Inhaled Therapies for Asthma and Chronic Obstructive Pulmonary Disease

Page: [1469 - 1481] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Asthma and chronic obstructive pulmonary disease (COPD) are obstructive lung diseases which are characterized by chronic inflammation and an increase in mucus production, and are highly prevalent conditions. Despite recent advances and multiple available therapies, there remains a significant unmet medical need. Over the past 40 years, the introduction of new classes of safe and effective therapy is insufficient. In spite of the high burden of asthma and COPD among patients, there are fewer new approved therapies in comparison to cardiovascular, metabolic and neurological diseases due to few drug candidates and a higher failure rate in the development of respiratory medicine. Lung diseases are amongst the leading causes of death globally with asthma being one of the most prevalent respiratory diseases, which affects people of all ages but, despite effective therapies available, many patients are poorly controlled and have a low quality of life. COPD is currently ranked as the fourth cause of death worldwide and predicted to become the third leading cause of death in 2030. The development of more effective treatments is urgently needed in order to reduce the high mortality rate and the enormous suffering from asthma and COPD. Various inhalation devices with different classes of medications are the foundation as therapies in both asthma and COPD. This article gives a comprehensive review of the promising inhaled therapies in the treatment of asthma and COPD. However, the lack of disease control in asthma and COPD patients may be due to numerous reasons. The association between non-adherence to guidelines on the part of the health care provider and poor inhalation technique and/or non-adherence to the prescribed treatment plan by the patients is common. It is therefore essential to discuss the different delivery systems and the methods used in asthma and COPD patients.

Keywords: Asthma, chronic obstructive pulmonary disease, glucocorticoid, inflammation, inhalation, bronchodilator.

[1]
Global Initiative for Asthma (GINA) Global strategy for asthma management and prevention 2019. Available at: https://ginasthma.org/
[2]
Global Initiative for Chronic Obstructive Lung Disease (GOLD).. Global Strategy for the Diagnosis, Management and Prevention of COPD 2019. Available at: https://goldcoped.org/
[3]
World Health Organization Chronic respiratory diseases 2019. Available at: http://www.who.int/respiratory/en/
[4]
Rogueda P, Traini D. The future of inhalers: how can we improve drug delivery in asthma and COPD? Expert Rev Respir Med 2016; 10(10): 1041-4.
[http://dx.doi.org/10.1080/17476348.2016.1227246] [PMID: 27545190]
[5]
Adcock IM, Ito K. Glucocorticoid pathways in chronic obstructive pulmonary disease therapy. Proc Am Thorac Soc 2005; 2(4): 313-9.
[http://dx.doi.org/10.1513/pats.200504-035SR] [PMID: 16267355]
[6]
Soriano JB, Rodríguez-Roisin R. Chronic obstructive pulmonary disease overview: epidemiology, risk factors, and clinical presentation. Proc Am Thorac Soc 2011; 8(4): 363-7.
[http://dx.doi.org/10.1513/pats.201102-017RM] [PMID: 21816993]
[7]
Asher MI, Montefort S, Björkstén B, et al. ISAAC Phase Three Study Group Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 2006; 368(9537): 733-43.
[http://dx.doi.org/10.1016/S0140-6736(06)69283-0] [PMID: 16935684]
[8]
Collaborators GCRD. GBD 2015 Chronic Respiratory Disease Collaborators Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir Med 2017; 5(9): 691-706.
[http://dx.doi.org/10.1016/S2213-2600(17)30293-X] [PMID: 28822787]
[9]
Croisant S. Epidemiology of asthma: prevalence and burden of disease. Adv Exp Med Biol 2014; 795: 17-29.
[http://dx.doi.org/10.1007/978-1-4614-8603-9_2] [PMID: 24162900]
[10]
Lai CK, Beasley R, Crane J, Foliaki S, Shah J, Weiland S. International Study of Asthma and Allergies in Childhood Phase Three Study Group Global variation in the prevalence and severity of asthma symptoms: phase three of the International Study of Asthma and Allergies in Childhood (ISAAC). Thorax 2009; 64(6): 476-83.
[http://dx.doi.org/10.1136/thx.2008.106609] [PMID: 19237391]
[11]
Bousquet J, Bousquet PJ, Godard P, Daures JP. The public health implications of asthma. Bull World Health Organ 2005; 83(7): 548-54.
