Peripheral Artery Disease in Diabetes Mellitus: Focus on Novel Treatment Options

Page: [5953 - 5968] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Diabetes mellitus (DM) and peripheral artery disease (PAD) are two clinical entities closely associated. They share many pathophysiological pathways such as inflammation, endothelial dysfunction, oxidative stress and pro-coagulative unbalance. Emerging data focusing on agents targeting these pathways may be promising. Moreover, due to the increased cardiovascular risk, there is a growing interest in cardiovascular and “pleiotropic” effects of novel glucose lowering drugs. This review summarizes the main clinical features of PAD in patients, the diagnostic process and current medical/interventional approaches, ranging from “classical treatment” to novel agents.

Keywords: Diabetes mellitus, peripheral artery disease, novel treatments, pro-coagulative unbalance, pleiotropic, endothelial dysfunction.

[1]
Marso SP, Hiatt WR. Peripheral arterial disease in patients with diabetes. J Am Coll Cardiol 2006; 47(5): 921-9.
[http://dx.doi.org/10.1016/j.jacc.2005.09.065] [PMID: 16516072]
[2]
Murabito JM, D’Agostino RB, Silbershatz H, Wilson WF. Intermittent claudication. A risk profile from The Framingham Heart Study. Circulation 1997; 96(1): 44-9.
[http://dx.doi.org/10.1161/01.CIR.96.1.44] [PMID: 9236415]
[3]
Khaleghi M, Isseh IN, Bailey KR, Kullo IJ. Family history as a risk factor for peripheral arterial disease. Am J Cardiol 2014; 114(6): 928-32.
[http://dx.doi.org/10.1016/j.amjcard.2014.06.029] [PMID: 25107577]
[4]
Wassel CL, Loomba R, Ix JH, Allison MA, Denenberg JO, Criqui MH. Family history of peripheral artery disease is associated with prevalence and severity of peripheral artery disease: the San Diego population study. J Am Coll Cardiol 2011; 58(13): 1386-92.
[http://dx.doi.org/10.1016/j.jacc.2011.06.023] [PMID: 21920269]
[5]
Fowkes FG, Rudan D, Rudan I, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet 2013; 382(9901): 1329-40.
[http://dx.doi.org/10.1016/S0140-6736(13)61249-0] [PMID: 23915883]
[6]
Bonaca MP, Creager MA. Pharmacological treatment and current management of peripheral artery disease. Circ Res 2015; 116(9): 1579-98.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.303505] [PMID: 25908730]
[7]
Bhatt DL, Steg PG, Ohman EM, et al. REACH Registry Investigators International prevalence, recognition, and treatment of cardiovascular risk factors in outpatients with atherothrombosis. JAMA 2006; 295(2): 180-9.
[http://dx.doi.org/10.1001/jama.295.2.180] [PMID: 16403930]
[8]
Jude EB, Oyibo SO, Chalmers N, Boulton AJ. Peripheral arterial disease in diabetic and nondiabetic patients: a comparison of severity and outcome. Diabetes Care 2001; 24(8): 1433-7.
[http://dx.doi.org/10.2337/diacare.24.8.1433] [PMID: 11473082]
[9]
American Diabetes Association Peripheral arterial disease in people with diabetes. Diabetes Care 2003; 26(12): 3333-41.
[http://dx.doi.org/10.2337/diacare.26.12.3333] [PMID: 14633825]
[10]
Brun E, Nelson RG, Bennett PH, et al. Verona Diabetes Study. Diabetes duration and cause-specific mortality in the Verona Diabetes Study. Diabetes Care 2000; 23(8): 1119-23.
[http://dx.doi.org/10.2337/diacare.23.8.1119] [PMID: 10937508]
[11]
Marenzi G, Cosentino N, Genovese S, et al. Reduced cardio-renal function accounts for most of the in-hospital morbidity and mortality risk among patients with type 2 diabetes undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Diabetes Care 2019; 42(7): 1305-11.
[http://dx.doi.org/10.2337/dc19-0047] [PMID: 31048409]
[12]
Kullo IJ, Rooke TW. CLINICAL PRACTICE. Peripheral Artery Disease. N Engl J Med 2016; 374(9): 861-71.
[http://dx.doi.org/10.1056/NEJMcp1507631] [PMID: 26962905]
[13]
Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 2002; 287(19): 2570-81.
[http://dx.doi.org/10.1001/jama.287.19.2570] [PMID: 12020339]
[14]
Wang JC, Criqui MH, Denenberg JO, McDermott MM, Golomb BA, Fronek A. Exertional leg pain in patients with and without peripheral arterial disease. Circulation 2005; 112(22): 3501-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.548099] [PMID: 16316971]
[15]
Pickett CA, Jackson JL, Hemann BA, Atwood JE. Carotid bruits as a prognostic indicator of cardiovascular death and myocardial infarction: a meta-analysis. Lancet 2008; 371(9624): 1587-94.
[http://dx.doi.org/10.1016/S0140-6736(08)60691-1] [PMID: 18468542]
[16]
Wennberg PW. Approach to the patient with peripheral arterial disease. Circulation 2013; 128(20): 2241-50.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.000502] [PMID: 24218439]
[17]
Clark CE, Taylor RS, Shore AC, Ukoumunne OC, Campbell JL. Association of a difference in systolic blood pressure between arms with vascular disease and mortality: a systematic review and meta-analysis. Lancet 2012; 379(9819): 905-14.
[http://dx.doi.org/10.1016/S0140-6736(11)61710-8] [PMID: 22293369]
[18]
Kullo IJ, Bailey KR, Kardia SL, Mosley TH Jr, Boerwinkle E, Turner ST. Ethnic differences in peripheral arterial disease in the NHLBI Genetic Epidemiology Network of Arteriopathy (GENOA) study. Vasc Med 2003; 8(4): 237-42.
[http://dx.doi.org/10.1191/1358863x03vm511oa] [PMID: 15125483]
[19]
Aboyans V, Criqui MH, Abraham P, et al. American Heart Association Council on Peripheral Vascular Disease; Council on Epidemiology and Prevention; Council on Clinical Cardiology; Council on Cardiovascular Nursing; Council on Cardiovascular Radiology and Intervention, and Council on Cardiovascular Surgery and Anesthesia. Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation 2012; 126(24): 2890-909.
[http://dx.doi.org/10.1161/CIR.0b013e318276fbcb] [PMID: 23159553]
[20]
Aboyans V, Ricco JB, Bartelink MEL, et al. ESC Scientific Document Group 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: the European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J 2018; 39(9): 763-816.
[http://dx.doi.org/10.1093/eurheartj/ehx095] [PMID: 28886620]
[21]
Tousoulis D, Kampoli AM, Papageorgiou N, Papaoikonomou S, Antoniades C, Stefanadis C. The impact of diabetes mellitus on coronary artery disease: new therapeutic approaches. Curr Pharm Des 2009; 15(17): 2037-48.
