Chitosan Nanoparticles: An Approbative System for the Delivery of Herbal Bioactives

Article ID: e160921188333 Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Chitosan, a natural biodegradable polymer obtained from deacetylation of chitin, has been used as an approbative macromolecule for the development of various novel drug delivery systems. It is one of the most favorable biodegradable carriers for nanoparticulate drug delivery due to its intrinsic properties, such as biocompatibility, biodegradability, non-toxicity, availability of free reactive amino groups, and ease of chemical modification into different active derivatives. Furthermore, interesting physical properties (film-forming, gelling and thickening) make it a suitable candidate for formulations, such as films, microcapsules, beads, nanoparticles, nanofibres, nanogel, and so on. Researchers have reported that chitosan nanoparticles act as a promising vehicle for herbal actives as they provide a superior alternative to traditional carriers and improve pharmaceutical efficiency. As no review of chitosan nanoparticles encapsulating herbal extracts and bioactives has been published to date, a maiden effort has been made to collate and review the use of chitosan nanoparticles for the entrapment of phytoconstituents to yield stable, efficient, and safe drug delivery systems. Additionally, the paper presents a comprehensive account of the state-of the-art in fabricating herbal chitosan nanoparticles and their current pharmacological status. A list of patents on chitosan nanoparticles of herbal actives has also been included. This review is intended to serve as a didactic discourse for the formulation scientists endeavoring to develop advanced delivery systems for herbal actives.

Keywords: Bioavailability, biodegradable polymer, chitosan, herbal bioactives, nanoparticles, novel drug delivery system.

Graphical Abstract

[1]
Di Sia, P. Nanotechnology among innovation, health and risks. Procedia Soc. Behav. Sci., 2017, 237, 1076-1080.
[http://dx.doi.org/10.1016/j.sbspro.2017.02.158]
[2]
Temps, LV. Nanotechnology in medicine. Indian Heart J., 2016, 68(3), 437-439.
[http://dx.doi.org/10.1016/j.ihj.2016.05.003] [PMID: 27316514]
[3]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[4]
Watkins, R.; Wu, L.; Zhang, C.; Davis, R.M.; Xu, B. Natural product-based nanomedicine: Recent advances and issues. Int. J. Nanomedicine, 2015, 10, 6055-6074.
[PMID: 26451111]
[5]
A review on nanoparticles in targeted drug delivery system. Res. Rev. J. Mater. Sci., 2016, 4(4), 1-6.
[6]
Mirza, A.Z.; Siddiqui, F.A. Nanomedicine and drug delivery: A mini review. Int. Nano Lett., 2014, 94, 1-7.
[http://dx.doi.org/10.1007/s40089-014-0094-7]
[7]
Kumar, S.; Dilbaghi, N.; Saharan, R.; Bhanjana, G. Nanotechnology as emerging tool for enhancing solubility of poorly water-soluble drugs. Bionanosci., 2012, 1, 1-27.
[http://dx.doi.org/10.1007/s12668-012-0060-7]
[8]
Yadav, H.K.; Almokdad, A.A.; Sumia, I.M.; Debe, M.S. Polymer-Based nanomaterials for drug-delivery carriers. Nanocarriers for Drug Delivery; Elsevier, 2019, pp. 531-556.
[http://dx.doi.org/10.1016/B978-0-12-814033-8.00017-5]
[9]
Mathur, M.; Vyas, G. Role of nanoparticles for production of smart herbal drug-an overview. Indian J. Nat. Prod. Resour., 2013, 4(4), 329-338.
[10]
Ansari, S.H.; Islam, F.; Sameem, M. Influence of nanotechnology on herbal drugs: A review. J. Adv. Pharm. Technol. Res., 2012, 3(3), 142-146.
[http://dx.doi.org/10.4103/2231-4040.101006] [PMID: 23057000]
[11]
Bowman, K.; Leong, K.W. Chitosan nanoparticles for oral drug and gene delivery. Int. J. Nanomedicine, 2006, 1(2), 117-128.
[http://dx.doi.org/10.2147/nano.2006.1.2.117] [PMID: 17722528]
[12]
Mohammed, M.A.; Syeda, J.T.M.; Wasan, K.M.; Wasan, E.K. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics, 2017, 9(4), 1-26.
