IL-8 and MCP-1 Impact on Tau Phosphorylation and Phosphatase Activity

Page: [985 - 1000] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: Chronic inflammation is a feature of Alzheimer´s disease (AD), resulting in excessive production of inflammatory mediators that can lead to neuroinflammation, contributing to alterations in Aβ production and deposition as Senile Plaques (SPs), and to neurofibrillary tangles (NFTs) formation, due to hyperphosphorylated Tau protein.

Objective: This work addressed the impact of the interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1), two chemokines, on Tau phosphorylation; and also evaluated the chemokines’ levels in plasma using samples from a regional cohort.

Methods: Human neuronal SH-SY5Y cells exposed to IL-8 and MCP-1 chemokines were monitored for their protein and phosphorylated protein levels by western blotting analysis. A serine/threonine protein phosphatase (PPs) activity assay was employed to monitor PPs activity. Subsequently, flow cytometry was used to monitor chemokines levels in plasma samples from individuals with cognitive deficits.

Results: Chemokines’ exposure resulted only in minor cytotoxicity effects on SH-SY5Y, and in increased Tau phosphorylation, particularly at the S396 residue. Tau phosphorylation correlated with PPs inhibition and was consistent with GSK3β phosphorylation-mediated inhibition. Subsequent analysis of plasma from individuals with cognitive deficits showed that IL-8 levels were decreased.

Conclusion: Data shows that both chemokines tested can exert an effect on GSK3β phosphorylation and modulate PPs activity, potentially resulting in increased Tau phosphorylation and subsequent NFTs formation. One can deduce that increased chemokines stimulation during chronic inflammation can exacerbate this event. The work contributes to a better understanding of the mode of action of these chemokines on AD pathogenesis and opens novel research avenues.

Keywords: Chemokines, IL-8, MCP-1, Alzheimer´s disease, tau, kinases, phosphatases.

[1]
Prince M, Guerchet M, Prina M. Policy brief: the global impact of dementia 2013-2050. Alzheimer’s Disease International 1-8.. https://www.alz.co.uk/research/GlobalImpactDementia2013.pdf
[2]
Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies. Cell 2019; 179(2): 312-39.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[3]
Yamaguchi H, Hirai S, Morimatsu M, Shoji M, Ihara Y. A variety of cerebral amyloid deposits in the brains of the Alzheimer-type dementia demonstrated by beta protein immunostaining. Acta Neuropathol 1988; 76(6): 541-9.
[http://dx.doi.org/10.1007/BF00689591] [PMID: 3059748]
[4]
Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y. Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: evidence that an initially deposited species is Aβ42(43). Neuron 1994; 13(1): 45-53.
[http://dx.doi.org/10.1016/0896-6273(94)90458-8] [PMID: 8043280]
[5]
Gouras GK, Olsson TT, Hansson O. β-Amyloid peptides and amyloid plaques in Alzheimer’s disease. Neurotherapeutics 2015; 12(1): 3-11.
[http://dx.doi.org/10.1007/s13311-014-0313-y] [PMID: 25371168]
[6]
Lewczuk P, Esselmann H, Meyer M, et al. The amyloid-β (Abeta) peptide pattern in cerebrospinal fluid in Alzheimer’s disease: evidence of a novel carboxyterminally elongated Abeta peptide. Rapid Commun Mass Spectrom 2003; 17(12): 1291-6.
[http://dx.doi.org/10.1002/rcm.1048] [PMID: 12811752]
[7]
Price DL, Sisodia SS, Gandy SE. Amyloid beta amyloidosis in Alzheimer’s disease. Curr Opin Neurol 1995; 8(4): 268-74.
[http://dx.doi.org/10.1097/00019052-199508000-00004] [PMID: 7582041]
[8]
Kidd M. Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature 1963; 197(4863): 192-3.