[http://dx.doi.org/10.2174/138161209788453185] [PMID: 19519440]
[22]
Montagnani M, Golovchenko I, Kim I, et al. Inhibition of phosphatidylinositol 3-kinase enhances mitogenic actions of insulin in endothelial cells. J Biol Chem 2002; 277(3): 1794-9.
[http://dx.doi.org/10.1074/jbc.M103728200] [PMID: 11707433]
[23]
Waltenberger J. VEGF resistance as a molecular basis to explain the angiogenesis paradox in diabetes mellitus. Biochem Soc Trans 2009; 37(Pt 6): 1167-70.
[http://dx.doi.org/10.1042/BST0371167] [PMID: 19909240]
[24]
Tousoulis D, Andreou I, Antoniades C, Tentolouris C, Stefanadis C. Role of inflammation and oxidative stress in endothelial progenitor cell function and mobilization: therapeutic implications for cardiovascular diseases. Atherosclerosis 2008; 201(2): 236-47.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.05.034] [PMID: 18599065]
[25]
António N, Fernandes R, Ribeiro CF, Providência LA. Challenges in vascular repair by endothelial progenitor cells in diabetic patients. Cardiovasc Hematol Disord Drug Targets 2010; 10(3): 161-6.
[http://dx.doi.org/10.2174/1871529X11006030161] [PMID: 20678063]
[26]
Fadini GP, Avogaro A. Potential manipulation of endothelial progenitor cells in diabetes and its complications. Diabetes Obes Metab 2010; 12(7): 570-83.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01210.x] [PMID: 20590732]
[27]
Somaschini A, Cornara S, Demarchi A, et al. Neutrophil to platelet ratio: A novel prognostic biomarker in ST-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention. Eur J Prev Cardiol 2020; 27(19): 2338-40.
[http://dx.doi.org/10.1177/2047487319894103] [PMID: 31841054]
[28]
Somaschini A, Cornara S, Demarchi A, et al. The unfavourable inflammatory response in elderly patients after myocardial infarction: should we talk of ‘dysflammaging’? J Cardiovasc Med (Hagerstown) 2020; 21(4): 340-2.
[http://dx.doi.org/10.2459/JCM.0000000000000925] [PMID: 31972747]
[29]
Mandurino-Mirizzi A, Demarchi A, Ruffinazzi M, et al. Serum uric acid may modulate the inflammatory response after primary percutaneous coronary intervention in patients with ST-elevation myocardial infarction. J Cardiovasc Med (Hagerstown) 2020; 21(4): 337-9.
[http://dx.doi.org/10.2459/JCM.0000000000000926] [PMID: 31977536]
[30]
Arroyo-Espliguero R, Avanzas P, Cosín-Sales J, Aldama G, Pizzi C, Kaski JC. C-reactive protein elevation and disease activity in patients with coronary artery disease. Eur Heart J 2004; 25(5): 401-8.
[http://dx.doi.org/10.1016/j.ehj.2003.12.017] [PMID: 15033252]
[31]
Nissen SE, Tuzcu EM, Schoenhagen P, et al. Reversal of Atherosclerosis with Aggressive Lipid Lowering (REVERSAL) Investigators Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N Engl J Med 2005; 352(1): 29-38.
[http://dx.doi.org/10.1056/NEJMoa042000] [PMID: 15635110]
[32]
Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Plasma concentration of C-reactive protein and risk of developing peripheral vascular disease. Circulation 1998; 97(5): 425-8.
[http://dx.doi.org/10.1161/01.CIR.97.5.425] [PMID: 9490235]
[33]
Schnell O, Braun KF, Müller M, Standl E, Otter W. The Munich Myocardial Infarction Registry: impact of C-reactive protein and kidney function on hospital mortality in diabetic patients. Diab Vasc Dis Res 2010; 7(3): 225-30.
[http://dx.doi.org/10.1177/1479164110372641] [PMID: 20587599]
[34]
Spranger J, Kroke A, Möhlig M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 2003; 52(3): 812-7.
[http://dx.doi.org/10.2337/diabetes.52.3.812] [PMID: 12606524]
[35]
Geisler T, Mueller K, Aichele S, et al. Impact of inflammatory state and metabolic control on responsiveness to dual antiplatelet therapy in type 2 diabetics after PCI: prognostic relevance of residual platelet aggregability in diabetics undergoing coronary interventions. Clin Res Cardiol 2010; 99(11): 743-52.
[http://dx.doi.org/10.1007/s00392-010-0179-x] [PMID: 20526607]
[36]
Tousoulis D, Papageorgiou N, Androulakis E, et al. Diabetes mellitus-associated vascular impairment: novel circulating biomarkers and therapeutic approaches. J Am Coll Cardiol 2013; 62(8): 667-76.
[http://dx.doi.org/10.1016/j.jacc.2013.03.089] [PMID: 23948511]
[37]
Kawashima S, Yokoyama M. Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol 2004; 24(6): 998-1005.
[http://dx.doi.org/10.1161/01.ATV.0000125114.88079.96] [PMID: 15001455]
[38]
Cornara S, Crimi G, Somaschini A, et al. Systemic inflammatory status is associated with increased platelet reactivity in the early period after acute coronary syndromes. Platelets 2018; 29(5): 528-30.
[http://dx.doi.org/10.1080/09537104.2018.1457782] [PMID: 29617211]
[39]
Tsao PS, Wang B, Buitrago R, Shyy JY, Cooke JP. Nitric oxide regulates monocyte chemotactic protein-1. Circulation 1997; 96(3): 934-40.
[http://dx.doi.org/10.1161/01.CIR.96.3.934] [PMID: 9264504]
[40]
Festa A, D’Agostino R Jr, Mykkänen L, et al. The Insulin Resistance Atherosclerosis Study (IRAS). Relative contribution of insulin and its precursors to fibrinogen and PAI-1 in a large population with different states of glucose tolerance. Arterioscler Thromb Vasc Biol 1999; 19(3): 562-8.
[http://dx.doi.org/10.1161/01.ATV.19.3.562] [PMID: 10073958]
[41]
Cardillo C, Campia U, Bryant MB, Panza JA. Increased activity of endogenous endothelin in patients with type II diabetes mellitus. Circulation 2002; 106(14): 1783-7.
[http://dx.doi.org/10.1161/01.CIR.0000032260.01569.64] [PMID: 12356630]
[42]
Stehouwer CD, Gall MA, Twisk JW, Knudsen E, Emeis JJ, Parving HH. Increased urinary albumin excretion, endothelial dysfunction, and chronic low-grade inflammation in type 2 diabetes: progressive, interrelated, and independently associated with risk of death. Diabetes 2002; 51(4): 1157-65.