[http://dx.doi.org/10.3390/pharmaceutics9040053] [PMID: 29156634]
[13]
Tapadiya, G.G.; Kale, M.A.; Saboo, S.S. Impact of nanotechnology on global trade of herbal drugs: An overview. Int. J. Green. Pharm., 2017, 11(3), 5-7.
[14]
Ghadi, A.; Mahjoub, S.; Tabandeh, F.; Talebnia, F. Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering. Caspian J. Intern. Med., 2014, 5(3), 156-161.
[PMID: 25202443]
[15]
Mohanraj, V.J.; Chen, Y. Nanoparticles - A review. Trop. J. Pharm. Res., 2006, 5(1), 561-573.
[16]
Verma, S.; Saini, S.; Rawat, A.; Kaul, M. Formulation, evaluation and optimization of osmotically controlled colon targeted drug delivery system. J. Pharm. Sci. Res., 2011, 3(9), 1472.
[17]
Elgadir, M.A.; Uddin, M.S.; Ferdosh, S.; Adam, A.; Chowdhury, A.J.K.; Sarker, M.Z.I. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review. Yao Wu Shi Pin Fen Xi, 2015, 23(4), 619-629.
[http://dx.doi.org/10.1016/j.jfda.2014.10.008] [PMID: 28911477]
[18]
Dutta, P.K.; Dutta, J.; Tripathi, V.S. Chitin and chitosan: Chemistry, properties and applications. J. Sci. Ind. Res. (India), 2004, 63, 20-31.
[19]
Saikia, C.; Gogoi, P. Chitosan: A Promising biopolymer in drug delivery applications. J. Mol. Genet. Med., 2015, 2015, 1-10.
[http://dx.doi.org/10.4172/1747-0862.S4-006]
[20]
Gomes, L.P.; Paschoalin, V.M.F.; Del Aguila, E.M. Chitosan nanoparticles: production, physicochemical characteristics and nutraceutical applications. Rev. Virtual. Quim., 2017, 9(1), 387-409.
[http://dx.doi.org/10.21577/1984-6835.20170022]
[21]
Gopal, G.R.Y.; Nandakumar, K.S.L.C. Chitosan nanoparticles for generating novel systems for better applications: a review. J. Mol. Genet. Med., 2015, 2015, 4-10.
[http://dx.doi.org/10.4172/1747-0862.S4-005]
[22]
Sorlier, P.; Denuzière, A.; Viton, C.; Domard, A. Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules, 2001, 2(3), 765-772.
[http://dx.doi.org/10.1021/bm015531+] [PMID: 11710030]
[23]
Kowapradit, J.; Opanasopit, P.; Ngawhiranpat, T.; Apirakaramwong, A.; Rojanarata, T.; Ruktanonchai, U.; Sajomsang, W. Methylated N-(4-N,N-dimethylaminobenzyl) chitosan, a novel chitosan derivative, enhances paracellular permeability across intestinal epithelial cells (Caco-2). AAPS PharmSciTech, 2008, 9(4), 1143-1152.
[http://dx.doi.org/10.1208/s12249-008-9160-7] [PMID: 19009354]
[24]
Najafi, S.; Pazhouhnia, Z.; Ahmadi, O.; Berenjian, A.; Jafarizadeh-Malmiri, H. Chitosan nanoparticles and their applications in drug delivery: A review. Curr. Res. Drug. Discov., 2014, 1(1), 17-25.
[25]
Koukaras, E.N.; Papadimitriou, S.A.; Bikiaris, D.N.; Froudakis, G.E. Insight on the formation of chitosan nanoparticles through ionotropic gelation with tripolyphosphate. Mol. Pharm., 2012, 9(10), 2856-2862.
[http://dx.doi.org/10.1021/mp300162j] [PMID: 22845012]
[26]
Stoica, R.; Şomoghi, R. Preparation of chitosan -tripolyphosphate nanoparticles for the encapsulation of polyphenols extracted from rose hips. Dig. J. Nanomater. Biostruct., 2013, 8(3), 955-963.
[27]
Gupta, D.K.; Kesharwani, S.; Sharma, N.K. Formulation and evaluation of herbal extract of Allivum sativum (garlic) loaded chitosan nanoparticles. J. Drug Deliv. Ther., 2019, 9(3), 715-718.
[28]
Dhiman, B.; Divtrannum, ; Dhiman, A.; Saini, S. An appraisal on various methods of nano particulate formulations. Pharm. Nanotechnol., 2017, 5(4), 255-262.
