urano Y, Takabe W, Saito Y. New aspects of 24(S)-hydroxycholesterol in modulating neuronal cell death. Free Radic Biol Med 2015; 87: 366-72.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.06.036 ] [PMID: 26164631]
[81]
Leoni V, Caccia C. 24S-hydroxycholesterol in plasma: A marker of cholesterol turnover in neurodegenerative diseases. Biochimie 2013; 95(3): 595-612.
[http://dx.doi.org/10.1016/j.biochi.2012.09.025 ] [PMID: 23041502]
[82]
Prasanthi JR, Huls A, Thomasson S, Thompson A, Schommer E, Ghribi O. Differential effects of 24-hydroxycholesterol and 27-hydroxycholesterol on beta-amyloid precursor protein levels and processing in human neuroblastoma SH-SY5Y cells. Mol Neurodegener 2009; 4: 1.
[http://dx.doi.org/10.1186/1750-1326-4-1 ] [PMID: 19126211]
[83]
Merino-Serrais P, Loera-Valencia R, Rodriguez-Rodriguez P, et al. 27-hydroxycholesterol induces aberrant morphology and synaptic dysfunction in hippocampal neurons. Cereb Cortex 2019; 29(1): 429-46.
[http://dx.doi.org/10.1093/cercor/bhy274 ] [PMID: 30395175]