[http://dx.doi.org/10.1038/197192b0] [PMID: 14032480]
[9]
Gao Y, Tan L, Yu J-T, Tan L. Tau in Alzheimer’s disease: mechanisms and therapeutic strategies. Curr Alzheimer Res 2018; 15(3): 283-300.
[http://dx.doi.org/10.2174/1567205014666170417111859] [PMID: 28413986]
[10]
Gandy SE, Caporaso GL, Buxbaum JD, et al. Protein phosphorylation regulates relative utilization of processing pathways for Alzheimer β/A4 amyloid precursor protein. Ann N Y Acad Sci 1993; 695(1): 117-21.
[http://dx.doi.org/10.1111/j.1749-6632.1993.tb23038.x] [PMID: 8239268]
[11]
da Cruz e Silva OA, Fardilha M, Henriques AG, Rebelo S, Vieira S, da Cruz e Silva EF. Signal transduction therapeutics: relevance for Alzheimer’s disease. J Mol Neurosci 2004; 23(1-2): 123-42.
[http://dx.doi.org/10.1385/JMN:23:1-2:123] [PMID: 15126698]
[12]
Oliveira J, Costa M, de Almeida MSC, da Cruz E, Silva OAB, Henriques AG. Protein phosphorylation is a key mechanism in Alzheimer’s disease. J Alzheimers Dis 2017; 58(4): 953-78.
[http://dx.doi.org/10.3233/JAD-170176] [PMID: 28527217]
[13]
Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 2005; 22(8): 1942-50.
[http://dx.doi.org/10.1111/j.1460-9568.2005.04391.x] [PMID: 16262633]
[14]
Martin L, Latypova X, Wilson CM, et al. Tau protein kinases: involvement in Alzheimer’s disease. Ageing Res Rev 2013; 12(1): 289-309.
[http://dx.doi.org/10.1016/j.arr.2012.06.003] [PMID: 22742992]
[15]
Šimić G, Babić Leko M, Wray S, et al. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules 2016; 6(1): 6-34.
[http://dx.doi.org/10.3390/biom6010006] [PMID: 26751493]
[16]
Reiss AB, Arain HA, Stecker MM, Siegart NM, Kasselman LJ. Amyloid toxicity in Alzheimer’s disease. Rev Neurosci 2018; 29(6): 613-27.
[http://dx.doi.org/10.1515/revneuro-2017-0063] [PMID: 29447116]
[17]
Domingues C, da Cruz E, Silva OAB, Henriques AG. Impact of cytokines and chemokines on Alzheimer’s disease neuropathological hallmarks. Curr Alzheimer Res 2017; 14(8): 870-82.
[http://dx.doi.org/10.2174/1567205014666170317113606] [PMID: 28317487]
[18]
Fakhoury M. Microglia and astrocytes in Alzheimer’s disease: implications for therapy. Curr Neuropharmacol 2018; 16(5): 508-18.
[http://dx.doi.org/10.2174/1570159X15666170720095240] [PMID: 28730967]
[19]
Bettcher BM, Johnson SC, Fitch R, et al. Cerebrospinal fluid and plasma levels of inflammation differentially relate to CNS markers of Alzheimer’s disease pathology and neuronal damage. J Alzheimers Dis 2018; 62(1): 385-97.
[http://dx.doi.org/10.3233/JAD-170602] [PMID: 29439331]
[20]
Brosseron F, Krauthausen M, Kummer M, Heneka MT. Body fluid cytokine levels in mild cognitive impairment and Alzheimer’s disease: a comparative overview. Mol Neurobiol 2014; 50(2): 534-44.
[http://dx.doi.org/10.1007/s12035-014-8657-1] [PMID: 24567119]
[21]
Galimberti D, Venturelli E, Fenoglio C, et al. IP-10 serum levels are not increased in mild cognitive impairment and Alzheimer’s disease. Eur J Neurol 2007; 14(4): e3-4.
[http://dx.doi.org/10.1111/j.1468-1331.2006.01637.x] [PMID: 17388976]
[22]
Hesse R, Wahler A, Gummert P, et al. Decreased IL-8 levels in CSF and serum of AD patients and negative correlation of MMSE and IL-1β. BMC Neurol 2016; 16(1): 185.
