The Anticancer Activity of Indazole Compounds: A Mini Review

Page: [363 - 376] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

The incidence and mortality of cancer continue to grow since the current medical treatments often fail to produce a complete and durable tumor response and ultimately give rise to therapy resistance and tumor relapse. Heterocycles with potential therapeutic values are of great pharmacological importance, and among them, indazole moiety is a privileged structure in medicinal chemistry. Indazole compounds possess potential anticancer activity, and indazole-based agents such as, axitinib, lonidamine and pazopanib have already been employed for cancer therapy, demonstrating indazole compounds as useful templates for the development of novel anticancer agents. The aim of this review is to present the main aspects of exploring anticancer properties, such as the structural modifications, the structure-activity relationship and mechanisms of action, making an effort to highlight the importance and therapeutic potential of the indazole compounds in the present anticancer agents.

Keywords: Indazole, Anticancer, Drug-resistant, Structure-activity relationship, Mechanisms of action, Lonidamine.

Graphical Abstract

[1]
Hulvat, M.C. Cancer incidence and trends. Surg. Clin. North Am., 2020, 100(3), 469-481.
[http://dx.doi.org/10.1016/j.suc.2020.01.002] [PMID: 32402294]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[3]
International Agency for Research on Cancer. Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018 2019.Available from: https://www. iarc.fr/featured-news/latest-global-cancer-data-cancer-burden-rises-to-18-1-million-new-cases-and-9-6-million-cancer-deaths-in-2018/
[4]
Waghray, D.; Zhang, Q. Inhibit or evade multidrug resistance P-glycoprotein in cancer treatment. J. Med. Chem., 2018, 61(12), 5108-5121.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01457] [PMID: 29251920]
[5]
Dallavalle, S.; Dobričić, V.; Lazzarato, L.; Gazzano, E.; Machuqueiro, M.; Pajeva, I.; Tsakovska, I.; Zidar, N.; Fruttero, R. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist. Updat., 2020, 50100682
[http://dx.doi.org/10.1016/j.drup.2020.100682] [PMID: 32087558]
[6]
Chatterjee, N.; Bivona, T.G. Polytherapy and targeted cancer drug resistance. Trends Cancer, 2019, 5(3), 170-182.
[http://dx.doi.org/10.1016/j.trecan.2019.02.003] [PMID: 30898264]
[7]
Denya, I.; Malan, S.F.; Joubert, J. Indazole derivatives and their therapeutic applications: a patent review (2013-2017). Expert Opin. Ther. Pat., 2018, 28(6), 441-453.
[http://dx.doi.org/10.1080/13543776.2018.1472240 PMID: 29718740]
[8]
Thangadurai, A.; Minu, M.; Wakode, S.; Angrwal, S.; Narasimhan, B. Indazole: A medicinally important heterocyclic moiety. Med. Chem. Res., 2012, 21(7), 1509-1523.
[http://dx.doi.org/10.1007/s00044-011-9631-3]
[9]
Wang, Y.; Yan, M.; Ma, R.; Ma, S. Synthesis and antibacterial activity of novel 4-bromo-1H-indazole derivatives as FtsZ inhibitors. Arch. Pharm. (Weinheim), 2015, 348(4), 266-274.
[http://dx.doi.org/10.1002/ardp.201400412] [PMID: 25773717]
[10]
Naaz, F.; Srivastava, R.; Singh, A.; Singh, N.; Verma, R.; Singh, V.K.; Singh, R.K. Molecular modeling, synthesis, antibacterial and cytotoxicity evaluation of sulfonamide derivatives of benzimidazole, indazole, benzothiazole and thiazole. Bioorg. Med. Chem., 2018, 26(12), 3414-3428.
[http://dx.doi.org/10.1016/j.bmc.2018.05.015] [PMID: 29778528]
[11]
Angelova, V.; Pencheva, T.; Vassilev, N.; Simeonova, R.; Momekov, G.; Valcheva, V. New indole and indazole derivatives as potential antimycobacterial agents. Med. Chem. Res., 2019, 28(4), 485-497.