[http://dx.doi.org/10.2337/diabetes.51.4.1157] [PMID: 11916939]
[43]
Vinik AI, Erbas T, Park TS, Nolan R, Pittenger GL. Platelet dysfunction in type 2 diabetes. Diabetes Care 2001; 24(8): 1476-85.
[http://dx.doi.org/10.2337/diacare.24.8.1476] [PMID: 11473089]
[44]
Winocour PD, Watala C, Kinglough-Rathbone RL. Membrane fluidity is related to the extent of glycation of proteins, but not to alterations in the cholesterol to phospholipid molar ratio in isolated platelet membranes from diabetic and control subjects. Thromb Haemost 1992; 67(5): 567-71.
[http://dx.doi.org/10.1055/s-0038-1648495] [PMID: 1519216]
[45]
Gupte S, Labinskyy N, Gupte R, Csiszar A, Ungvari Z, Edwards JG. Role of NAD(P)H oxidase in superoxide generation and endothelial dysfunction in Goto-Kakizaki (GK) rats as a model of nonobese NIDDM. PLoS One 2010; 5(7)e11800
[http://dx.doi.org/10.1371/journal.pone.0011800] [PMID: 20668682]
[46]
Vásquez-Vivar J, Kalyanaraman B, Martásek P, et al. Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci USA 1998; 95(16): 9220-5.
[http://dx.doi.org/10.1073/pnas.95.16.9220] [PMID: 9689061]
[47]
Pieper GM. Acute amelioration of diabetic endothelial dysfunction with a derivative of the nitric oxide synthase cofactor, tetrahydrobiopterin. J Cardiovasc Pharmacol 1997; 29(1): 8-15.
[http://dx.doi.org/10.1097/00005344-199701000-00002] [PMID: 9007664]
[48]
Tousoulis D, Papageorgiou N, Androulakis E, Paroutoglou K, Stefanadis C. Novel therapeutic strategies targeting vascular endothelium in essential hypertension. Expert Opin Investig Drugs 2010; 19(11): 1395-412.
[http://dx.doi.org/10.1517/13543784.2010.522989] [PMID: 20923260]
[49]
Antoniades C, Tousoulis D, Tountas C, et al. Vascular endothelium and inflammatory process, in patients with combined Type 2 diabetes mellitus and coronary atherosclerosis: the effects of vitamin C. Diabet Med 2004; 21(6): 552-8.
[http://dx.doi.org/10.1111/j.1464-5491.2004.01201.x] [PMID: 15154938]
[50]
Tousoulis D, Antoniades C, Tountas C, et al. Vitamin C affects thrombosis/fibrinolysis system and reactive hyperemia in patients with type 2 diabetes and coronary artery disease. Diabetes Care 2003; 26(10): 2749-53.
[http://dx.doi.org/10.2337/diacare.26.10.2749] [PMID: 14514574]
[51]
Morris PB, Ference BA, Jahangir E, et al. Cardiovascular effects of exposure to cigarette smoke and electronic cigarettes: clinical perspectives from the Prevention of Cardiovascular Disease Section Leadership Council and Early Career Councils of the American College of Cardiology. J Am Coll Cardiol 2015; 66(12): 1378-91.
[http://dx.doi.org/10.1016/j.jacc.2015.07.037] [PMID: 26383726]
[52]
Piepoli MF, Hoes AW, Agewall S, et al. ESC Scientific Document Group 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J 2016; 37(29): 2315-81.
[http://dx.doi.org/10.1093/eurheartj/ehw106] [PMID: 27222591]
[53]
Androulakis ES, Tousoulis D, Papageorgiou N, Tsioufis C, Kallikazaros I, Stefanadis C. Essential hypertension: is there a role for inflammatory mechanisms? Cardiol Rev 2009; 17(5): 216-21.
[http://dx.doi.org/10.1097/CRD.0b013e3181b18e03] [PMID: 19690472]
[54]
Bavry AA, Anderson RD, Gong Y, et al. Outcomes Among hypertensive patients with concomitant peripheral and coronary artery disease: findings from the INternational VErapamil-SR/Trandolapril STudy. Hypertension 2010; 55(1): 48-53.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.142240] [PMID: 19996066]
[55]
Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Heart Outcomes Prevention Evaluation Study Investigators Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med 2000; 342(3): 145-53.
[http://dx.doi.org/10.1056/NEJM200001203420301] [PMID: 10639539]
[56]
Yusuf S, Teo KK, Pogue J, et al. ONTARGET Investigators Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 2008; 358(15): 1547-59.
[http://dx.doi.org/10.1056/NEJMoa0801317] [PMID: 18378520]
[57]
Paravastu SC, Mendonca DA, Da Silva A. Beta blockers for peripheral arterial disease. Cochrane Database Syst Rev 2013; 9(9)CD005508
[PMID: 24027118]
[58]
Cosentino F, Grant PJ, Aboyans V, et al. ESC Scientific Document Group 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 2020; 41(2): 255-323.
[http://dx.doi.org/10.1093/eurheartj/ehz486] [PMID: 31497854]
[59]
Murphy SA, Cannon CP, Blazing MA, et al. Reduction in total cardiovascular events with ezetimibe/simvastatin post-acute coronary syndrome: the IMPROVE-IT Trial. J Am Coll Cardiol 2016; 67(4): 353-61.
[http://dx.doi.org/10.1016/j.jacc.2015.10.077] [PMID: 26821621]
[60]
Kumbhani DJ, Steg PG, Cannon CP, et al. REACH Registry Investigators Statin therapy and long-term adverse limb outcomes in patients with peripheral artery disease: insights from the REACH registry. Eur Heart J 2014; 35(41): 2864-72.
[http://dx.doi.org/10.1093/eurheartj/ehu080] [PMID: 24585266]
[61]
Vogiatzi G, Oikonomou E, Siasos G, et al. Statins and inflammation in cardiovascular disease. Curr Pharm Des 2017; 23: 7027-39.
[http://dx.doi.org/10.2174/1381612823666171009141201] [PMID: 28990524]
[62]
Briasoulis A, Tousoulis D, Androulakis ES, Papageorgiou N, Latsios G, Stefanadis C. Endothelial dysfunction and atherosclerosis: focus on novel therapeutic approaches. Recent Pat Cardiovasc Drug Discov 2012; 7(1): 21-32.
[http://dx.doi.org/10.2174/157489012799362386] [PMID: 22280336]
[63]
Ostadal P. Statins as first-line therapy for acute coronary syndrome? Exp Clin Cardiol 2012; 17(4): 227-36.
[PMID: 23592942]
[64]
Schillinger M, Exner M, Mlekusch W, et al. Statin therapy improves cardiovascular outcome of patients with peripheral artery disease. Eur Heart J 2004; 25(9): 742-8.