[http://dx.doi.org/10.1186/s12883-016-0707-z] [PMID: 27671345]
[23]
Kester MI, van der Flier WM, Visser A, Blankenstein MA, Scheltens P, Oudejans CB. Decreased mRNA expression of CCL5 [RANTES] in Alzheimer’s disease blood samples. Clin Chem Lab Med 2011; 50(1): 61-5.
[PMID: 21942811]
[24]
Kim T-S, Lim H-K, Lee JY, et al. Changes in the levels of plasma soluble fractalkine in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 2008; 436(2): 196-200.
[http://dx.doi.org/10.1016/j.neulet.2008.03.019] [PMID: 18378084]
[25]
Kim S-M, Song J, Kim S, et al. Identification of peripheral inflammatory markers between normal control and Alzheimer’s disease. BMC Neurol 2011; 11(1): 51.
[http://dx.doi.org/10.1186/1471-2377-11-51] [PMID: 21569380]
[26]
Swardfager W, Lanctôt K, Rothenburg L, Wong A, Cappell J, Herrmann N. A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 2010; 68(10): 930-41.
[http://dx.doi.org/10.1016/j.biopsych.2010.06.012] [PMID: 20692646]
[27]
Zhang R, Miller RG, Madison C, et al. Systemic immune system alterations in early stages of Alzheimer’s disease. J Neuroimmunol 2013; 256(1-2): 38-42.
[http://dx.doi.org/10.1016/j.jneuroim.2013.01.002] [PMID: 23380586]
[28]
Galimberti D, Schoonenboom N, Scheltens P, et al. Intrathecal chemokine levels in Alzheimer disease and frontotemporal lobar degeneration. Neurology 2006; 66(1): 146-7.
[http://dx.doi.org/10.1212/01.wnl.0000191324.08289.9d] [PMID: 16401871]
[29]
Galimberti D, Venturelli E, Fenoglio C, et al. Intrathecal levels of IL-6, IL-11 and LIF in Alzheimer’s disease and frontotemporal lobar degeneration. J Neurol 2008; 255(4): 539-44.
[http://dx.doi.org/10.1007/s00415-008-0737-6] [PMID: 18204920]
[30]
Taipa R, das Neves SP, Sousa AL, et al. Proinflammatory and anti-inflammatory cytokines in the CSF of patients with Alzheimer’s disease and their correlation with cognitive decline. Neurobiol Aging 2019; 76: 125-32.
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.12.019] [PMID: 30711675]
[31]
Tarkowski E, Liljeroth AM, Nilsson A, Minthon L, Blennow K. Decreased levels of intrathecal interleukin 1 receptor antagonist in Alzheimer’s disease. Dement Geriatr Cogn Disord 2001; 12(5): 314-7.
[http://dx.doi.org/10.1159/000051276] [PMID: 11455132]
[32]
Sokolova A, Hill MD, Rahimi F, Warden LA, Halliday GM, Shepherd CE. Monocyte chemoattractant protein-1 plays a dominant role in the chronic inflammation observed in Alzheimer’s disease. Brain Pathol 2009; 19(3): 392-8.
[http://dx.doi.org/10.1111/j.1750-3639.2008.00188.x] [PMID: 18637012]
[33]
Tripathy D, Thirumangalakudi L, Grammas P. RANTES up-regulation in the Alzheimer’s disease brain: a possible neuroprotective role. Neurobiol Aging 2010; 31(1): 8-16.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.03.009] [PMID: 18440671]
[34]
Combs CK, Karlo JC, Kao SC, Landreth GE. Beta-amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 2001; 21(4): 1179-88.
[http://dx.doi.org/10.1523/JNEUROSCI.21-04-01179.2001] [PMID: 11160388]
[35]
Lindberg C, Hjorth E, Post C, Winblad B, Schultzberg M. Cytokine production by a human microglial cell line: effects of beta-amyloid and alpha-melanocyte-stimulating hormone. Neurotox Res 2005; 8(3-4): 267-76.