[PMID: 29119943]
[29]
Li, C.; Hein, S.; Wang, K. Chitosan-carrageenan polyelectrolyte complex for the delivery of protein drugs. ISRN. Biomaterials, 2013, 2013, 1-6.
[30]
Patel, J.K.; Jivani, N.P. Chitosan based nanoparticles in drug delivery. Int. J. Pharm. Sci. Nanotechnol., 2009, 2, 517-522.
[31]
Shering, M.A.; Kannan, C.; Kumar, K.S.; Kumar, V.S.; Suganeshwari, M. Formulation of 5-fluorouracil loaded chitosan nanoparticles by emulsion droplet coalescence method for cancer therapy. Int. J. Pharm. Biol. Arch., 2011, 2, 926-931.
[32]
Naskar, S.; Sharma, S.; Koutsu, K. Chitosan-based nanoparticles: An overview of biomedical applications and its preparation. J. Drug Deliv. Sci. Technol., 2019, 49, 66-81.
[http://dx.doi.org/10.1016/j.jddst.2018.10.022]
[33]
Purwanti, N.; Zehn, A.S.; Pusfitasari, E.D.; Khalid, N.; Febrianto, E.Y.; Mardjan, S.S. Emulsion stability of clove oil in chitosan and sodium alginate matrix. Int. J. Food Prop., 2018, 21(1), 566-581.
[http://dx.doi.org/10.1080/10942912.2018.1454946]
[34]
Padma, V.V. An overview of targeted cancer therapy. Biomedicine (Taipei), 2015, 5(4), 19.
[http://dx.doi.org/10.7603/s40681-015-0019-4] [PMID: 26613930]
[35]
Goldman, E.; Zinger, A.; da Silva, D.; Yaari, Z.; Kajal, A.; Vardi-Oknin, D.; Goldfeder, M.; Schroeder, J.E.; Shainsky-Roitman, J.; Hershkovitz, D.; Schroeder, A. Nanoparticles target early-stage breast cancer metastasis in vivo. Nanotechnology, 2017, 28(43), 43LT01.
[http://dx.doi.org/10.1088/1361-6528/aa8a3d] [PMID: 28872058]
[36]
Wang, Y.; Li, P.; Truong-Dinh Tran, T.; Zhang, J.; Kong, L. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials (Basel), 2016, 6(2), 1-26.
[http://dx.doi.org/10.3390/nano6020026] [PMID: 28344283]
[37]
Rao, P.V.; Nallappan, D.; Madhavi, K.; Rahman, S.; Jun Wei, L.; Gan, S.H. Phytochemicals and biogenic metallic nanoparticles as anticancer agents. Oxid. Med. Cell. Longev., 2016, 2016, 3685671.
[http://dx.doi.org/10.1155/2016/3685671] [PMID: 27057273]
[38]
Murphy, E.A.; Majeti, B.K.; Mukthavaram, R.; Acevedo, L.M.; Barnes, L.A.; Cheresh, D.A. Targeted nanogels: A versatile platform for drug delivery to tumors. Mol. Cancer Ther., 2011, 10(6), 972-982.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0729] [PMID: 21518727]
[39]
Syaefudin, S.; Juniarti, A.; Rosiyana, L.; Setyani, A.; Khodijah, S. Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549. IOP. Conf. Ser. Earth. Environ. Sci., 2016, 31(1), 012029.
[http://dx.doi.org/10.1088/1755-1315/31/1/012029]
[40]
Swarnalatha, Y.; Gunna, G.K.; Jacob, C.M. Synthesis of alkaloid loaded chitosan nanoparticles for enhancing the anticancer activity in A549 lung cancer cell line. Pharm. Lett., 2015, 7(7), 378-390.
[41]
Le, TMP; Pham, VP; Dang, TML; La, TH; Le, TH; Le, QH Preparation of curcumin-loaded pluronic F127/chitosan nanoparticles for cancer therapy. Adv. Nat. Sci. Nanosci. Nanotechnol., 2013, 1-4.
[42]
Sajimanbu, A.; Sahi, S.V.; Perumal, V. Synthesis of bioactive chemicals cross-linked sodium tripolyphosphate (TPP)- chitosan nanoparticles for enhanced cytotoxic activity against human ovarian cancer cell line (PA-1). J. Nanomed. Nanotechnol., 2016, 7(6), 1-9.