[http://dx.doi.org/10.1007/s00044-019-02293-w]
[12]
Vidyacharan, S.; Adhikari, C.; Krishna, V.S.; Reshma, R.S.; Sriram, D.; Sharada, D.S. A robust synthesis of functionalized 2H-indazoles via solid state melt reaction (SSMR) and their anti-tubercular activity. Bioorg. Med. Chem. Lett., 2017, 27(7), 1593-1597.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.021] [PMID: 28254485]
[13]
Xiao, T.; Tang, J.F.; Meng, G.; Pannecouque, C.; Zhu, Y.Y.; Liu, G.Y.; Xu, Z.Q.; Wu, F.S.; Gu, S.X.; Chen, F.E. Indazolyl-substituted piperidin-4-yl-aminopyrimidines as HIV-1 NNRTIs: Design, synthesis and biological activities. Eur. J. Med. Chem., 2020, 186111864
[http://dx.doi.org/10.1016/j.ejmech.2019.111864] [PMID: 31767136]
[14]
Feng, S.; Li, C.; Chen, D.; Zheng, X.; Yun, H.; Gao, L.; Shen, H.C. Discovery of methylsulfonyl indazoles as potent and orally active respiratory syncytial Virus(RSV) fusion inhibitors. Eur. J. Med. Chem., 2017, 138, 1147-1157.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.032] [PMID: 28772235]
[15]
Dong, J.; Zhang, Q.; Wang, Z.; Huang, G.; Li, S. Recent advances in the development of indazole-based anticancer agents. ChemMedChem, 2018, 13(15), 1490-1507.
[http://dx.doi.org/10.1002/cmdc.201800253] [PMID: 29863292]
[16]
Zhang, S.G.; Liang, C.G.; Zhang, W.H. Recent advances in indazole-containing derivatives: Synthesis and biological perspectives. Molecules, 2018, 23(11)e2783
[http://dx.doi.org/10.3390/molecules23112783] [PMID: 30373212]
[17]
Fernandes, G.F.D.S.; Fernandes, B.C.; Valente, V.; Dos Santos, J.L. Recent advances in the discovery of small molecules targeting glioblastoma. Eur. J. Med. Chem., 2019, 164, 8-26.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.033] [PMID: 30583248]
[18]
Cheng, G.; Zhang, Q.; Pan, J.; Lee, Y.; Ouari, O.; Hardy, M.; Zielonka, M.; Myers, C.R.; Zielonka, J.; Weh, K.; Chang, A.C.; Chen, G.; Kresty, L.; Kalyanaraman, B.; You, M. Targeting lonidamine to mitochondria mitigates lung tumorigenesis and brain metastasis. Nat. Commun., 2019, 10(1), 2205.
[http://dx.doi.org/10.1038/s41467-019-10042-1] [PMID: 31101821]
[19]
Chellappan, D.K.; Chellian, J.; Ng, Z.Y.; Sim, Y.J.; Theng, C.W.; Ling, J.; Wong, M.; Foo, J.H.; Yang, G.J.; Hang, L.Y.; Nathan, S.; Singh, Y.; Gupta, G. The role of pazopanib on tumour angiogenesis and in the management of cancers: A review. Biomed. Pharmacother., 2017, 96, 768-781.
