Abstract
Ewing’s sarcoma (ES), also known as mesenchymal primitive neuroectodermal tumor
(PNET), is a malignant round blue cell tumor (MRBCT) with a varying degree of neuronal differentiation.
PNET arises from the primitive nerve cells of the central nervous system (CNS) but may
also occur in the bones of the extremities, pelvis, vertebral column, and chest wall. Extraskeletal
ES/PNET may affect the various soft tissues, including those of the pelvis, paraspinal region, and
thoracopulmonary region.
Histopathological differentiation between ES, PNET, and other related sarcomas is often difficult.
On light microscopy, the same histopathological appearance of ES has been termed PNET, Askin-
Rosay (A-R) tumor, and malignant neuroepithelioma by various other authors. The immunohistochemical
distinction is also difficult due to poor tissue differentiation and low intake of the various
specific immunohistochemical markers. The most frequent translocation is t (11; 22) (q24; q12), resulting
in the EWSR1-FLI1 fusion gene detected in nearly 90% of cases and is considered the hallmark
of the diagnosis of ES, PNET, atypical ES, and A-R tumor. Therefore, ES, atypical ES,
PNET, and A-R tumor are currently regarded as one entity grouped together under the Ewing Family
Tumor (EFT) and are treated in an identical way. EFT represents only about 3% of all pediatric
malignancies. The annual incidence is between 2 and 5 cases per million children per year. The
peak prevalence of the tumor is between the ages of 10 and 15 years. The incidence is higher in
males than in females, with a ratio of 1.3:1.
Newer groups of MRBCT that have great similarities to EFT are being recently described. These tumors,
atypical EFT and Ewing’s like Sarcomas (ELS), bear similarities to EFT but have basic morphological
and molecular differences. Optimal treatment requires the use of adjuvant and new-adjuvant
chemotherapy (CTR), radical surgical resection and/or involves field radiotherapy (RT). The
reported disease-free survival (DFS) and overall survival (OS) range between 45-80% and 36-71%,
respectively. The overall prognosis for the metastatic and recurrent disease remains poor. The use
of newer conventional and targeted medications, improved RT delivery, and surgical techniques
may further improve the outcomes. The past few years have seen advances in genomics-based sarcoma
diagnosis and targeted therapies. In this comprehensive review article, we provide a detailed
report of EFT and discuss the various clinical aspects and the recent advances used in the diagnosis
and treatment.
Keywords:
Chemotherapy, Ewing's sarcoma, EWSR1-FLI1 gene fusion, primitive neuroectodermal tumor, radiotherapy,
srurgery.
Graphical Abstract
[4]
Gurney JG, Swensen AR, Bulterys M. Malignant bone tumors.Cancer incidence and survival among children and adolescents: United States SEER program 1975 – 1995. Bethesda, MD: National Cancer Institute, SEER Program NIH 1999; p. (99): 4649.
[7]
Lücke A. Beiträge zur Geschwulstlehre. Virchows. Arch Pathol Anat 1866; 35: 524-39.
[8]
Angervall L, Enzinger FM. Extraskeletal neoplasm resembling Ewing’s sarcoma Cancer 1975; 36(1): 240-51.
[10]
Resnick D, Kyriakos M, Greenway G. Tumors and tumor-like lesions of bone: Imaging and pathology of specific lesions.Diagnosis of bone and joint disorders. Philadelphia, PA: Saunders 2002; pp. 4060-73.
[11]
Dorfman HD, Czerniak B. Ewing’s sarcoma and related entities.Bone tumors. St Louis, Mo: Mosby 1998; pp. 607-63.
[16]
Fletcher CD, Hogendoorn P, Mertens F, Bridge J. WHO classification of tumours of soft tissue and bone. 4th ed. Lyon, France: IARC Press 2013.
[29]
Wolpert F, Grotzer MA, Niggli F, Zimmermann D, Rushing E. Ewing’s sarcoma as a second malignancy in long-term survivors of childhood hematologic malignancies Sarcoma 2016; 11.
[31]
Dickinson J, Watts AC, Robb JE. Extra-osseous Ewing’s sarcoma. J Bone Joint Surg 2009; 91-B(Suppl. 11): 215.
[37]
Patterson FR, Basra SK. Ewing’s sarcoma.Orthopaedic knowledge update: Musculoskeletal tumors 2. Rosemont: American Academy of Orthopaedic Surgeons 2007; pp. 175-83.
[45]
Hameed M. Small round cell tumors of bone Arch Pathol Lab Med 2007; 131(2): 192-204.
[54]
Bailey K, Cost C, Davis I, et al. Emerging novel agents for patients with advanced Ewing sarcoma: A report from the Children’s Oncology Group (COG) new agents for Ewing sarcoma task force. F1000Res 2019.
[57]
Turc-Carel C, Philip I, Berger MP, Philip T, Lenoir G. Chromosomal translocation (11; 22) in cell lines of Ewing’s sarcoma Cancer Genet Cytogenet 1984; 12(1): 1-19.
[61]
Gaspar N, Di Giannatale A, Geoerger B, et al. Bone Sarcomas: From biology to targeted therapies. Sarcoma Volume 2012; pp. 1-17.
[63]
Lamplot JD, Denduluri S. The current and future therapies for human osteosarcoma. Curr Cancer Ther Rev 2013; 9(1): 55-77.
[66]
Wang H, Pei Nie P, Dong C, et al. CT and MRI findings of soft tissue adult fibrosarcoma in extremities. BioMed Res Int 2018; 1-7.
[82]
Venkitaraman R, George MK, Ramanan SG, Sagar TG. A single institution experience of combined modality management of extra skeletal Ewings sarcoma World J Surg Oncol 2007; 5: 3.
[88]
Coindre JM. Grading of soft tissue sarcomas, review and update. Arch Pathol Lab Med 2006; 130: 1448-53.
[90]
Schöffski P, Cornillie J, Wozniak A, Li H, Hompes D. Soft tissue sarcoma: An update on systemic treatment options for patients with advanced disease Oncol Res Treat 2014; 37: 355-62.
[93]
Womer RB, West DC, Krailo MD, et al. Randomized comparison of every-two-week vs. every three-week chemotherapy in Ewing sarcoma family tumors (ESFT) J Clini Oncol 2008; 26(15): 10504.
[99]
Ladenstein R, Hartmann O, Pincerton R, et al. A multivariate and matched pair analysis on high – risk Ewing tumors patients treated by megatherapy and stem cell reinfusion in Europe. Proc Annu Meet Am Soc Clin Oncol. 18: 555.
[100]
Tenneti P, Zahid U, Iftikhar A, et al. Role of high-dose chemotherapy and autologous hematopoietic cell transplantation for children and young adults with relapsed Ewing’s sarcoma: A systematic review. Sarcoma 2018; 2018: 2640674.
[110]
Basharkhah A, Pansy J, Urban C, Höllwarth ME. Outcomes after interdisciplinary management of 7 patients with Askin tumor Pediatr Surg Int 29(5): 431-6.
[126]
Choo S, Wang P, Newbury R, Roberts W. Reactivation of TWIST1 contributes to Ewing sarcoma metastasis Pediatr Blood Cancer 2018; 65(1): 10.1002/pbc.26721.
[130]
Scobioala S, Ranft A, Wolters H, et al. Impact of whole lung irradiation on survival outcome in patients with lung relapsed Ewing sarcoma. Int J Radiat Oncol Biol Phys 2018; 102(3): 584-92.
[134]
Pinto A, Dickman P, Parham D. Pathobiologic markers of the Ewing sarcoma family of tumors: State of the art and prediction of behaviour Sarcoma 2011; 15.