[43]
Panwar, R.; Sharma, A.K.; Kaloti, M.; Dutt, D.; Pruthi, V. Characterization and anticancer potential of ferulic acid-loaded chitosan nanoparticles against ME-180 human cervical cancer cell lines. Appl. Nanosci., 2016, 6(6), 803-813.
[http://dx.doi.org/10.1007/s13204-015-0502-y]
[44]
Jin, H.; Pi, J.; Yang, F.; Jiang, J.; Wang, X.; Bai, H.; Shao, M.; Huang, L.; Zhu, H.; Yang, P.; Li, L.; Li, T.; Cai, J.; Chen, Z.W. Folate-chitosan nanoparticles loaded with ursolic acid confer anti-breast cancer activities in vitro and in vivo. Sci. Rep., 2016, 6, 30782.
[http://dx.doi.org/10.1038/srep30782] [PMID: 27469490]
[45]
Cai, L.; Yu, R.; Hao, X.; Ding, X. Folate receptor-targeted bioflavonoid genistein-loaded chitosan nanoparticles for enhanced anticancer effect in cervical cancers. Nanoscale Res. Lett., 2017, 12(1), 509.
[http://dx.doi.org/10.1186/s11671-017-2253-z] [PMID: 28853026]
[46]
Kamel, K.M.; Khalil, I.A.; Rateb, M.E.; Elgendy, H.; Elhawary, S. Chitosan-coated cinnamon/oregano-loaded solid lipid nanoparticles to augment 5-fluorouracil cytotoxicity for colorectal cancer: Extract standardization, nanoparticle optimization, and cytotoxicity evaluation. J. Agric. Food Chem., 2017, 65(36), 7966-7981.
[http://dx.doi.org/10.1021/acs.jafc.7b03093] [PMID: 28813148]
[47]
Yang, P.; Li, B.; Yin, Q.F.; Wang, Y.J. Carboxymethyl chitosan nanoparticles coupled with CD59-specific ligand peptide for targeted delivery of C-phycocyanin to HeLa cells. Tumour Biol., 2017, 39(3), 101.
[http://dx.doi.org/10.1177/1010428317692267] [PMID: 28347253]
[48]
Natrajan, D.; Srinivasan, S.; Sundar, K.; Ravindran, A. Formulation of essential oil-loaded chitosan-alginate nanocapsules. Yao Wu Shi Pin Fen Xi, 2015, 23(3), 560-568.
[http://dx.doi.org/10.1016/j.jfda.2015.01.001] [PMID: 28911716]
[49]
Medjakovic, S.; Hobiger, S.; Ardjomand-Woelkart, K.; Bucar, F.; Jungbauer, A. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors. Fitoterapia, 2016, 110, 150-156.
[http://dx.doi.org/10.1016/j.fitote.2016.03.010] [PMID: 26976217]
[50]
Samprasit, W.; Akkaramongkolporn, P.; Jaewjira, S.; Opanasopit, P. Design of alpha mangostin-loaded chitosan/alginate controlled-release nanoparticles using genipin as crosslinker. J. Drug Deliv. Sci. Technol., 2018, 46, 312-321.
[http://dx.doi.org/10.1016/j.jddst.2018.05.029]
[51]
Priyanka, V. Some of the medicinal plants with anti-ulcer activity: A review. J. Pharm. Sci. Res., 2015, 7(9), 772-775.
[52]
Vimala, G.; Gricilda Shoba, F. A review on antiulcer activity of few Indian medicinal plants. Int. J. Microbiol., 2014, 2014, 519590.
[http://dx.doi.org/10.1155/2014/519590] [PMID: 24971094]
[53]
Servat-Medina, L.; González-Gómez, A.; Reyes-Ortega, F.; Sousa, I.M.O.; Queiroz, N de CA.; Zago, P.M.W.; Jorge, M.P.; Monteiro, K.M.; de Carvalho, J.E.; San Román, J.; Foglio, M.A. Chitosan-tripolyphosphate nanoparticles as Arrabidaea chica standardized extract carrier: Synthesis, characterization, biocompatibility, and antiulcerogenic activity. Int. J. Nanomedicine, 2015, 10, 3897-3909.
[http://dx.doi.org/10.2147/IJN.S83705] [PMID: 26089666]
[54]
Singh, N.; Tailang, M.; Mehta, S. A review on herbal plants as immunomodulators. Int. J. Pharm. Sci. Res., 2016, 7(9), 3602-3610.