[http://dx.doi.org/10.1016/j.biopha.2017.10.058] [PMID: 29054093]
[20]
Abdelsalam, E.A.; Zaghary, W.A.; Amin, K.M.; Abou Taleb, N.A.; Mekawey, A.A.I.; Eldehna, W.M.; Abdel-Aziz, H.A.; Hammad, S.F. Synthesis and in vitro anticancer evaluation of some fused indazoles, quinazolines and quinolines as potential EGFR inhibitors. Bioorg. Chem., 2019, 89102985
[http://dx.doi.org/10.1016/j.bioorg.2019.102985] [PMID: 31121559]
[21]
Dugar, S.; Hollinger, F.P.; Mahajan, D.; Sen, S.; Kuila, B.; Arora, R.; Pawar, Y.; Shinde, V.; Rahinj, M.; Kapoor, K.K.; Bhumkar, R.; Rai, S.; Kulkarni, R. Discovery of novel and orally bioavailable inhibitors of PI3 kinase based on indazole substituted morpholino-triazines. ACS Med. Chem. Lett., 2015, 6(12), 1190-1194.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00322 PMID: 26713102]
[22]
Wang, X.; Magnuson, S.; Pastor, R.; Fan, E.; Hu, H.; Tsui, V.; Deng, W.; Murray, J.; Steffek, M.; Wallweber, H.; Moffat, J.; Drummond, J.; Chan, G.; Harstad, E.; Ebens, A.J. Discovery of novel pyrazolo[1,5-a]pyrimidines as potent pan-Pim inhibitors by structure- and property-based drug design. Bioorg. Med. Chem. Lett., 2013, 23(11), 3149-3153.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.020] [PMID: 23623490]
[23]
Pastor, J.; Oyarzabal, J.; Saluste, G.; Alvarez, R.M.; Rivero, V.; Ramos, F.; Cendón, E.; Blanco-Aparicio, C.; Ajenjo, N.; Cebriá, A.; Albarrán, M.I.; Cebrián, D.; Corrionero, A.; Fominaya, J.; Montoya, G.; Mazzorana, M. Hit to lead evaluation of 1,2,3-triazolo[4,5-b]pyridines as PIM kinase inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(4), 1591-1597.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.130] [PMID: 22266039]
[24]
Wang, H.L.; Cee, V.J.; Chavez, F., Jr; Lanman, B.A.; Reed, A.B.; Wu, B.; Guerrero, N.; Lipford, J.R.; Sastri, C.; Winston, J.; Andrews, K.L.; Huang, X.; Lee, M.R.; Mohr, C.; Xu, Y.; Zhou, Y.; Tasker, A.S. The discovery of novel 3-(pyrazin-2-yl)-1H-indazoles as potent pan-Pim kinase inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(4), 834-840.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.068] [PMID: 25597005]
[25]
Hu, H.; Wang, X.; Chan, G.K.Y.; Chang, J.H.; Do, S.; Drummond, J.; Ebens, A.; Lee, W.; Ly, J.; Lyssikatos, J.P.; Murray, J.; Moffat, J.G.; Chao, Q.; Tsui, V.; Wallweber, H.; Kolesnikov, A. Discovery of 3,5-substituted 6-azaindazoles as potent pan-Pim inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(22), 5258-5264.
[http://dx.doi.org/10.1016/j.bmcl.2015.09.052] [PMID: 26459208]
[26]
Govek, S.P.; Nagasawa, J.Y.; Douglas, K.L.; Lai, A.G.; Kahraman, M.; Bonnefous, C.; Aparicio, A.M.; Darimont, B.D.; Grillot, K.L.; Joseph, J.D.; Kaufman, J.A.; Lee, K.J.; Lu, N.; Moon, M.J.; Prudente, R.Y.; Sensintaffar, J.; Rix, P.J.; Hager, J.H.; Smith, N.D. Optimization of an indazole series of selective estrogen receptor degraders: Tumor regression in a tamoxifen-resistant breast cancer xenograft. Bioorg. Med. Chem. Lett., 2015, 25(22), 5163-5167.
[http://dx.doi.org/10.1016/j.bmcl.2015.09.074] [PMID: 26463130]
[27]
Turner, L.D.; Summers, A.J.; Johnson, L.O.; Knowles, M.A.; Fishwick, C.W.G. Identification of an indazole-based pharmacophore for the inhibition of FGFR kinases using fragment-led de novo design. ACS Med. Chem. Lett., 2017, 8(12), 1264-1268.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00349 PMID: 29259745]
[28]
Van Rossom, W.; Asby, D.J.; Tavassoli, A.; Gale, P.A. Perenosins: a new class of anion transporter with anti-cancer activity. Org. Biomol. Chem., 2016, 14(9), 2645-2650.