[http://dx.doi.org/10.1016/j.ehj.2004.02.012] [PMID: 15120884]
[65]
Angelkort B, Spürk P, Habbaba A, Mähder M. Blood flow properties and walking performance in chronic arterial occlusive disease. Angiology 1985; 36(5): 285-92.
[http://dx.doi.org/10.1177/000331978503600504] [PMID: 3896044]
[66]
Money SR, Herd JA, Isaacsohn JL, et al. Effect of cilostazol on walking distances in patients with intermittent claudication caused by peripheral vascular disease. J Vasc Surg 1998; 27(2): 267-74.
[http://dx.doi.org/10.1016/S0741-5214(98)70357-X] [PMID: 9510281]
[67]
Dawson DL, Cutler BS, Meissner MH, Strandness DE Jr. Cilostazol has beneficial effects in treatment of intermittent claudication: results from a multicenter, randomized, prospective, double-blind trial. Circulation 1998; 98(7): 678-86.
[http://dx.doi.org/10.1161/01.CIR.98.7.678] [PMID: 9715861]
[68]
Jackson MR, Clagett GP. Antithrombotic therapy in peripheral arterial occlusive disease. Chest 2001; 119(1)(Suppl.): 283S-99S.
[http://dx.doi.org/10.1378/chest.119.1_suppl.283S] [PMID: 11157655]
[69]
Mays RJ, Rogers RK, Hiatt WR, Regensteiner JG. Community walking programs for treatment of peripheral artery disease. J Vasc Surg 2013; 58(6): 1678-87.
[http://dx.doi.org/10.1016/j.jvs.2013.08.034] [PMID: 24103409]
[70]
Hamburg NM, Balady GJ. Exercise rehabilitation in peripheral artery disease: functional impact and mechanisms of benefits. Circulation 2011; 123(1): 87-97.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.881888] [PMID: 21200015]
[71]
Hiatt WR, Regensteiner JG, Hargarten ME, Wolfel EE, Brass EP. Benefit of exercise conditioning for patients with peripheral arterial disease. Circulation 1990; 81(2): 602-9.
[http://dx.doi.org/10.1161/01.CIR.81.2.602] [PMID: 2404633]
[72]
Hiatt WR, Wolfel EE, Meier RH, Regensteiner JG. Superiority of treadmill walking exercise versus strength training for patients with peripheral arterial disease. Implications for the mechanism of the training response. Circulation 1994; 90(4): 1866-74.
[http://dx.doi.org/10.1161/01.CIR.90.4.1866] [PMID: 7923674]
[73]
Hiatt WR, Regensteiner JG, Wolfel EE, Carry MR, Brass EP. Effect of exercise training on skeletal muscle histology and metabolism in peripheral arterial disease. J Appl Physiol (1985) 1996; 81(2): 780-8.
[http://dx.doi.org/10.1152/jappl.1996.81.2.780] [PMID: 8872646]
[74]
Chang P, Nead KT, Olin JW, Myers J, Cooke JP, Leeper NJ. Effect of physical activity assessment on prognostication for peripheral artery disease and mortality. Mayo Clin Proc 2015; 90(3): 339-45.
[http://dx.doi.org/10.1016/j.mayocp.2014.12.016] [PMID: 25649965]
[75]
Sakamoto S, Yokoyama N, Tamori Y, Akutsu K, Hashimoto H, Takeshita S. Patients with peripheral artery disease who complete 12-week supervised exercise training program show reduced cardiovascular mortality and morbidity. Circ J 2009; 73(1): 167-73.
[http://dx.doi.org/10.1253/circj.CJ-08-0141] [PMID: 19039192]
[76]
Fowkes FG, Price JF, Stewart MC, et al. Aspirin for Asymptomatic Atherosclerosis Trialists. Aspirin for prevention of cardiovascular events in a general population screened for a low ankle brachial index: a randomized controlled trial. JAMA 2010; 303(9): 841-8.
[http://dx.doi.org/10.1001/jama.2010.221] [PMID: 20197530]
[77]
Belch J, MacCuish A, Campbell I, et al. Prevention of Progression of Arterial Disease and Diabetes Study Group Diabetes Registry Group; Royal College of Physicians Edinburgh. The prevention of progression of arterial disease and diabetes (POPADAD) trial: factorial randomised placebo controlled trial of aspirin and antioxidants in patients with diabetes and asymptomatic peripheral arterial disease. BMJ 2008; 337: a1840.
[http://dx.doi.org/10.1136/bmj.a1840] [PMID: 18927173]
[78]
Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 2002; 324(7329): 71-86.
[http://dx.doi.org/10.1136/bmj.324.7329.71] [PMID: 11786451]
[79]
A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Lancet 1996; 348(9038): 1329-39.
[http://dx.doi.org/10.1016/S0140-6736(96)09457-3] [PMID: 8918275]
[80]
Hiatt WR, Fowkes FG, Heizer G, et al. EUCLID Trial Steering Committee and Investigators Ticagrelor versus clopidogrel in symptomatic peripheral artery disease. N Engl J Med 2017; 376(1): 32-40.
[http://dx.doi.org/10.1056/NEJMoa1611688] [PMID: 27959717]
[81]
Schmit K, Dolor RJ, Jones WS, et al. Comparative effectiveness review of antiplatelet agents in peripheral artery disease. J Am Heart Assoc 2014; 3(6)e001330
[http://dx.doi.org/10.1161/JAHA.113.001330] [PMID: 25477329]
[82]
Hinchliffe RJ, Brownrigg JR, Andros G, et al. International Working Group on the Diabetic Foot. Effectiveness of revascularization of the ulcerated foot in patients with diabetes and peripheral artery disease: a systematic review. Diabetes Metab Res Rev 2016; 32(Suppl. 1): 136-44.
[http://dx.doi.org/10.1002/dmrr.2705] [PMID: 26342204]
[83]
Butt T, Lilja E, Örneholm H, et al. Amputation-Free Survival in Patients With Diabetes Mellitus and Peripheral Arterial Disease With Heel Ulcer: Open Versus Endovascular Surgery. Vasc Endovascular Surg 2019; 53(2): 118-25.
[http://dx.doi.org/10.1177/1538574418813746] [PMID: 30466379]
[84]
Butt T, Lilja E, Elgzyri T, et al. Amputation-free survival in patients with diabetic foot ulcer and peripheral arterial disease: Endovascular versus open surgery in a propensity score adjusted analysis. J Diabetes Complications 2020; 34(5)107551
[http://dx.doi.org/10.1016/j.jdiacomp.2020.107551] [PMID: 32061519]
[85]
Efficacy of oral anticoagulants compared with aspirin after infrainguinal bypass surgery (The Dutch Bypass Oral Anticoagulants or Aspirin Study): a randomised trial. Lancet 2000; 355(9201): 346-51.