[55]
Babu, A.; Ramesh, R. Multifaceted applications of chitosan in cancer drug delivery and therapy. Mar. Drugs, 2017, 15(4), 1-19.
[http://dx.doi.org/10.3390/md15040096] [PMID: 28346381]
[56]
Bhatia, A.; Shard, P.; Chopra, D.; Mishra, T. Chitosan nanoparticles as carrier of Immunorestoratory plant extract: synthesis, characterization and immunorestoratory efficacy. Int. J. Drug Deliv., 2011, 1(2), 381-385.
[57]
Pratiwi, G.; Martien, R.; Murwanti, R. Chitosan nanoparticle as a delivery system for polyphenols from meniran extract (Phyllanthus niruri L.): formulation, optimization, and immunomodulatory activity. Int. J. Appl. Pharm., 2019, 11(2), 50-58.
[http://dx.doi.org/10.22159/ijap.2019v11i2.29999]
[58]
Roy, P.; Parveen, S.; Ghosh, P.; Ghatak, K.; Dasgupta, S. Flavonoid loaded nanoparticles as an effective measure to combat oxidative stress in ribonuclease A. Biochimie, 2019, 162, 185-197.
[http://dx.doi.org/10.1016/j.biochi.2019.04.023] [PMID: 31059754]
[59]
Zu, Y.; Zhang, Y.; Wang, W.; Zhao, X.; Han, X.; Wang, K.; Ge, Y. Preparation and in vitro/in vivo evaluation of resveratrol-loaded carboxymethyl chitosan nanoparticles. Drug Deliv., 2016, 23(3), 981-991.
[http://dx.doi.org/10.3109/10717544.2014.924167] [PMID: 24918466]
[60]
Yuying, Z.; Yang, Y.; Tang, K.; Hu, X.; Zou, G. Physicochemical characterization and antioxidant activity of quercetin-loaded chitosan nanoparticles. J. Appl. Polym. Sci., 2008, 107, 891-897.
[http://dx.doi.org/10.1002/app.26402]
[61]
Souza, M.P.; Vaz, A.F.M.; Correia, M.T.S.; Cerqueira, M.A.; Vicente, A.A.; Carneiro-da-Cunha, M.G. Quercetin-loaded lecithin/chitosan nanoparticles for functional food applications. Food Bioprocess Technol., 2014, 7(4), 1149-1159.
[http://dx.doi.org/10.1007/s11947-013-1160-2]
[62]
Nallamuthu, I.; Devi, A.; Khanum, F. Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian. J. Pharm. Sci., 2014, 10(3), 203-211.
[63]
Kailaku, S.I.; Mulyawanti, I.; Alamsyah, A.N. Formulation of nanoencapsulated catechin with chitosan as encapsulation material. Procedia Chem., 2014, 9, 235-241.
[http://dx.doi.org/10.1016/j.proche.2014.05.028]
[64]
da Silva, S.B.; Amorim, M.; Fonte, P.; Madureira, R.; Ferreira, D.; Pintado, M.; Sarmento, B. Natural extracts into chitosan nanocarriers for rosmarinic acid drug delivery. Pharm. Biol., 2015, 53(5), 642-652.
[http://dx.doi.org/10.3109/13880209.2014.935949] [PMID: 25489634]
[65]
Khatri, P.; Jamdagni, P.; Sindhu, A.; Rana, J.S. Antimicrobial potential of important medicinal plants of India. Int. J. Microb. Res. Technol., 2016, 3, 301-308.
[66]
Viswanad, V.; Aleykutty, N.A.; Zachariah, S.M.; Prabhakar, V. Antimicrobial potential of herbal medicines. Int. J. Pharm. Sci. Res., 2011, 2(7), 1651-1658.
[67]
Mirnejad, R.; Jahromi, M.A.M.; Al-Musawi, S.; Pirestani, M.; Ramandi, M.F.; Ahmadi, K. Curcumin-loaded chitosan tripolyphosphate nanoparticles as a safe, natural and effective antibiotic inhibits the infection of Staphylococcus aureus and Pseudomonas aeruginosa in vivo. Iranian J. Biotechnol., 2014, 12(3), 1-8.