[PMID: 16175830]
[12]
Anandan C, Nurmatov U, van Schayck OC, Sheikh A. Is the prevalence of asthma declining? Systematic review of epidemiological studies. Allergy 2010; 65(2): 152-67.
[http://dx.doi.org/10.1111/j.1398-9995.2009.02244.x] [PMID: 19912154]
[13]
Braido F. Failure in asthma control: reasons and consequences. Scientifica (Cairo) 2013.2013549252
[http://dx.doi.org/10.1155/2013/549252] [PMID: 24455432]
[14]
Subbarao P, Mandhane PJ, Sears MR. Asthma: epidemiology, etiology and risk factors. CMAJ 2009; 181(9): E181-90.
[http://dx.doi.org/10.1503/cmaj.080612] [PMID: 19752106]
[15]
Thacher JD, Gehring U, Gruzieva O, et al. Maternal Smoking during Pregnancy and Early Childhood and Development of Asthma and Rhinoconjunctivitis - a MeDALL Project. Environ Health Perspect 2018; 126(4)047005
[http://dx.doi.org/10.1289/EHP2738] [PMID: 29664587]
[16]
Peters U, Dixon AE, Forno E. Obesity and asthma. J Allergy Clin Immunol 2018; 141(4): 1169-79.
[http://dx.doi.org/10.1016/j.jaci.2018.02.004] [PMID: 29627041]
[17]
Bonds RS, Midoro-Horiuti T. Estrogen effects in allergy and asthma. Curr Opin Allergy Clin Immunol 2013; 13(1): 92-9.
[http://dx.doi.org/10.1097/ACI.0b013e32835a6dd6] [PMID: 23090385]
[18]
Shah R, Newcomb DC. Sex Bias in Asthma Prevalence and Pathogenesis. Front Immunol 2018; 9: 2997.
[http://dx.doi.org/10.3389/fimmu.2018.02997] [PMID: 30619350]
[19]
Vandenplas O, Malo JL. Definitions and types of work-related asthma: a nosological approach. Eur Respir J 2003; 21(4): 706-12.
[http://dx.doi.org/10.1183/09031936.03.00113303] [PMID: 12762361]
[20]
Holgate ST. Pathogenesis of asthma. Clin Exp Allergy 2008; 38(6): 872-97.
[http://dx.doi.org/10.1111/j.1365-2222.2008.02971.x] [PMID: 18498538]
[21]
Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 2008; 8(3): 183-92.
[http://dx.doi.org/10.1038/nri2254] [PMID: 18274560]
[22]
Holgate ST. The sentinel role of the airway epithelium in asthma pathogenesis. Immunol Rev 2011; 242(1): 205-19.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01030.x] [PMID: 21682747]
[23]
Barnes PJ. The cytokine network in asthma and chronic obstructive pulmonary disease. J Clin Invest 2008; 118(11): 3546-56.
[http://dx.doi.org/10.1172/JCI36130] [PMID: 18982161]
[24]
Hirose K, Iwata A, Tamachi T, Nakajima H. Allergic airway inflammation: key players beyond the Th2 cell pathway. Immunol Rev 2017; 278(1): 145-61.
[http://dx.doi.org/10.1111/imr.12540] [PMID: 28658544]
[25]
Moldaver DM, Larché M, Rudulier CD. An Update on Lymphocyte Subtypes in Asthma and Airway Disease. Chest 2017; 151(5): 1122-30.
[http://dx.doi.org/10.1016/j.chest.2016.10.038] [PMID: 27818326]
[26]
Li BW, Hendriks RW. Group 2 innate lymphoid cells in lung inflammation. Immunology 2013; 140(3): 281-7.
[http://dx.doi.org/10.1111/imm.12153] [PMID: 23866009]
[27]
Barlow JL, McKenzie AN. Type-2 innate lymphoid cells in human allergic disease. Curr Opin Allergy Clin Immunol 2014; 14(5): 397-403.
[http://dx.doi.org/10.1097/ACI.0000000000000090] [PMID: 25115682]
[28]
Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380(9859): 2095-128.
[http://dx.doi.org/10.1016/S0140-6736(12)61728-0] [PMID: 23245604]
[29]
Mannino DM, Buist AS. Global burden of COPD: risk factors, prevalence, and future trends. Lancet 2007; 370(9589): 765-73.