[http://dx.doi.org/10.1039/C6OB00002A] [PMID: 26905059]
[29]
Yang, X.; Li, F.; Konze, K.D.; Meslamani, J.; Ma, A.; Brown, P.J.; Zhou, M.M.; Arrowsmith, C.H.; Kaniskan, H.U.; Vedadi, M.; Jin, J. Structure-activity relationship studies for enhancer of zeste homologue 2 (EZH2) and enhancer of zeste homologue 1 (EZH1) inhibitors. J. Med. Chem., 2016, 59(16), 7617-7633.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00855] [PMID: 27468126]
[30]
Liu, Y.; Lang, Y.; Patel, N.K.; Ng, G.; Laufer, R.; Li, S.W.; Edwards, L.; Forrest, B.; Sampson, P.B.; Feher, M.; Ban, F.; Awrey, D.E.; Beletskaya, I.; Mao, G.; Hodgson, R.; Plotnikova, O.; Qiu, W.; Chirgadze, N.Y.; Mason, J.M.; Wei, X.; Lin, D.C.C.; Che, Y.; Kiarash, R.; Madeira, B.; Fletcher, G.C.; Mak, T.W.; Bray, M.R.; Pauls, H.W. The discovery of orally bioavailable tyrosine threonine kinase (TTK) inhibitors: 3-(4-(Heterocyclyl)phenyl)-1H-indazole-5-carboxamides as anticancer agents. J. Med. Chem., 2015, 58(8), 3366-3392.
[http://dx.doi.org/10.1021/jm501740a] [PMID: 25763473]
[31]
Morris, E.J.; Jha, S.; Restaino, C.R.; Dayananth, P.; Zhu, H.; Cooper, A.; Carr, D.; Deng, Y.; Jin, W.; Black, S.; Long, B.; Liu, J.; Dinunzio, E.; Windsor, W.; Zhang, R.; Zhao, S.; Angagaw, M.H.; Pinheiro, E.M.; Desai, J.; Xiao, L.; Shipps, G.; Hruza, A.; Wang, J.; Kelly, J.; Paliwal, S.; Gao, X.; Babu, B.S.; Zhu, L.; Daublain, P.; Zhang, L.; Lutterbach, B.A.; Pelletier, M.R.; Philippar, U.; Siliphaivanh, P.; Witter, D.; Kirschmeier, P.; Bishop, W.R.; Hicklin, D.; Gilliland, D.G.; Jayaraman, L.; Zawel, L.; Fawell, S.; Samatar, A.A. Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov., 2013, 3(7), 742-750.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0070 PMID: 23614898]
[32]
Foda, Z.H.; Seeliger, M.A. Development of highly specific kinase inhibitors has been a long-standing challenge in chemical biology. The structural and mechanistic characterization of an Erk1/2 kinase inhibitor provides new strategies to develop specific kinase inhibitors by targeting a binding pocket adjacent to the ATP binding site. Nat. Chem. Biol., 2014, 10, 796-797.
[http://dx.doi.org/10.1038/nchembio.1630] [PMID: 25195010]
[33]
Chaikuad, A.; Tacconi, E.M.C.; Zimmer, J.; Liang, Y.; Gray, N.S.; Tarsounas, M.; Knapp, S. A unique inhibitor binding site in ERK1/2 is associated with slow binding kinetics. Nat. Chem. Biol., 2014, 10(10), 853-860.
[http://dx.doi.org/10.1038/nchembio.1629] [PMID: 25195011]
[34]
Lu, Y.Y.; Wang, J.J.; Zhang, X.K.; Li, W.B.; Guo, X.L. 1118-20, an indazole diarylurea compound, inhibits hepatocellular carcinoma HepG2 proliferation and tumour angiogenesis involving Wnt/β-catenin pathway and receptor tyrosine kinases. J. Pharm. Pharmacol., 2015, 67(10), 1393-1405.
[http://dx.doi.org/10.1111/jphp.12440] [PMID: 26076716]
[35]
Chu, Y.Y.; Cheng, H.J.; Tian, Z.H.; Zhao, J.C.; Li, G.; Chu, Y.Y.; Sun, C.J.; Li, W.B. Rational drug design of indazole-based diarylurea derivatives as anticancer agents. Chem. Biol. Drug Des., 2017, 90(4), 609-617.