[http://dx.doi.org/10.15171/ijb.1012]
[68]
Kaewkod, T.; Tragoolpua, K.; Tragoolpua, Y. Encapsulation of Artocarpus lacucha Roxb. extract in alginate chitosan nanoparticles for inhibition of methicillin resistant Staphylococcus aureus and bacteria causing skin diseases. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 2016, 43(5), 946-958.
[69]
El-Aziz, A.; Mohamed, A.R.; Al-Othman, M.R.; Mahmoud, M.A.; Shehata, S.M.; Abdelazim, N.S. Chitosan nanoparticles as a carrier for Mentha longifolia extract: synthesis, characterization and antifungal activity. Curr. Sci., 2018, 114, 2116-2122.
[http://dx.doi.org/10.18520/cs/v114/i10/2116-2122]
[70]
São Pedro, S.; Santo, I.; Silva, C.; Detoni, C.; Albuquerque, E. Albuquerque, E. The use of nanotechnology as an approach for essential oil-based formulations with antimicrobial activity. In: Microbial Pathogens and Strategies for Combating Them; Méndez-Vilas, A., ed. Formatex Research Center Publisher: Badajoz, 2013; pp. 1364-1374.
[71]
Jamil, B.; Abbasi, R.; Abbasi, S.; Imran, M.; Khan, S.U.; Ihsan, A.; Javed, S.; Bokhari, H.; Imran, M. Encapsulation of cardamom essential oil in chitosan nano-composites: in-vitro efficacy on antibiotic-resistant bacterial pathogens and cytotoxicity studies. Front. Microbiol., 2016, 7, 1580.
[http://dx.doi.org/10.3389/fmicb.2016.01580] [PMID: 27757108]
[72]
Memariani, Z.; Moeini, R.; Hamedi, S.S.; Gorji, N.; Mozaffarpur, S.A. Medicinal plants with antithrombotic property in Persian medicine: A mechanistic review. J. Thromb. Thrombolysis., 2018, 45(1), 158-179.
[http://dx.doi.org/10.1007/s11239-017-1580-3] [PMID: 29124622]
[73]
Devi, S.C.S.; Tarafder, A.; Shishodiya, E.; Mohanasrinivasan, V. Encapsulation of staphylokinase and Leucasaspera plant extracts using chitosan nanoparticles. Int. J. Pharm. Tech. Res., 2015, 7(4), 654-661.
[74]
Kim, E.S.; Lee, J.S.; Lee, H.G. Nanoencapsulation of red ginseng extracts using chitosan with polyglutamic acid or fucoidan for improving antithrombotic activities. J. Agric. Food Chem., 2016, 64(23), 4765-4771.
[http://dx.doi.org/10.1021/acs.jafc.6b00911] [PMID: 27181678]
[75]
Alam, M.K.; Nyeem, M.A.; Rashid, A.M.; Mannan, M.A.; Ahammed, M.M. Antihyperlipidemic effect of some medicinal plants used in Bangladeshi traditional medicine: a review. Int. J. Chem. Stud., 2018, 2(3), 25-29.
[76]
Fachriyah, E. Cinnamomum casia extract encapsulated nanochitosan as antihypercholesterol. IOP Conference Series: Materials Science and Engineering, 2017, 12, p. 35, 012035.
[77]
Rottmar, M.; Richter, M.; Mäder, X.; Grieder, K.; Nuss, K.; Karol, A.; von Rechenberg, B.; Zimmermann, E.; Buser, S.; Dobmann, A.; Blume, J.; Bruinink, A. In vitro investigations of a novel wound dressing concept based on biodegradable polyurethane. Sci. Technol. Adv. Mater., 2015, 16(3), 034606.
[http://dx.doi.org/10.1088/1468-6996/16/3/034606] [PMID: 27877793]
[78]
Cheung, R.C.F.; Ng, T.B.; Wong, J.H.; Chan, W.Y. Chitosan: An update on potential biomedical and pharmaceutical applications. Mar. Drugs, 2015, 13(8), 5156-5186.
[http://dx.doi.org/10.3390/md13085156] [PMID: 26287217]
[79]
Oliveira, M.I.; Santos, S.G.; Oliveira, M.J.; Torres, A.L.; Barbosa, M.A. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation. Eur. Cell. Mater., 2012, 24(136), 136-152.