[http://dx.doi.org/10.1016/S0140-6736(99)07199-8] [PMID: 10665553]
[86]
Belch JJ, Dormandy J, Biasi GM, et al. CASPAR Writing Committee. Results of the randomized, placebo-controlled clopidogrel and acetylsalicylic acid in bypass surgery for peripheral arterial disease (CASPAR) trial. J Vasc Surg 2010; 52(4): 825-33.
[http://dx.doi.org/10.1016/j.jvs.2010.04.027] [PMID: 20678878]
[87]
Dake MD, Ansel GM, Jaff MR, et al. Zilver PTX Investigators Durable Clinical Effectiveness With Paclitaxel-Eluting Stents in the Femoropopliteal Artery: 5-Year Results of the Zilver PTX Randomized Trial. Circulation 2016; 133(15): 1472-83.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.016900] [PMID: 26969758]
[88]
Laird JR, Schneider PA, Tepe G, et al. IN.PACT SFA Trial Investigators. Durability of Treatment Effect Using a Drug-Coated Balloon for Femoropopliteal Lesions: 24-Month Results of IN.PACT SFA. J Am Coll Cardiol 2015; 66(21): 2329-38.
[http://dx.doi.org/10.1016/j.jacc.2015.09.063] [PMID: 26476467]
[89]
Dagher NN, Modrall JG. Pharmacotherapy before and after revascularization: anticoagulation, antiplatelet agents, and statins. Semin Vasc Surg 2007; 20(1): 10-4.
[http://dx.doi.org/10.1053/j.semvascsurg.2007.02.006] [PMID: 17386359]
[90]
Bonaca MP, Bhatt DL, Cohen M, et al. PEGASUS-TIMI 54 Steering Committee and Investigators Long-term use of ticagrelor in patients with prior myocardial infarction. N Engl J Med 2015; 372(19): 1791-800.
[http://dx.doi.org/10.1056/NEJMoa1500857] [PMID: 25773268]
[91]
Kirchhof P, Benussi S, Kotecha D, et al. ESC Scientific Document Group 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J 2016; 37(38): 2893-962.
[http://dx.doi.org/10.1093/eurheartj/ehw210] [PMID: 27567408]
[92]
Winkel TA, Hoeks SE, Schouten O, et al. Prognosis of atrial fibrillation in patients with symptomatic peripheral arterial disease: data from the REduction of Atherothrombosis for Continued Health (REACH) Registry. Eur J Vasc Endovasc Surg 2010; 40(1): 9-16.
[http://dx.doi.org/10.1016/j.ejvs.2010.03.003] [PMID: 20385507]
[93]
Valgimigli M, Bueno H, Byrne RA, et al. ESC Scientific Document Group ESC Committee for Practice Guidelines (CPG); ESC National Cardiac Societies. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: The Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2018; 39(3): 213-60.
[http://dx.doi.org/10.1093/eurheartj/ehx419] [PMID: 28886622]
[94]
Morrow DA, Scirica BM, Fox KA, et al. TRA 2(o)P-TIMI 50 Investigators. Evaluation of a novel antiplatelet agent for secondary prevention in patients with a history of atherosclerotic disease: design and rationale for the Thrombin-Receptor Antagonist in Secondary Prevention of Atherothrombotic Ischemic Events (TRA 2 degrees P)-TIMI 50 trial. Am Heart J 2009; 158(3): 335-341.e3.
[http://dx.doi.org/10.1016/j.ahj.2009.06.027] [PMID: 19699854]
[95]
Bonaca MP, Scirica BM, Creager MA, et al. Vorapaxar in patients with peripheral artery disease: results from TRA2°P-TIMI 50. Circulation 2013; 127(14): 1522-9. 1529e1-6.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.000679] [PMID: 23501976]
[96]
Franchi F, Rollini F, Kairouz V, et al. Pharmacodynamic Effects of Vorapaxar in Patients With and Without Diabetes Mellitus: Results of the OPTIMUS-5 Study. JACC Basic Transl Sci 2019; 4(7): 763-75.
[http://dx.doi.org/10.1016/j.jacbts.2019.07.011] [PMID: 31998847]
[97]
Eikelboom JW, Connolly SJ, Bosch J, et al. COMPASS Investigators Rivaroxaban with or without Aspirin in Stable Cardiovascular Disease. N Engl J Med 2017; 377(14): 1319-30.
[http://dx.doi.org/10.1056/NEJMoa1709118] [PMID: 28844192]
[98]
Anand SS, Eikelboom JW, Dyal L, et al. COMPASS Trial Investigators Rivaroxaban Plus Aspirin Versus Aspirin in Relation to Vascular Risk in the COMPASS Trial. J Am Coll Cardiol 2019; 73(25): 3271-80.
[http://dx.doi.org/10.1016/j.jacc.2019.02.079] [PMID: 31248548]
[99]
Capell WH, Bonaca MP, Nehler MR, et al. Rationale and design for the Vascular Outcomes study of ASA along with rivaroxaban in endovascular or surgical limb revascularization for peripheral artery disease (VOYAGER PAD). Am Heart J 2018; 199: 83-91.
[http://dx.doi.org/10.1016/j.ahj.2018.01.011] [PMID: 29754671]
[100]
Sabatine MS, Giugliano RP, Pedersen TR. Evolocumab in patients with cardiovascular disease. N Engl J Med 2017; 377(8): 787-8.
[PMID: 28834471]
[101]
Bonaca MP, Nault P, Giugliano RP, et al. Low-Density Lipoprotein Cholesterol Lowering With Evolocumab and Outcomes in Patients With Peripheral Artery Disease: Insights From the FOURIER Trial (Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk). Circulation 2018; 137(4): 338-50.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.032235] [PMID: 29133605]
[102]
Singh S, Armstrong EJ, Sherif W, et al. Association of elevated fasting glucose with lower patency and increased major adverse limb events among patients with diabetes undergoing infrapopliteal balloon angioplasty. Vasc Med 2014; 19(4): 307-14.
[http://dx.doi.org/10.1177/1358863X14538330] [PMID: 24939930]
[103]
Makita S, Matsui H, Naganuma Y, Abiko A, Tamada M, Nakamura M. Diabetic state as a crucial factor for impaired arterial elastic properties in patients with peripheral arterial disease. Atherosclerosis 2010; 208(1): 167-70.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.06.033] [PMID: 19631940]
[104]
Su Y, Liu XM, Sun YM, Wang YY, Luan Y, Wu Y. Endothelial dysfunction in impaired fasting glycemia, impaired glucose tolerance, and type 2 diabetes mellitus. Am J Cardiol 2008; 102(4): 497-8.
[http://dx.doi.org/10.1016/j.amjcard.2008.03.087] [PMID: 18678313]
[105]
Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359(15): 1577-89.