[http://dx.doi.org/10.1016/S0140-6736(07)61380-4] [PMID: 17765526]
[30]
Rennard SI, Vestbo J. COPD: the dangerous underestimate of 15%. Lancet 2006; 367(9518): 1216-9.
[http://dx.doi.org/10.1016/S0140-6736(06)68516-4] [PMID: 16631861]
[31]
Ho T, Cusack RP, Chaudhary N, Satia I, Kurmi OP. Under- and over-diagnosis of COPD: a global perspective. Breathe (Sheff) 2019; 15(1): 24-35.
[http://dx.doi.org/10.1183/20734735.0346-2018] [PMID: 30838057]
[32]
Salvi SS, Barnes PJ. Chronic obstructive pulmonary disease in non-smokers. Lancet 2009; 374(9691): 733-43.
[http://dx.doi.org/10.1016/S0140-6736(09)61303-9] [PMID: 19716966]
[33]
Salvi S, Barnes PJ. Is exposure to biomass smoke the biggest risk factor for COPD globally? Chest 2010; 138(1): 3-6.
[http://dx.doi.org/10.1378/chest.10-0645] [PMID: 20605806]
[34]
Skloot GS. The Effects of Aging on Lung Structure and Function. Clin Geriatr Med 2017; 33(4): 447-57.
[http://dx.doi.org/10.1016/j.cger.2017.06.001] [PMID: 28991643]
[35]
Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 2016; 138(1): 16-27.
[http://dx.doi.org/10.1016/j.jaci.2016.05.011] [PMID: 27373322]
[36]
Hogg JC, Chu F, Utokaparch S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004; 350(26): 2645-53.
[http://dx.doi.org/10.1056/NEJMoa032158] [PMID: 15215480]
[37]
Fischer BM, Pavlisko E, Voynow JA. Pathogenic triad in COPD: oxidative stress, protease-antiprotease imbalance, and inflammation. Int J Chron Obstruct Pulmon Dis 2011; 6: 413-21.
[http://dx.doi.org/10.2147/COPD.S10770] [PMID: 21857781]
[38]
Prakash YS, Pabelick CM, Sieck GC. Mitochondrial Dysfunction in Airway Disease. Chest 2017; 152(3): 618-26.
[http://dx.doi.org/10.1016/j.chest.2017.03.020] [PMID: 28336486]
[39]
Gamble E, Grootendorst DC, Hattotuwa K, et al. Airway mucosal inflammation in COPD is similar in smokers and ex-smokers: a pooled analysis. Eur Respir J 2007; 30(3): 467-71.
[http://dx.doi.org/10.1183/09031936.00013006] [PMID: 17504799]
[40]
Louhelainen N, Rytilä P, Haahtela T, Kinnula VL, Djukanović R. Persistence of oxidant and protease burden in the airways after smoking cessation. BMC Pulm Med 2009; 9: 25.
[http://dx.doi.org/10.1186/1471-2466-9-25] [PMID: 19473482]
[41]
Duffy SP, Criner GJ. Chronic Obstructive Pulmonary Disease: Evaluation and Management. Med Clin North Am 2019; 103(3): 453-61.
[http://dx.doi.org/10.1016/j.mcna.2018.12.005] [PMID: 30955513]
[42]
Sears MR. Lung function decline in asthma. Eur Respir J 2007; 30(3): 411-3.
[http://dx.doi.org/10.1183/09031936.00080007] [PMID: 17766631]
[43]
Hansbro PM, Kim RY, Starkey MR, et al. Mechanisms and treatments for severe, steroid-resistant allergic airway disease and asthma. Immunol Rev 2017; 278(1): 41-62.
[http://dx.doi.org/10.1111/imr.12543] [PMID: 28658552]
[44]
Gross NJ, Barnes PJ. New Therapies for Asthma and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2017; 195(2): 159-66.
[http://dx.doi.org/10.1164/rccm.201610-2074PP] [PMID: 27922751]
[45]
Price DB, Colice G, Israel E, et al. Add-on LABA in a separate inhaler as asthma step-up therapy versus increased dose of ICS or ICS/LABA combination inhaler. ERJ Open Res 2016; 2(2): 00106-2015.
[http://dx.doi.org/10.1183/23120541.00106-2015] [PMID: 27730200]
[46]
Rodrigo GJ, Castro-Rodríguez JA. Safety of long-acting β agonists for the treatment of asthma: clearing the air. Thorax 2012; 67(4): 342-9.