[http://dx.doi.org/10.1007/BF03033980] [PMID: 16371321]
[36]
Yamamoto M, Kiyota T, Horiba M, et al. Interferon-γ and tumor necrosis factor-α regulate amyloid-β plaque deposition and β-secretase expression in Swedish mutant APP transgenic mice. Am J Pathol 2007; 170(2): 680-92.
[http://dx.doi.org/10.2353/ajpath.2007.060378] [PMID: 17255335]
[37]
Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement 2016; 12(6): 719-32.
[http://dx.doi.org/10.1016/j.jalz.2016.02.010] [PMID: 27179961]
[38]
Smits HA, Rijsmus A, van Loon JH, et al. Amyloid-β-induced chemokine production in primary human macrophages and astrocytes. J Neuroimmunol 2002; 127(1-2): 160-8.
[http://dx.doi.org/10.1016/S0165-5728(02)00112-1] [PMID: 12044988]
[39]
Sondag CM, Dhawan G, Combs CK. Beta amyloid oligomers and fibrils stimulate differential activation of primary microglia. J Neuroinflammation 2009; 6: 1-13.
[http://dx.doi.org/10.1186/1742-2094-6-1] [PMID: 19123954]
[40]
Tu J, Chen B, Yang L, Qi K, Lu J, Zhao D. Amyloid-β activates microglia and regulates protein expression in a manner similar to prions. J Mol Neurosci 2015; 56(2): 509-18.
[http://dx.doi.org/10.1007/s12031-015-0553-2] [PMID: 25869610]
[41]
Ashutosh KW, Kou W, Cotter R, et al. CXCL8 protects human neurons from amyloid-β-induced neurotoxicity: relevance to Alzheimer’s disease. Biochem Biophys Res Commun 2011; 412(4): 565-71.
[http://dx.doi.org/10.1016/j.bbrc.2011.07.127] [PMID: 21840299]
[42]
Mattson MP, Cheng B, Culwell AR, Esch FS, Lieberburg I, Rydel RE. Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein. Neuron 1993; 10(2): 243-54.
[http://dx.doi.org/10.1016/0896-6273(93)90315-I] [PMID: 8094963]
[43]
Ma T, Zhao Y, Kwak Y-D, et al. Statin’s excitoprotection is mediated by sAPP and the subsequent attenuation of calpain-induced truncation events, likely via rho-ROCK signaling. J Neurosci 2009; 29(36): 11226-36.
[http://dx.doi.org/10.1523/JNEUROSCI.6150-08.2009] [PMID: 19741129]
[44]
Sastre M, Klockgether T, Heneka MT. Contribution of inflammatory processes to Alzheimer’s disease: molecular mechanisms. Int J Dev Neurosci 2006; 24(2-3): 167-76.
[http://dx.doi.org/10.1016/j.ijdevneu.2005.11.014] [PMID: 16472958]
[45]
Jevtic S, Sengar AS, Salter MW, McLaurin J. The role of the immune system in Alzheimer disease: etiology and treatment. Ageing Res Rev 2017; 40: 84-94.
[http://dx.doi.org/10.1016/j.arr.2017.08.005] [PMID: 28941639]
[46]
Zlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity 2012; 36(5): 705-16.
[http://dx.doi.org/10.1016/j.immuni.2012.05.008] [PMID: 22633458]
[47]
Alsadany MA, Shehata HH, Mohamad MI, Mahfouz RG. Histone deacetylases enzyme, copper, and IL-8 levels in patients with Alzheimer’s disease. Am J Alzheimers Dis Other Demen 2013; 28(1): 54-61.