[http://dx.doi.org/10.1056/NEJMoa0806470] [PMID: 18784090]
[106]
Gerstein HC, Miller ME, Byington RP, et al. Action to Control Cardiovascular Risk in Diabetes Study Group Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008; 358(24): 2545-59.
[http://dx.doi.org/10.1056/NEJMoa0802743] [PMID: 18539917]
[107]
Patel A, MacMahon S, Chalmers J, et al. ADVANCE Collaborative Group Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008; 358(24): 2560-72.
[http://dx.doi.org/10.1056/NEJMoa0802987] [PMID: 18539916]
[108]
Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 2008; 358(6): 580-91.
[http://dx.doi.org/10.1056/NEJMoa0706245] [PMID: 18256393]
[109]
Kanai Y, Lee WS, You G, Brown D, Hediger MA. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J Clin Invest 1994; 93(1): 397-404.
[http://dx.doi.org/10.1172/JCI116972] [PMID: 8282810]
[110]
Shyangdan DS, Uthman OA, Waugh N. SGLT-2 receptor inhibitors for treating patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. BMJ Open 2016; 6(2)e009417
[http://dx.doi.org/10.1136/bmjopen-2015-009417] [PMID: 26911584]
[111]
Weber MA, Mansfield TA, Cain VA, Iqbal N, Parikh S, Ptaszynska A. Blood pressure and glycaemic effects of dapagliflozin versus placebo in patients with type 2 diabetes on combination antihypertensive therapy: a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Diabetes Endocrinol 2016; 4(3): 211-20.
[http://dx.doi.org/10.1016/S2213-8587(15)00417-9] [PMID: 26620248]
[112]
Neter JE, Stam BE, Kok FJ, Grobbee DE, Geleijnse JM. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension 2003; 42(5): 878-84.
[http://dx.doi.org/10.1161/01.HYP.0000094221.86888.AE] [PMID: 12975389]
[113]
Bolinder J, Ljunggren Ö, Kullberg J, et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab 2012; 97(3): 1020-31.
[http://dx.doi.org/10.1210/jc.2011-2260] [PMID: 22238392]
[114]
Cherney DZ, Perkins BA, Soleymanlou N, et al. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc Diabetol 2014; 13: 28.
[http://dx.doi.org/10.1186/1475-2840-13-28] [PMID: 24475922]
[115]
Lioudaki E, Androulakis ES, Whyte M, Stylianou KG, Daphnis EK, Ganotakis ES. The Effect of Sodium-Glucose Co-transporter-2 (SGLT-2) Inhibitors on Cardiometabolic Profile; Beyond the Hypoglycaemic Action. Cardiovasc Drugs Ther 2017; 31(2): 215-25.
[http://dx.doi.org/10.1007/s10557-017-6724-3] [PMID: 28444472]
[116]
Macdonald FR, Peel JE, Jones HB, et al. The novel sodium glucose transporter 2 inhibitor dapagliflozin sustains pancreatic function and preserves islet morphology in obese, diabetic rats. Diabetes Obes Metab 2010; 12(11): 1004-12.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01291.x] [PMID: 20880347]
[117]
Lioudaki E, Whyte M, Androulakis ES, Stylianou KG, Daphnis EK, Ganotakis ES. Renal Effects of SGLT-2 Inhibitors and Other Anti-diabetic Drugs: Clinical Relevance and Potential Risks. Clin Pharmacol Ther 2017; 102(3): 470-80.
[http://dx.doi.org/10.1002/cpt.731] [PMID: 28480956]
[118]
Terami N, Ogawa D, Tachibana H, et al. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS One 2014; 9(6)e100777
[http://dx.doi.org/10.1371/journal.pone.0100777] [PMID: 24960177]
[119]
Cherney DZ, Perkins BA, Soleymanlou N, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 2014; 129(5): 587-97.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.005081] [PMID: 24334175]
[120]
Cherney D, Lund SS, Perkins BA, et al. The effect of sodium glucose cotransporter 2 inhibition with empagliflozin on microalbuminuria and macroalbuminuria in patients with type 2 diabetes. Diabetologia 2016; 59(9): 1860-70.
[http://dx.doi.org/10.1007/s00125-016-4008-2] [PMID: 27316632]
[121]
Kojima N, Williams JM, Takahashi T, Miyata N, Roman RJ. Effects of a new SGLT2 inhibitor, luseogliflozin, on diabetic nephropathy in T2DN rats. J Pharmacol Exp Ther 2013; 345(3): 464-72.
[http://dx.doi.org/10.1124/jpet.113.203869] [PMID: 23492941]
[122]
Tang H, Li D, Zhang J, et al. Sodium-glucose co-transporter-2 inhibitors and risk of adverse renal outcomes among patients with type 2 diabetes: A network and cumulative meta-analysis of randomized controlled trials. Diabetes Obes Metab 2017; 19(8): 1106-15.
[http://dx.doi.org/10.1111/dom.12917] [PMID: 28240446]
[123]
Bogdanffy MS, Stachlewitz RF, van Tongeren S, et al. Nonclinical safety of the sodium-glucose cotransporter 2 inhibitor empagliflozin. Int J Toxicol 2014; 33(6): 436-49.
[http://dx.doi.org/10.1177/1091581814551648] [PMID: 25260362]
[124]
Ways K, Johnson MD, Mamidi RN, Proctor J, De Jonghe S, Louden C. Successful integration of nonclinical and clinical findings in interpreting the clinical relevance of rodent neoplasia with a new chemical entity. Toxicol Pathol 2015; 43(1): 48-56.
[http://dx.doi.org/10.1177/0192623314557179] [PMID: 25398756]
[125]
Neal B, Perkovic V, Mahaffey KW, et al. CANVAS Program Collaborative Group Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med 2017; 377(7): 644-57.
[http://dx.doi.org/10.1056/NEJMoa1611925] [PMID: 28605608]
[126]
Chang HY, Singh S, Mansour O, Baksh S, Alexander GC. Association Between Sodium-Glucose Cotransporter 2 Inhibitors and Lower Extremity Amputation Among Patients With Type 2 Diabetes. JAMA Intern Med 2018; 178(9): 1190-8.
[http://dx.doi.org/10.1001/jamainternmed.2018.3034] [PMID: 30105373]
[127]
Zinman B, Wanner C, Lachin JM, et al. EMPA-REG OUTCOME Investigators Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med 2015; 373(22): 2117-28.
[http://dx.doi.org/10.1056/NEJMoa1504720] [PMID: 26378978]
[128]
Wiviott SD, Raz I, Bonaca MP, et al. DECLARE-TIMI 58 Investigators Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2019; 380(4): 347-57.
[http://dx.doi.org/10.1056/NEJMoa1812389] [PMID: 30415602]
[129]
Shah NK, Deeb WE, Choksi R, Epstein BJ. Dapagliflozin: a novel sodium-glucose cotransporter type 2 inhibitor for the treatment of type 2 diabetes mellitus. Pharmacotherapy 2012; 32(1): 80-94.