[http://dx.doi.org/10.1136/thx.2010.155648] [PMID: 21515554]
[47]
Billington CK, Penn RB, Hall IP. β2 Agonists. Handb Exp Pharmacol 2017; 237: 23-40.
[http://dx.doi.org/10.1007/164_2016_64] [PMID: 27878470]
[48]
Penn RB, Bond RA, Walker JK. GPCRs and arrestins in airways: implications for asthma. Handb Exp Pharmacol 2014; 219: 387-403.
[http://dx.doi.org/10.1007/978-3-642-41199-1_20] [PMID: 24292841]
[49]
Johnson M. The beta-adrenoceptor. Am J Respir Crit Care Med 1998; 158(5 Pt 3): S146-53.
[http://dx.doi.org/10.1164/ajrccm.158.supplement_2.13tac110] [PMID: 9817738]
[50]
Gosens R, Zaagsma J, Meurs H, Halayko AJ. Muscarinic receptor signaling in the pathophysiology of asthma and COPD. Respir Res 2006; 7: 73.
[http://dx.doi.org/10.1186/1465-9921-7-73] [PMID: 16684353]
[51]
Price D, Fromer L, Kaplan A, van der Molen T, Román-Rodríguez M. Is there a rationale and role for long-acting anticholinergic bronchodilators in asthma? NPJ Prim Care Respir Med 2014; 24: 14023.
[http://dx.doi.org/10.1038/npjpcrm.2014.23] [PMID: 25030457]
[52]
Kistemaker LE, Oenema TA, Meurs H, Gosens R. Regulation of airway inflammation and remodeling by muscarinic receptors: perspectives on anticholinergic therapy in asthma and COPD. Life Sci 2012; 91(21-22): 1126-33.
[http://dx.doi.org/10.1016/j.lfs.2012.02.021] [PMID: 22406302]
[53]
Meurs H, Oenema TA, Kistemaker LE, Gosens R. A new perspective on muscarinic receptor antagonism in obstructive airways diseases. Curr Opin Pharmacol 2013; 13(3): 316-23.
[http://dx.doi.org/10.1016/j.coph.2013.04.004] [PMID: 23643733]
[54]
Buels KS, Fryer AD. Muscarinic receptor antagonists: effects on pulmonary function. Handb Exp Pharmacol 2012; (208): 317-41.
[http://dx.doi.org/10.1007/978-3-642-23274-9_14] [PMID: 22222705]
[55]
Eglen RM. Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton Autacoid Pharmacol 2006; 26(3): 219-33.
[http://dx.doi.org/10.1111/j.1474-8673.2006.00368.x] [PMID: 16879488]
[56]
Barnes PJ. Glucocorticosteroids: current and future directions. Br J Pharmacol 2011; 163(1): 29-43.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01199.x] [PMID: 21198556]
[57]
Derendorf H, Nave R, Drollmann A, Cerasoli F, Wurst W. Relevance of pharmacokinetics and pharmacodynamics of inhaled corticosteroids to asthma. Eur Respir J 2006; 28(5): 1042-50.
[http://dx.doi.org/10.1183/09031936.00074905] [PMID: 17074919]
[58]
Raissy HH, Kelly HW, Harkins M, Szefler SJ. Inhaled corticosteroids in lung diseases. Am J Respir Crit Care Med 2013; 187(8): 798-803.
[http://dx.doi.org/10.1164/rccm.201210-1853PP] [PMID: 23370915]
[59]
Calzetta L, Ora J, Cavalli F, Rogliani P, O’Donnell DE, Cazzola M. Impact of LABA/LAMA combination on exercise endurance and lung hyperinflation in COPD: A pair-wise and network meta-analysis. Respir Med 2017; 129: 189-98.
[http://dx.doi.org/10.1016/j.rmed.2017.06.020] [PMID: 28732830]
[60]
Calzetta L, Rogliani P, Matera MG, Cazzola M. A Systematic Review With Meta-Analysis of Dual Bronchodilation With LAMA/LABA for the Treatment of Stable COPD. Chest 2016; 149(5): 1181-96.
[http://dx.doi.org/10.1016/j.chest.2016.02.646] [PMID: 26923629]
[61]
Calzetta L, Rogliani P, Ora J, Puxeddu E, Cazzola M, Matera MG. LABA/LAMA combination in COPD: a meta-analysis on the duration of treatment. Eur Respir Rev 2017; 26(143)160043
[http://dx.doi.org/10.1183/16000617.0043-2016] [PMID: 28096283]
[62]
Black JL, Oliver BGG, Roth M. Molecular mechanisms of combination therapy with inhaled corticosteroids and long-acting beta-agonists. Chest 2009; 136(4): 1095-100.