[http://dx.doi.org/10.1111/cbdd.12984] [PMID: 28338292]
[36]
Lim, J.; Kelley, E.H.; Methot, J.L.; Zhou, H.; Petrocchi, A.; Chen, H.; Hill, S.E.; Hinton, M.C.; Hruza, A.; Jung, J.O.; Maclean, J.K.F.; Mansueto, M.; Naumov, G.N.; Philippar, U.; Raut, S.; Spacciapoli, P.; Sun, D.; Siliphaivanh, P. Discovery of 1-(1H-pyrazolo[4,3-c]pyridin-6-yl)urea inhibitors of extracellular signal-regulated kinase (ERK) for the treatment of cancers. J. Med. Chem., 2016, 59(13), 6501-6511.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00708] [PMID: 27329786]
[37]
Lu, J.F.; Zhou, X.L.; Xu, Y.H.; Yue, S.Y.; Ji, X.H.; Zheng, N.; Jin, L.X. Synthesis, crystal structure, and biological activity of 3-amino-4-morpholino-N-[2-(trifluoromethoxy)phenyl]-1H-indazole-1-carboxamide. J. Chem. Res., 2017, 41, 526-528.
[http://dx.doi.org/10.3184/174751917X15033157981988]
[38]
Hao, X.C.; Lu, J.F.; Chen, Y.; Wang, Y.; Ding, S.; Liu, J. Synthesis, crystal structure and antitumour activity of 3-amino-N-(5-fluoro-2-methylphenyl)-4-morpholino-1H-indazole-1-carboxamide. J. Chem. Res., 2017, 41, 624-626.
[http://dx.doi.org/10.3184/174751917X15065183733178]
[39]
Lu, J.F.; Jin, L.X.; Ge, H.G.; Song, J.; Zhao, C.B.; Guo, X.H.; Yue, S.Y.; Li, L. Synthesis, crystal structure and antitumour activity of 4-(3-amino-4-morpholino-1H-indazole-1-carbonyl)benzonitrile. J. Chem. Res., 2018, 42, 309-312.
[http://dx.doi.org/10.3184/174751918X15287920661730]
[40]
Ji, X.H.; Jin, L.X.; Zhao, C.B.; Zheng, N.; Song, J.; Ge, H.G.; Liu, Q.; Lu, F.J. Synthesis, crystal structure and antitumour activity of 3-amino-N-[4-chloro-3-(trifluoromethyl)phenyl]-4-morpholino-1H-indazole-1-carboxamide. J. Chem. Res., 2018, 42, 504-507.
[http://dx.doi.org/10.3184/174751918X15380423621264]
[41]
Kornicka, A.; Saczewski, F.; Bednarski, P.J.; Korcz, M.; Szumlas, P.; Romejko, E.; Sakowicz, A.; Sitek, L.; Wojciechowska, M. Synthesis and preliminary cytotoxicity studies of 1-[1-(4,5-dihydrooxazol-2-yl)-1H-indazol-3-yl]-3-phenylurea and 3-phenylthiourea derivatives. Med. Chem., 2017, 13(7), 616-624.