[http://dx.doi.org/10.1177/1533317512467680] [PMID: 23242124]
[48]
Galimberti D, Fenoglio C, Lovati C, et al. Serum MCP-1 levels are increased in mild cognitive impairment and mild Alzheimer’s disease. Neurobiol Aging 2006; 27(12): 1763-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.10.007] [PMID: 16307829]
[49]
Guedes JR, Lao T, Cardoso AL, El Khoury J. roles of microglial and monocyte chemokines and their receptors in regulating Alzheimer’s disease-associated amyloid-β and tau pathologies. Front Neurol 2018; 9(549): 549.
[http://dx.doi.org/10.3389/fneur.2018.00549] [PMID: 30158892]
[50]
Blasko I, Veerhuis R, Stampfer-Kountchev M, et al. Costimulatory effects of interferon-γ and interleukin-1β or tumor necrosis factor α on the synthesis of Abeta1-40 and Abeta1-42 by human astrocytes. Neurobiol Dis 2000; 7(6 Pt B): 682-9.
[http://dx.doi.org/10.1006/nbdi.2000.0321] [PMID: 11114266]
[51]
Rojo LE, Fernández JA, Maccioni AA, Jimenez JM, Maccioni RB. Neuroinflammation: implications for the pathogenesis and molecular diagnosis of Alzheimer’s disease. Arch Med Res 2008; 39(1): 1-16.
[http://dx.doi.org/10.1016/j.arcmed.2007.10.001] [PMID: 18067990]
[52]
Yamamoto M, Horiba M, Buescher JL, et al. Overexpression of monocyte chemotactic protein-1/CCL2 in β-amyloid precursor protein transgenic mice show accelerated diffuse β-amyloid deposition. Am J Pathol 2005; 166(5): 1475-85.
[http://dx.doi.org/10.1016/S0002-9440(10)62364-4] [PMID: 15855647]
[53]
Kiyota T, Yamamoto M, Xiong H, et al. CCL2 accelerates microglia-mediated Abeta oligomer formation and progression of neurocognitive dysfunction. PLoS One 2009; 4(7)e6197
[http://dx.doi.org/10.1371/journal.pone.0006197] [PMID: 19593388]
[54]
El Khoury J, Toft M, Hickman SE, et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 2007; 13(4): 432-8.
[http://dx.doi.org/10.1038/nm1555] [PMID: 17351623]
[55]
Naert G, Rivest S. CC chemokine receptor 2 deficiency aggravates cognitive impairments and amyloid pathology in a transgenic mouse model of Alzheimer’s disease. J Neurosci 2011; 31(16): 6208-20.
[http://dx.doi.org/10.1523/JNEUROSCI.0299-11.2011] [PMID: 21508244]
[56]
Naert G, Rivest S. Hematopoietic CC-chemokine receptor 2 (CCR2) competent cells are protective for the cognitive impairments and amyloid pathology in a transgenic mouse model of Alzheimer’s disease. Mol Med 2012; 18(1): 297-313.
[http://dx.doi.org/10.2119/molmed.2011.00306] [PMID: 22160221]
[57]
Baggiolini M. CXCL8 - the first chemokine. Front Immunol 2015; 6: 285.
[http://dx.doi.org/10.3389/fimmu.2015.00285] [PMID: 26106391]
[58]
Bakshi P, Margenthaler E, Laporte V, Crawford F, Mullan M. Novel role of CXCR2 in regulation of γ-secretase activity. ACS Chem Biol 2008; 3(12): 777-89.
[http://dx.doi.org/10.1021/cb800167a] [PMID: 19067586]
[59]
Bakshi P, Margenthaler E, Reed J, Crawford F, Mullan M. Depletion of CXCR2 inhibits γ-secretase activity and amyloid-β production in a murine model of Alzheimer’s disease. Cytokine 2011; 53(2): 163-9.
[http://dx.doi.org/10.1016/j.cyto.2010.10.008] [PMID: 21084199]
[60]
da Cruz e Silva EF Fox CA, Ouimet CC, Gustafson E, Watson SJ, Greengard P. Differential expression of protein phosphatase 1 isoforms in mammalian brain. J Neurosci 1995; 15(5): 3375-89..