[http://dx.doi.org/10.22203/eCM.v024a10] [PMID: 22828991]
[80]
Serafini, M.R.; Guimaraes, A.G.; Quintans-Junior, L.J.; Nunes, P.S.; Matos, I.G.; Saravanan, S.; de Souza Araujo, A.A. Recent patents on medicinal plants/natural products as a therapeutic approach to wounds and burns healing. Recent Pat. Biotechnol., 2014, 8(3), 231-239.
[http://dx.doi.org/10.2174/187220830803150605164205] [PMID: 27099146]
[81]
Rex, J.R.S.; Muthukumar, N.M.S.A.; Paulraj, M.S. Plant-derived compounds for wound healing: A review. Org. Med. Chem. Int. J., 2018, 5(1), 555653.
[82]
Sarhan, W.A.; Azzazy, H.M.E.; El-Sherbiny, I.M. Honey/chitosan nanofiber wound dressing enriched with Allium sativum and Cleome droserifolia: enhanced antimicrobial and wound healing activity. ACS Appl. Mater. Interfaces, 2016, 8(10), 6379-6390.
[http://dx.doi.org/10.1021/acsami.6b00739] [PMID: 26909753]
[83]
Chandirika, J.U.; Sindhu, R.; Selvakumar, S.; Annadurai, G. Herbal extract encapsulated in chitosan nanoparticle: A novel strategy for the treatment of urolithiasis. Indo. Am. J. Pharm. Sci., 2018, 5(3), 1955-1961.
[84]
Saraiva, C.; Praça, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J. Control. Release, 2016, 235, 34-47.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.044] [PMID: 27208862]
[85]
Shan, C.S.; Zhang, H.F.; Xu, Q.Q.; Shi, Y.H.; Wang, Y.; Li, Y.; Lin, Y.; Zheng, G.Q. Herbal medicine formulas for parkinson’s disease: A systematic review and meta-analysis of randomized double-blind placebo-controlled clinical trials. Front. Aging Neurosci., 2018, 10, 349.
[http://dx.doi.org/10.3389/fnagi.2018.00349] [PMID: 30467472]
[86]
Akhondzadeh, S.; Abbasi, S.H. Herbal medicine in the treatment of Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen., 2006, 21(2), 113-118.
[http://dx.doi.org/10.1177/153331750602100211] [PMID: 16634467]
[87]
Ovais, M.; Zia, N.; Ahmad, I.; Khalil, A.T.; Raza, A.; Ayaz, M.; Sadiq, A.; Ullah, F.; Shinwari, Z.K. Phyto-therapeutic and nanomedicinal approaches to cure Alzheimer’s disease: Present status and future opportunities. Front. Aging Neurosci., 2018, 10, 284.
[http://dx.doi.org/10.3389/fnagi.2018.00284] [PMID: 30405389]
[88]
Fazil, M.; Md, S.; Haque, S.; Kumar, M.; Baboota, S.; Sahni, J.K.; Ali, J. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur. J. Pharm. Sci., 2012, 47(1), 6-15.
[http://dx.doi.org/10.1016/j.ejps.2012.04.013] [PMID: 22561106]
[89]
Elnaggar, Y.S.; Etman, S.M.; Abdelmonsif, D.A.; Abdallah, O.Y. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J. Pharm. Sci., 2015, 104(10), 3544-3556.
[http://dx.doi.org/10.1002/jps.24557]
[90]
Aluani, D.; Tzankova, V.; Yordanov, Y.; Kondeva-Burdina, M.; Yoncheva, K. In vitro protective effects of encapsulated quercetin in neuronal models of oxidative stress injury. Biotechnol. Biotechnol. Equip., 2017, 31(5), 1055-1063.
[http://dx.doi.org/10.1080/13102818.2017.1347523]
[91]
Wang, X.; Chi, N.; Tang, X. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur. J. Pharm. Biopharm., 2008, 70(3), 735-740.
[http://dx.doi.org/10.1016/j.ejpb.2008.07.005] [PMID: 18684400]
[92]
Gulati, N.; Nagaich, U.; Saraf, S. Fabrication and in vitro characterization of polymeric nanoparticles for parkinson’s therapy: A novel approach. Braz. J. Pharm. Sci., 2014, 50(4), 869-876.
[http://dx.doi.org/10.1590/S1984-82502014000400022]
[93]
Md, S.; Khan, R.A.; Mustafa, G.; Chuttani, K.; Baboota, S.; Sahni, J.K.; Ali, J. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: Pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Eur. J. Pharm. Sci., 2013, 48(3), 393-405.