[http://dx.doi.org/10.1378/chest.09-0354] [PMID: 19809050]
[63]
Montuschi P, Malerba M, Macis G, Mores N, Santini G. Triple inhaled therapy for chronic obstructive pulmonary disease. Drug Discov Today 2016; 21(11): 1820-7.
[http://dx.doi.org/10.1016/j.drudis.2016.07.009] [PMID: 27452453]
[64]
Alves AM, Marques de Mello L, Lima Matos AS, Cruz ÁA. Severe asthma: Comparison of different classifications of severity and control. Respir Med 2019; 156: 1-7.
[http://dx.doi.org/10.1016/j.rmed.2019.07.015] [PMID: 31376674]
[65]
Page C, Cazzola M. Bifunctional drugs for the treatment of asthma and chronic obstructive pulmonary disease. Eur Respir J 2014; 44(2): 475-82.
[http://dx.doi.org/10.1183/09031936.00003814] [PMID: 24696121]
[66]
Crim C, Watkins ML, Bateman ED, et al. Randomized dose-finding study of batefenterol via dry powder inhaler in patients with COPD. Int J Chron Obstruct Pulmon Dis 2019; 14: 615-29.
[http://dx.doi.org/10.2147/COPD.S190603] [PMID: 30880951]
[67]
Barnes PJ. Kinases as Novel Therapeutic Targets in Asthma and Chronic Obstructive Pulmonary Disease. Pharmacol Rev 2016; 68(3): 788-815.
[http://dx.doi.org/10.1124/pr.116.012518] [PMID: 27363440]
[68]
Stein SW, Thiel CG. The History of Therapeutic Aerosols: A Chronological Review. J Aerosol Med Pulm Drug Deliv 2017; 30(1): 20-41.
[http://dx.doi.org/10.1089/jamp.2016.1297] [PMID: 27748638]
[69]
Lavorini F, Corrigan CJ, Barnes PJ, et al. Aerosol Drug Management Improvement Team. Retail sales of inhalation devices in European countries: so much for a global policy. Respir Med 2011; 105(7): 1099-103.
[http://dx.doi.org/10.1016/j.rmed.2011.03.012] [PMID: 21489771]
[70]
Lavorini F, Fontana GA, Usmani OS. New inhaler devices - the good, the bad and the ugly. Respiration 2014; 88(1): 3-15.
[http://dx.doi.org/10.1159/000363390] [PMID: 24902629]
[71]
Braido F, Chrystyn H, Baiardini I, et al. Respiratory Effectiveness Group “Trying, But Failing” - The Role of Inhaler Technique and Mode of Delivery in Respiratory Medication Adherence. J Allergy Clin Immunol Pract 2016; 4(5): 823-32.
[http://dx.doi.org/10.1016/j.jaip.2016.03.002] [PMID: 27587316]
[72]
Dudvarski Ilic A, Zugic V, Zvezdin B, et al. Influence of inhaler technique on asthma and COPD control: a multicenter experience. Int J Chron Obstruct Pulmon Dis 2016; 11: 2509-17.
[http://dx.doi.org/10.2147/COPD.S114576] [PMID: 27785007]
[73]
Price DB, et al. Inhaler Errors in the CRITIKAL Study: Type, Frequency, and Association with Asthma Outcomes. J Allergy Clin Immunol Pract 2017; 5(4): 1071-81.
[74]
Brandstetter S, Finger T, Fischer W, et al. Differences in medication adherence are associated with beliefs about medicines in asthma and COPD. Clin Transl Allergy 2017; 7: 39.
[http://dx.doi.org/10.1186/s13601-017-0175-6] [PMID: 29152167]
[75]
Usmani OS, Lavorini F, Marshall J, et al. Critical inhaler errors in asthma and COPD: a systematic review of impact on health outcomes. Respir Res 2018; 19(1): 10.
[http://dx.doi.org/10.1186/s12931-017-0710-y] [PMID: 29338792]
[76]
Dekhuijzen PN, Lavorini F, Usmani OS. Patients’ perspectives and preferences in the choice of inhalers: the case for Respimat® or HandiHaler®. Patient Prefer Adherence 2016; 10: 1561-72.