[http://dx.doi.org/10.1523/JNEUROSCI.15-05-03375.1995]
[61]
Rosa IM, Henriques AG, Carvalho L, Oliveira J, da Cruz E. Silva OA. screening younger individuals in a primary care setting flags putative dementia cases and correlates gastrointestinal diseases with poor cognitive performance. Dement Geriatr Cogn Disord 2017; 43(1-2): 15-28.
[http://dx.doi.org/10.1159/000452485] [PMID: 27907913]
[62]
Rosa IM, Henriques AG, Wiltfang J, da Cruz E, Silva OAB. Putative dementia cases fluctuate as a function of mini-mental state examination cut-off points. J Alzheimers Dis 2018; 61(1): 157-67.
[http://dx.doi.org/10.3233/JAD-170501] [PMID: 29125486]
[63]
Leighton SP, Nerurkar L, Krishnadas R, Johnman C, Graham GJ, Cavanagh J. Chemokines in depression in health and in inflammatory illness: a systematic review and meta-analysis. Mol Psychiatry 2018; 23(1): 48-58.
[http://dx.doi.org/10.1038/mp.2017.205] [PMID: 29133955]
[64]
Lee WJ, Liao YC, Wang YF, Lin IF, Wang SJ, Fuh JL. plasma mcp-1 and cognitive decline in patients with Alzheimer’s disease and mild cognitive impairment: a two-year follow-up study. Sci Rep 2018; 8(1): 1280.
[http://dx.doi.org/10.1038/s41598-018-19807-y] [PMID: 29352259]
[65]
Galimberti D, Schoonenboom N, Scarpini E, Scheltens P. Dutch-Italian Alzheimer Research Group. Chemokines in serum and cerebrospinal fluid of Alzheimer’s disease patients. Ann Neurol 2003; 53(4): 547-8.
[http://dx.doi.org/10.1002/ana.10531] [PMID: 12666129]
[66]
Ojala JO, Sutinen EM, Salminen A, Pirttilä T. Interleukin-18 increases expression of kinases involved in tau phosphorylation in SH-SY5Y neuroblastoma cells. J Neuroimmunol 2008; 205(1-2): 86-93.
[http://dx.doi.org/10.1016/j.jneuroim.2008.09.012] [PMID: 18947885]
[67]
Sutinen EM, Korolainen MA, Häyrinen J, et al. Interleukin-18 alters protein expressions of neurodegenerative diseases-linked proteins in human SH-SY5Y neuron-like cells. Front Cell Neurosci 2014; 8: 214.
[http://dx.doi.org/10.3389/fncel.2014.00214] [PMID: 25147500]
[68]
Sutinen EM, Pirttilä T, Anderson G, Salminen A, Ojala JO. .Proinflammatory interleukin-18 increases Alzheimer ’s disease-associated amyloid- β production in human neuron-like cells. 2012; 1-14..
[69]
Griffin WST, Liu L, Li Y, Mrak RE, Barger SW. Interleukin-1 mediates Alzheimer and Lewy body pathologies. J Neuroinflammation 2006; 3: 5.
[http://dx.doi.org/10.1186/1742-2094-3-5] [PMID: 16542445]
[70]
Thirumangalakudi L, Yin L, Rao HV, Grammas P. IL-8 induces expression of matrix metalloproteinases, cell cycle and pro-apoptotic proteins, and cell death in cultured neurons. J Alzheimers Dis 2007; 11(3): 305-11.
[http://dx.doi.org/10.3233/JAD-2007-11307] [PMID: 17851181]
[71]
Du SH, Zhang W, Yue X, et al. Role of CXCR1 and interleukin-8 in methamphetamine-induced neuronal apoptosis. Front Cell Neurosci 2018; 12: 230.
[http://dx.doi.org/10.3389/fncel.2018.00230] [PMID: 30123110]
[72]
Yang G, Meng Y, Li W, et al. Neuronal MCP-1 mediates microglia recruitment and neurodegeneration induced by the mild impairment of oxidative metabolism. Brain Pathol 2011; 21(3): 279-97.