[http://dx.doi.org/10.1002/PHAR.1010] [PMID: 22392830]
[130]
Dicembrini I, Tomberli B, Nreu B, et al. Peripheral artery disease and amputations with Sodium-Glucose co-Transporter-2 (SGLT-2) inhibitors: A meta-analysis of randomized controlled trials. Diabetes Res Clin Pract 2019; 153: 138-44.
[http://dx.doi.org/10.1016/j.diabres.2019.05.028] [PMID: 31150722]
[131]
Dawwas GK, Smith SM, Park H. Cardiovascular outcomes of sodium glucose cotransporter-2 inhibitors in patients with type 2 diabetes. Diabetes Obes Metab 2019; 21(1): 28-36.
[http://dx.doi.org/10.1111/dom.13477] [PMID: 30039524]
[132]
Scheen AJ. Cardiovascular Effects of New Oral Glucose-Lowering Agents: DPP-4 and SGLT-2 Inhibitors. Circ Res 2018; 122(10): 1439-59.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311588] [PMID: 29748368]
[133]
Udell JA, Yuan Z, Rush T, Sicignano NM, Galitz M, Rosenthal N. Cardiovascular Outcomes and Risks After Initiation of a Sodium Glucose Cotransporter 2 Inhibitor: Results From the EASEL Population-Based Cohort Study (Evidence for Cardiovascular Outcomes With Sodium Glucose Cotransporter 2 Inhibitors in the Real World). Circulation 2018; 137(14): 1450-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.031227] [PMID: 29133607]
[134]
Verma S, Mazer CD, Al-Omran M, et al. Cardiovascular Outcomes and Safety of Empagliflozin in Patients With Type 2 Diabetes Mellitus and Peripheral Artery Disease: A Subanalysis of EMPA-REG OUTCOME. Circulation 2018; 137(4): 405-7.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.032031] [PMID: 29133602]
[135]
Ussher JR, Drucker DJ. Cardiovascular actions of incretin-based therapies. Circ Res 2014; 114(11): 1788-803.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.301958] [PMID: 24855202]
[136]
Scheen AJ. Cardiovascular effects of gliptins. Nat Rev Cardiol 2013; 10(2): 73-84.
[http://dx.doi.org/10.1038/nrcardio.2012.183] [PMID: 23296071]
[137]
Scirica BM, Bhatt DL, Braunwald E, et al. SAVOR-TIMI 53 Steering Committee and Investigators Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2013; 369(14): 1317-26.
[http://dx.doi.org/10.1056/NEJMoa1307684] [PMID: 23992601]
[138]
Scirica BM, Braunwald E, Raz I, et al. SAVOR-TIMI 53 Steering Committee and Investigators*. Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation 2014; 130(18): 1579-88.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.010389] [PMID: 25189213]
[139]
Leiter LA, Teoh H, Braunwald E, et al. SAVOR-TIMI 53 Steering Committee and Investigators Efficacy and safety of saxagliptin in older participants in the SAVOR-TIMI 53 trial. Diabetes Care 2015; 38(6): 1145-53.
[http://dx.doi.org/10.2337/dc14-2868] [PMID: 25758769]
[140]
White WB, Cannon CP, Heller SR, et al. EXAMINE Investigators Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 2013; 369(14): 1327-35.
[http://dx.doi.org/10.1056/NEJMoa1305889] [PMID: 23992602]
[141]
Green JB, Bethel MA, Armstrong PW, et al. TECOS Study Group Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med 2015; 373(3): 232-42.
[http://dx.doi.org/10.1056/NEJMoa1501352] [PMID: 26052984]
[142]
Marso SP, Daniels GH, Brown-Frandsen K, et al. LEADER Steering Committee LEADER Trial Investigators. LEADER Trial Investigators. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375(4): 311-22.
[http://dx.doi.org/10.1056/NEJMoa1603827] [PMID: 27295427]
[143]
Seferović PM, Coats AJS, Ponikowski P, et al. European Society of Cardiology/Heart Failure Association position paper on the role and safety of new glucose-lowering drugs in patients with heart failure. Eur J Heart Fail 2020; 22(2): 196-213.
[http://dx.doi.org/10.1002/ejhf.1673] [PMID: 31816162]
[144]
Marso SP, Bain SC, Consoli A, et al. SUSTAIN-6 Investigators Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016; 375(19): 1834-44.
[http://dx.doi.org/10.1056/NEJMoa1607141] [PMID: 27633186]
[145]
Hernandez AF, Green JB, Janmohamed S, et al. Harmony Outcomes committees and investigators. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet 2018; 392(10157): 1519-29.
[http://dx.doi.org/10.1016/S0140-6736(18)32261-X] [PMID: 30291013]
[146]
Koska J, Sands M, Burciu C, et al. Exenatide Protects Against Glucose- and Lipid-Induced Endothelial Dysfunction: Evidence for Direct Vasodilation Effect of GLP-1 Receptor Agonists in Humans. Diabetes 2015; 64(7): 2624-35.
[http://dx.doi.org/10.2337/db14-0976] [PMID: 25720388]
[147]
Ubbink DT, Vermeulen H. Spinal cord stimulation for non-reconstructable chronic critical leg ischaemia. Cochrane Database Syst Rev 2013; 2(2)CD004001
[http://dx.doi.org/10.1002/14651858.CD004001.pub3] [PMID: 23450547]
[148]
Houston M, Estevez A, Chumley P, et al. Binding of xanthine oxidase to vascular endothelium. Kinetic characterization and oxidative impairment of nitric oxide-dependent signaling. J Biol Chem 1999; 274(8): 4985-94.
[http://dx.doi.org/10.1074/jbc.274.8.4985] [PMID: 9988743]
[149]
Mercuro G, Vitale C, Cerquetani E, et al. Effect of hyperuricemia upon endothelial function in patients at increased cardiovascular risk. Am J Cardiol 2004; 94(7): 932-5.
[http://dx.doi.org/10.1016/j.amjcard.2004.06.032] [PMID: 15464681]
[150]
Tousoulis D, Andreou I, Tsiatas M, et al. Effects of rosuvastatin and allopurinol on circulating endothelial progenitor cells in patients with congestive heart failure: the impact of inflammatory process and oxidative stress. Atherosclerosis 2011; 214(1): 151-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.11.002] [PMID: 21122851]
[151]
Cosentino F, Hürlimann D, Delli Gatti C, et al. Chronic treatment with tetrahydrobiopterin reverses endothelial dysfunction and oxidative stress in hypercholesterolaemia. Heart 2008; 94(4): 487-92.