[http://dx.doi.org/10.2174/1573406413666170306114401] [PMID: 28266278]
[42]
Sun, Y.; Shan, Y.; Li, C.; Si, R.; Pan, X.; Wang, B.; Zhang, J. Discovery of novel anti-angiogenesis agents. Part 8: Diaryl thiourea bearing 1H-indazole-3-amine as multi-target RTKs inhibitors. Eur. J. Med. Chem., 2017, 141, 373-385.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.008] [PMID: 29032031]
[43]
Elsayed, N.M.Y.; Serya, R.A.T.; Tolba, M.F.; Ahmed, M.; Barakat, K.; Abou El Ella, D.A.; Abouzid, K.A.M. Design, synthesis, biological evaluation and dynamics simulation of indazole derivatives with antiangiogenic and antiproliferative anticancer activity. Bioorg. Chem., 2019, 82, 340-359.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.071] [PMID: 30428414]
[44]
Li, S.W.; Liu, Y.; Sampson, P.B.; Patel, N.K.; Forrest, B.T.; Edwards, L.; Laufer, R.; Feher, M.; Ban, F.; Awrey, D.E.; Hodgson, R.; Beletskaya, I.; Mao, G.; Mason, J.M.; Wei, X.; Luo, X.; Kiarash, R.; Green, E.; Mak, T.W.; Pan, G.; Pauls, H.W.; Pan, G.; Paul, H.W. Design and optimization of (3-aryl-1H-indazol-6-yl)spiro[cyclopropane-1,3′-indolin]-2′-ones as potent PLK4 inhibitors with oral antitumor efficacy. Bioorg. Med. Chem. Lett., 2016, 26(19), 4625-4630.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.063] [PMID: 27592744]
[45]
Aman, W.; Lee, J.; Kim, M.; Yang, S.; Jung, H.; Hah, J.M. Discovery of highly selective CRAF inhibitors, 3-carboxamido-2H-indazole-6-arylamide: In silico FBLD design, synthesis and evaluation. Bioorg. Med. Chem. Lett., 2016, 26(4), 1188-1192.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.037] [PMID: 26810260]
[46]
Chen, T.; Sorna, V.; Choi, S.; Call, L.; Bearss, J.; Carpenter, K.; Warner, S.L.; Sharma, S.; Bearss, D.J.; Vankayalapati, H. Fragment-based design, synthesis, biological evaluation, and SAR of 1H-benzo[d]imidazol-2-yl)-1H-indazol derivatives as potent PDK1 inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(24), 5473-5480.
[http://dx.doi.org/10.1016/j.bmcl.2017.10.041] [PMID: 29150397]
[47]
Sreenivasulu, R.; Sujitha, P.; Jadav, S.S.; Ahsan, M.J.; Kumar, C.G.; Raju, R.R. Synthesis, antitumor evaluation, and molecular docking studies of indole-indazolyl hydrazide-hydrazone derivatives. Monatsh. Chem., 2017, 148, 305-314.
[http://dx.doi.org/10.1007/s00706-016-1750-6]
[48]
Song, P.; Chen, M.; Ma, X.; Xu, L.; Liu, T.; Zhou, Y.; Hu, Y. Identification of novel inhibitors of Aurora A with a 3-(pyrrolopyridin-2-yl)indazole scaffold. Bioorg. Med. Chem., 2015, 23(8), 1858-1868.
[http://dx.doi.org/10.1016/j.bmc.2015.02.004] [PMID: 25771484]
[49]
Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017, 18(7)e1414
[http://dx.doi.org/10.3390/ijms18071414] [PMID: 28671573]
[50]
Yu, T.; Yang, Y.; Liu, Y.; Zhang, Y.; Xu, H.; Li, M.; Ponnusamy, M.; Wang, K.; Wang, J.X.; Li, P.F.A. FGFR1 inhibitor patent review: progress since 2010. Expert Opin. Ther. Pat., 2017, 27(4), 439-454.
[http://dx.doi.org/10.1080/13543776.2017.1272574] [PMID: 27976968]
[51]
Liu, J.; Qian, C.; Zhu, Y.; Cai, J.; He, Y.; Li, J.; Wang, T.; Zhu, H.; Li, Z.; Li, W.; Hu, L. Design, synthesis and evaluate of novel dual FGFR1 and HDAC inhibitors bearing an indazole scaffold. Bioorg. Med. Chem., 2018, 26(3), 747-757.
[http://dx.doi.org/10.1016/j.bmc.2017.12.041] [PMID: 29317150]
[52]
Zang, J.; Liang, X.; Huang, Y.; Jia, Y.; Li, X.; Xu, W.; Chou, C.J.; Zhang, Y. Discovery of novel pazopanib-based HDAC and VEGFR dual inhibitors targeting cancer epigenetics and angiogenesis simultaneously. J. Med. Chem., 2018, 61(12), 5304-5322.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00384] [PMID: 29787262]
[53]
Yang, L.; Chen, Y.; He, J.; Njoya, E.M.; Chen, J.; Liu, S.; Xie, C.; Huang, W.; Wang, F.; Wang, Z.; Li, Y.; Qian, S. 4,6-Substituted-1H-Indazoles as potent IDO1/TDO dual inhibitors. Bioorg. Med. Chem., 2019, 27(6), 1087-1098.