[http://dx.doi.org/10.1111/j.1750-3639.2010.00445.x] [PMID: 21029241]
[73]
Gyoneva S, Kim D, Katsumoto A, Kokiko-Cochran ON, Lamb BT, Ransohoff RM. Ccr2 deletion dissociates cavity size and tau pathology after mild traumatic brain injury. J Neuroinflammation 2015; 12(1): 228.
[http://dx.doi.org/10.1186/s12974-015-0443-0] [PMID: 26634348]
[74]
Hanger DP, Anderton BH, Noble W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 2009; 15(3): 112-9.
[http://dx.doi.org/10.1016/j.molmed.2009.01.003] [PMID: 19246243]
[75]
Reynolds CH, Betts JC, Blackstock WP, Nebreda AR, Anderton BH. Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry: differences in vitro between the mitogen-activated protein kinases ERK2, c-Jun N-terminal kinase and P38, and glycogen synthase kinase-3β. J Neurochem 2000; 74(4): 1587-95.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0741587.x] [PMID: 10737616]
[76]
Regalado-Reyes M, Furcila D, Hernández F, Ávila J, DeFelipe J, León-Espinosa G. Phospho-tau changes in the human CA1 during Alzheimer’s disease progression. J Alzheimers Dis 2019; 69(1): 277-88.
[http://dx.doi.org/10.3233/JAD-181263] [PMID: 30958368]
[77]
Neddens J, Temmel M, Flunkert S, et al. Phosphorylation of different tau sites during progression of Alzheimer’s disease. Acta Neuropathol Commun 2018; 6(1): 52.
[http://dx.doi.org/10.1186/s40478-018-0557-6] [PMID: 29958544]
[78]
Abraha A, Ghoshal N, Gamblin TC, et al. C-terminal inhibition of tau assembly in vitro and in Alzheimer’s disease. J Cell Sci 2000; 113(Pt 21): 3737-45.
[PMID: 11034902]
[79]
Sengupta A, Kabat J, Novak M, Wu Q, Grundke-Iqbal I, Iqbal K. Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules. Arch Biochem Biophys 1998; 357(2): 299-309.
[http://dx.doi.org/10.1006/abbi.1998.0813] [PMID: 9735171]
[80]
Alonso AD, Cohen LS. Our tau tales from normal to pathological behavior. J Alzheimers Dis 2018; 64(s1): S507-16.
[http://dx.doi.org/10.3233/JAD-179906] [PMID: 29614672]
[81]
Augustinack JC, Schneider A, Mandelkow EM, Hyman BT. Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol 2002; 103(1): 26-35.
[http://dx.doi.org/10.1007/s004010100423] [PMID: 11837744]
[82]
Mondragón-Rodríguez S, Perry G, Luna-Muñoz J, Acevedo-Aquino MC, Williams S. Phosphorylation of tau protein at sites Ser(396-404) is one of the earliest events in Alzheimer’s disease and Down syndrome. Neuropathol Appl Neurobiol 2014; 40(2): 121-35.
[http://dx.doi.org/10.1111/nan.12084] [PMID: 24033439]
[83]
Luna-Muñoz J, Chávez-Macías L, García-Sierra F, Mena R. Earliest stages of tau conformational changes are related to the appearance of a sequence of specific phospho-dependent tau epitopes in Alzheimer’s disease. J Alzheimers Dis 2007; 12(4): 365-75.
[http://dx.doi.org/10.3233/JAD-2007-12410] [PMID: 18198423]
[84]
Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 2015; 148: 114-31.
[http://dx.doi.org/10.1016/j.pharmthera.2014.11.016] [PMID: 25435019]
[85]
Dajani R, Fraser E, Roe SM, et al. Crystal structure of glycogen synthase kinase 3 β: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell 2001; 105(6): 721-32.