[http://dx.doi.org/10.1136/hrt.2007.122184] [PMID: 17916662]
[152]
O’Donnell BV, Tew DG, Jones OT, England PJ. Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase. Biochem J 1993; 290(Pt 1): 41-9.
[http://dx.doi.org/10.1042/bj2900041] [PMID: 8439298]
[153]
Wind S, Beuerlein K, Eucker T, et al. Comparative pharmacology of chemically distinct NADPH oxidase inhibitors. Br J Pharmacol 2010; 161(4): 885-98.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00920.x] [PMID: 20860666]
[154]
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010; 107(9): 1058-70.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545] [PMID: 21030723]
[155]
Holmgren A, Lu J. Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem Biophys Res Commun 2010; 396(1): 120-4.
[http://dx.doi.org/10.1016/j.bbrc.2010.03.083] [PMID: 20494123]
[156]
Turoczi T, Chang VW, Engelman RM, Maulik N, Ho YS, Das DK. Thioredoxin redox signaling in the ischemic heart: an insight with transgenic mice overexpressing Trx1. J Mol Cell Cardiol 2003; 35(6): 695-704.
[http://dx.doi.org/10.1016/S0022-2828(03)00117-2] [PMID: 12788387]
[157]
Yamamoto M, Yang G, Hong C, et al. Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy. J Clin Invest 2003; 112(9): 1395-406.
[http://dx.doi.org/10.1172/JCI200317700] [PMID: 14597765]
[158]
Adluri RS, Thirunavukkarasu M, Zhan L, et al. Thioredoxin 1 enhances neovascularization and reduces ventricular remodeling during chronic myocardial infarction: a study using thioredoxin 1 transgenic mice. J Mol Cell Cardiol 2011; 50(1): 239-47.
[http://dx.doi.org/10.1016/j.yjmcc.2010.11.002] [PMID: 21074540]
[159]
Huang Q, Zhou HJ, Zhang H, et al. Thioredoxin-2 inhibits mitochondrial reactive oxygen species generation and apoptosis stress kinase-1 activity to maintain cardiac function. Circulation 2015; 131(12): 1082-97.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.012725] [PMID: 25628390]
[160]
Widder JD, Fraccarollo D, Galuppo P, et al. Attenuation of angiotensin II-induced vascular dysfunction and hypertension by overexpression of Thioredoxin 2. Hypertension 2009; 54(2): 338-44.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.108.127928] [PMID: 19506101]
[161]
Hemling P, Zibrova D, Strutz J, Sohrabi Y, Desoye G, Schulten H, et al. Hyperglycemia-induced endothelial dysfunction is alleviated by thioredoxin mimetic peptides through the restoration of VEGFR-2-induced responses and improved cell survival. Int J Cardiol 2019.
[162]
Belch J, Hiatt WR, Baumgartner I, et al. TAMARIS Committees and Investigators Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet 2011; 377(9781): 1929-37.
[http://dx.doi.org/10.1016/S0140-6736(11)60394-2] [PMID: 21621834]
[163]
Emanueli C, Salis MB, Pinna A, Graiani G, Manni L, Madeddu P. Nerve growth factor promotes angiogenesis and arteriogenesis in ischemic hindlimbs. Circulation 2002; 106(17): 2257-62.
[http://dx.doi.org/10.1161/01.CIR.0000033971.56802.C5] [PMID: 12390957]
[164]
Emanueli C, Minasi A, Zacheo A, et al. Local delivery of human tissue kallikrein gene accelerates spontaneous angiogenesis in mouse model of hindlimb ischemia. Circulation 2001; 103(1): 125-32.
[http://dx.doi.org/10.1161/01.CIR.103.1.125] [PMID: 11136697]
[165]
Villa F, Carrizzo A, Spinelli CC, et al. Genetic Analysis Reveals a Longevity-Associated Protein Modulating Endothelial Function and Angiogenesis. Circ Res 2015; 117(4): 333-45.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.305875] [PMID: 26034043]
[166]
Emanueli C, Salis MB, Van Linthout S, et al. Akt/protein kinase B and endothelial nitric oxide synthase mediate muscular neovascularization induced by tissue kallikrein gene transfer. Circulation 2004; 110(12): 1638-44.
[http://dx.doi.org/10.1161/01.CIR.0000142051.36244.83] [PMID: 15364809]
[167]
Besnier M, Shantikumar S, Anwar M, et al. miR-15a/-16 Inhibit Angiogenesis by Targeting the Tie2 Coding Sequence: Therapeutic Potential of a miR-15a/16 Decoy System in Limb Ischemia. Mol Ther Nucleic Acids 2019; 17: 49-62.
[http://dx.doi.org/10.1016/j.omtn.2019.05.002] [PMID: 31220779]
[168]
Peeters Weem SM, Teraa M, de Borst GJ, Verhaar MC, Moll FL. Bone marrow derived cell therapy in critical limb ischemia: a meta-analysis of randomized placebo controlled trials. Eur J Vasc Endovasc Surg 2015; 50(6): 775-83.
[http://dx.doi.org/10.1016/j.ejvs.2015.08.018] [PMID: 26460286]
[169]
Moazzami K, Moazzami B, Roohi A, Nedjat S, Dolmatova E. Local intramuscular transplantation of autologous mononuclear cells for critical lower limb ischaemia. Cochrane Database Syst Rev 2014; 12(12)CD008347
[http://dx.doi.org/10.1002/14651858.CD008347.pub3] [PMID: 25525690]
[170]
Santopaolo M, Sambataro M, Spinetti G, Madeddu P. Bone marrow as a target and accomplice of vascular complications in diabetes. Diabetes Metab Res Rev 2020; 36(Suppl. 1).e3240
[http://dx.doi.org/10.1002/dmrr.3240] [PMID: 31840418]
[171]
Oikawa A, Siragusa M, Quaini F, et al. Diabetes mellitus induces bone marrow microangiopathy. Arterioscler Thromb Vasc Biol 2010; 30(3): 498-508.
[http://dx.doi.org/10.1161/ATVBAHA.109.200154] [PMID: 20042708]
[172]
Zhou J, Zhang Z, Qian G. Neuropathy and inflammation in diabetic bone marrow. Diabetes Metab Res Rev 2019; 35(1)e3083
[http://dx.doi.org/10.1002/dmrr.3083] [PMID: 30289199]
[173]
Fadini GP, Spinetti G, Santopaolo M, Madeddu P. Impaired Regeneration Contributes to Poor Outcomes in Diabetic Peripheral Artery Disease. Arterioscler Thromb Vasc Biol 2020; 40(1): 34-44.
[http://dx.doi.org/10.1161/ATVBAHA.119.312863] [PMID: 31510789]
[174]
Ferraro F, Lymperi S, Méndez-Ferrer S, et al. Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Sci Transl Med 2011; 3(104)104ra101
[http://dx.doi.org/10.1126/scitranslmed.3002191] [PMID: 21998408]