[http://dx.doi.org/10.2147/PPA.S82857] [PMID: 27574405]
[77]
Usmani OS. Choosing the right inhaler for your asthma or COPD patient. Ther Clin Risk Manag 2019; 15: 461-72.
[http://dx.doi.org/10.2147/TCRM.S160365] [PMID: 30936708]
[78]
Bosnic-Anticevich S, Chrystyn H, Costello RW, et al. The use of multiple respiratory inhalers requiring different inhalation techniques has an adverse effect on COPD outcomes. Int J Chron Obstruct Pulmon Dis 2016; 12: 59-71.
[http://dx.doi.org/10.2147/COPD.S117196] [PMID: 28053517]
[79]
Moon C, Smyth HDC, Watts AB, Williams RO III. Delivery Technologies for Orally Inhaled Products: an Update. AAPS PharmSciTech 2019; 20(3): 117.
[http://dx.doi.org/10.1208/s12249-019-1314-2] [PMID: 30783904]
[80]
Bell JH, Hartley PS, Cox JS. Dry powder aerosols. I. A new powder inhalation device. J Pharm Sci 1971; 60(10): 1559-64.
[http://dx.doi.org/10.1002/jps.2600601028] [PMID: 5129375]
[81]
Weers J, Clark A. The Impact of Inspiratory Flow Rate on Drug Delivery to the Lungs with Dry Powder Inhalers. Pharm Res 2017; 34(3): 507-28.
[http://dx.doi.org/10.1007/s11095-016-2050-x] [PMID: 27738953]
[82]
Hochrainer D, Hölz H, Kreher C, Scaffidi L, Spallek M, Wachtel H. Comparison of the aerosol velocity and spray duration of Respimat Soft Mist inhaler and pressurized metered dose inhalers. J Aerosol Med 2005; 18(3): 273-82.
[http://dx.doi.org/10.1089/jam.2005.18.273] [PMID: 16181002]
[83]
Anderson P. Use of Respimat Soft Mist inhaler in COPD patients. Int J Chron Obstruct Pulmon Dis 2006; 1(3): 251-9.
[http://dx.doi.org/10.2147/copd.2006.1.3.251] [PMID: 18046862]
[84]
Pitcairn G, Reader S, Pavia D, Newman S. Deposition of corticosteroid aerosol in the human lung by Respimat Soft Mist inhaler compared to deposition by metered dose inhaler or by Turbuhaler dry powder inhaler. J Aerosol Med 2005; 18(3): 264-72.
[http://dx.doi.org/10.1089/jam.2005.18.264] [PMID: 16181001]
[85]
Kilfeather SA, Ponitz HH, Beck E, et al. Improved delivery of ipratropium bromide/fenoterol from Respimat Soft Mist Inhaler in patients with COPD. Respir Med 2004; 98(5): 387-97.
[http://dx.doi.org/10.1016/j.rmed.2003.12.007] [PMID: 15139567]
[86]
Vincken W, Bantje T, Middle MV, Gerken F, Moonen D. Long-Term Efficacy and Safety of Ipratropium Bromide plus Fenoterol via Respimat® Soft Misttrade mark Inhaler (SMI) versus a Pressurised Metered-Dose Inhaler in Asthma. Clin Drug Investig 2004; 24(1): 17-28.
[http://dx.doi.org/10.2165/00044011-200424010-00003] [PMID: 17516687]
[87]
Schürmann W, Schmidtmann S, Moroni P, Massey D, Qidan M. Respimat Soft Mist inhaler versus hydrofluoroalkane metered dose inhaler: patient preference and satisfaction. Treat Respir Med 2005; 4(1): 53-61.
[PMID: 15725050]
[88]
Hodder R, Price D. Patient preferences for inhaler devices in chronic obstructive pulmonary disease: experience with Respimat Soft Mist inhaler. Int J Chron Obstruct Pulmon Dis 2009; 4: 381-90.
[http://dx.doi.org/10.2147/COPD.S3391] [PMID: 19888356]
[89]
Pavord ID, Lettis S, Locantore N, et al. Blood eosinophils and inhaled corticosteroid/long-acting β-2 agonist efficacy in COPD. Thorax 2016; 71(2): 118-25.
[http://dx.doi.org/10.1136/thoraxjnl-2015-207021] [PMID: 26585525]