[http://dx.doi.org/10.1016/S0092-8674(01)00374-9] [PMID: 11440715]
[86]
Dajani R, Fraser E, Roe SM, et al. Structural basis for recruitment of glycogen synthase kinase 3β to the axin-APC scaffold complex. EMBO J 2003; 22(3): 494-501.
[http://dx.doi.org/10.1093/emboj/cdg068] [PMID: 12554650]
[87]
Li T, Paudel HK. Glycogen synthase kinase 3β phosphorylates Alzheimer’s disease-specific Ser396 of microtubule-associated protein tau by a sequential mechanism. Biochemistry 2006; 45(10): 3125-33.
[http://dx.doi.org/10.1021/bi051634r] [PMID: 16519507]
[88]
Leroy A, Landrieu I, Huvent I, et al. Spectroscopic studies of GSK3β phosphorylation of the neuronal tau protein and its interaction with the N-terminal domain of apolipoprotein E. J Biol Chem 2010; 285(43): 33435-44.
[http://dx.doi.org/10.1074/jbc.M110.149419] [PMID: 20679343]
[89]
Vintém APB, Henriques AG. da Cruz e Silva OAB, da Cruz e Silva EF. PP1 inhibition by Aβ peptide as a potential pathological mechanism in Alzheimer’s disease. Neurotoxicol Teratol 2009; 31: 85-8.
[http://dx.doi.org/10.1016/j.ntt.2008.11.001] [PMID: 19028567]
[90]
Oliveira JM, Henriques AG, Martins F, Rebelo S. da Cruz e Silva OA. Amyloid-β modulates both AβPP and tau phosphorylation. J Alzheimers Dis 2015; 45(2): 495-507.
[http://dx.doi.org/10.3233/JAD-142664] [PMID: 25589714]
[91]
Shahpasand-Kroner H, Klafki HW, Bauer C, et al. A two-step immunoassay for the simultaneous assessment of Aβ38, Aβ40 and Aβ42 in human blood plasma supports the Aβ42/Aβ40 ratio as a promising biomarker candidate of Alzheimer’s disease. Alzheimers Res Ther 2018; 10(1): 121.
[http://dx.doi.org/10.1186/s13195-018-0448-x] [PMID: 30526652]
[92]
Obrocki P, Khatun A, Ness D, et al. Perspectives in fluid biomarkers in neurodegeneration from the 2019 biomarkers in neurodegenerative diseases course-a joint PhD student course at University College London and University of Gothenburg. Alzheimers Res Ther 2020; 12(1): 20.
[http://dx.doi.org/10.1186/s13195-020-00586-6] [PMID: 32111242]
[93]
Shen XN, Niu LD, Wang YJ, et al. Inflammatory markers in Alzheimer’s disease and mild cognitive impairment: a meta-analysis and systematic review of 170 studies. J Neurol Neurosurg Psychiatry 2019; 90(5): 590-8.
[http://dx.doi.org/10.1136/jnnp-2018-319148] [PMID: 30630955]
[94]
Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 2016; 15(7): 673-84.
[http://dx.doi.org/10.1016/S1474-4422(16)00070-3] [PMID: 27068280]
[95]
Horuk R, Martin AW, Wang Z, et al. Expression of chemokine receptors by subsets of neurons in the central nervous system. J Immunol 1997; 158(6): 2882-90.
[PMID: 9058825]
[96]
Xia M, Qin S, McNamara M, Mackay C, Hyman BT. Interleukin-8 receptor B immunoreactivity in brain and neuritic plaques of Alzheimer’s disease. Am J Pathol 1997; 150(4): 1267-74.
[PMID: 9094983]
[97]
Redl H, Schlag G, Bahrami S, Schade U, Ceska M, Stütz P. Plasma neutrophil-activating peptide-1/interleukin-8 and neutrophil elastase in a primate bacteremia model. J Infect Dis 1991; 164(2): 383-8.
[http://dx.doi.org/10.1093/infdis/164.2.383] [PMID: 1906912]