[http://dx.doi.org/10.1016/j.ejps.2012.12.007] [PMID: 23266466]
[94]
Disease Control Priorities in Developing Countries; 2nd ed; Jamison, D.T.; Breman, J.G.; Measham, A.R.; Alleyne, G.; Claeson, M.; Evans, D.B., Eds.; The World Bank: Washington, 2006.
[95]
Korać, R.R.; Khambholja, K.M. Potential of herbs in skin protection from ultraviolet radiation. Pharmacogn. Rev., 2011, 5(10), 164-173.
[http://dx.doi.org/10.4103/0973-7847.91114] [PMID: 22279374]
[96]
Nan, W.; Ding, L.; Chen, H.; Khan, F.U.; Yu, L.; Sui, X.; Shi, X. Topical use of quercetin-loaded chitosan nanoparticles against ultraviolet B radiation. Front. Pharmacol., 2018, 9, 826.
[http://dx.doi.org/10.3389/fphar.2018.00826] [PMID: 30140227]
[97]
Ntohogian, S.; Gavriliadou, V.; Christodoulou, E.; Nanaki, S.; Lykidou, S.; Naidis, P.; Mischopoulou, L.; Barmpalexis, P.; Nikolaidis, N.; Bikiaris, D.N. Chitosan Nanoparticles with encapsulated natural and UF-purified annatto and saffron for the preparation of UV protective cosmetic emulsions. Molecules, 2018, 23(9), 2107.
[http://dx.doi.org/10.3390/molecules23092107] [PMID: 30131464]
[98]
Yulianti, L.; Bramono, K.; Mardliyati, E.; Freisleben, H.J. Effects of Centella asiatica ethanolic extract encapsulated in chitosan nanoparticles on proliferation activity of skin fibroblasts and keratinocytes, type I and III collagen synthesis and aquaporin 3 expression in vitro. J. Pharm. Biomed. Sci., 2016, 6(5), 315-327.
[99]
Mirzaei, E.; Majidi, R.F.; Sarkar, S.; Rezayat, S.M. Electro spun nanofibrous wound dressing and a method of synthesizing the same. US Patent 9101508 B2, 2015.
[100]
Mousa, S.A.; Qari, M.H.; Ardawi, M.A. Compositions and methods of natural products in nanoformulations for the prevention and treatment of osteoporosis. US Patent 8563053B2, 2013.
[101]
Nah, JW; Jung, TR; Jang, MK; Jeong, YI Water soluble chitosan nanoparticle for delivering an anticancer agent and preparing method thereof. US 7883723 B2., 2011.
[102]
Kar, S.K.; Akhtar, F.; Ray, G.; Pandey, A.K. Curcumin nanoparticles and methods of producing the same. US Patent US 2011/0190399 A1, 2011.
[103]
Bharali, D.J.; Siddiqui, I.A.; Adhami, V.M.; Chamcheu, J.C.; Aldahmash, A.M.; Mukhtar, H.; Mousa, S.A. Nanoparticle delivery of natural products in the prevention and treatment of cancers: current status and future prospects. Cancers (Basel), 2011, 3(4), 4024-4045.
[http://dx.doi.org/10.3390/cancers3044024] [PMID: 24213123]
[104]
Grenha, A. Chitosan nanoparticles: a survey of preparation methods. J. Drug Target., 2012, 20(4), 291-300.
[http://dx.doi.org/10.3109/1061186X.2011.654121] [PMID: 22296336]
[105]
Chaturvedi, M.; Kumar, M.; Sinhal, A.; Saifi, A. Recent development in novel drug delivery systems of herbal drugs. Int. J. Green Pharm., 2011, 5(2), 87-94.
[http://dx.doi.org/10.4103/0973-8258.85155]
[106]
Singh, D. Application of novel drug delivery system in enhancing the therapeutic potential of phytoconstituents. Asian. J. Pharm. (Cairo), 2015, 9(4), 1-12.
[http://dx.doi.org/10.1155/2015/828453]
[107]
Othman, N.; Masarudin, M.J.; Kuen, C.Y.; Dasuan, N.A.; Abdullah, L.C.; Md Jamil, S.N.A. Synthesis and optimization of chitosan nanoparticles loaded with L-ascorbic acid and thymoquinone. Nanomaterials (Basel), 2018, 8(11), 1-19.
[http://dx.doi.org/10.3390/nano8110920] [PMID: 30405074]