[http://dx.doi.org/10.1016/j.bmc.2019.02.014] [PMID: 30773421]
[54]
Dukanya; Shanmugam, M.K.; Rangappa, S.; Metri, P.K.; Mohan, S.; Basappa; Rangappa, K.S. Exploring the newer oxadiazoles as real inhibitors of human SIRT2 in hepatocellular cancer cells. Bioorg. Med. Chem. Lett., 2020, 30(16)127330
[http://dx.doi.org/10.1016/j.bmcl.2020.127330] [PMID: 32631535]
[55]
Liu, N.; Wang, Y.; Huang, G.; Ji, C.; Fan, W.; Li, H.; Cheng, Y.; Tian, H. Design, synthesis and biological evaluation of 1H-pyrrolo[2,3-b]pyridine and 1H-pyrazolo[3,4-b]pyridine derivatives as c-Met inhibitors. Bioorg. Chem., 2016, 65, 146-158.
[http://dx.doi.org/10.1016/j.bioorg.2016.02.009] [PMID: 26950400]
[56]
Lehmann, T.P.; Kujawski, J.; Kruk, J.; Czaja, K.; Bernard, M.K.; Jagodzinski, P.P. Cell-specific cytotoxic effect of pyrazole derivatives on breast cancer cell lines MCF7 and MDA-MB-231. J. Physiol. Pharmacol., 2017, 68(2), 201-207.
[PMID: 28614769]
[57]
Pegklidou, K.; Papastavrou, N.; Gkizis, P.; Komiotis, D.; Balzarini, J.; Nicolaou, I. N-substituted pyrrole-based scaffolds as potential anticancer and antiviral lead structures. Med. Chem., 2015, 11(6), 602-608.
[http://dx.doi.org/10.2174/1573406411666150313161225] [PMID: 25770917]
[58]
Kasiotis, K.M.; Tzanetou, E.N.; Stagos, D.; Fokialakis, N.; Koutsotheodorou, E.; Kouretas, D.; Haroutounian, S.A. Novel conformationally constrained pyrazole derivatives as potential anti-cancer agents. Z. Naturforsch., 2015, 70(9), 677-690.
[http://dx.doi.org/10.1515/znb-2015-0053]
[59]
Liao, B.; Peng, L.; Zhou, J.; Mo, H.; Zhao, J.; Yang, Z.; Guo, X.; Zhang, P.; Zhang, X.; Zhu, Z. Synthesis and activity evaluation of nasopharyngeal carcinoma inhibitors based on 6-(pyrimidin-4-yl)-1H-indazole. Chem. Biodivers., 2019, 16(5)e1800598
[http://dx.doi.org/10.1002/cbdv.201800598] [PMID: 30788913]
[60]
Elsayed, N.M.Y.; Ella, D.A.A.E.; Serya, R.A.T.; Tolba, M.F.; Shalaby, R.; Abouzid, K.A.M. Design, synthesis and biological evaluation of indazole-pyrimidine based derivatives as anticancer agents with anti-angiogenic and antiproliferative activities. MedChemComm, 2016, 7, 881-899.
[http://dx.doi.org/10.1039/C5MD00602C]
[61]
Szymańska-Michalak, A.; Wawrzyniak, D.; Framski, G.; Kujda, M.; Zgoła, P.; Stawinski, J.; Barciszewski, J.; Boryski, J.; Kraszewski, A. New 3′-O-aromatic acyl-5-fluoro-2′-deoxyuridine derivatives as potential anticancer agents. Eur. J. Med. Chem., 2016, 115, 41-52.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.010] [PMID: 26994842]
[62]
Reddy, G.S.; Mohanty, S.; Kuamr, J.; Rao, B.V. Synthesis and evaluation of anticancer activity of indazole derivatives. Russ. J. Gen. Chem., 2018, 88(11), 2394-2399.
[http://dx.doi.org/10.1134/S1070363218110233]
[63]
Zhao, W.; He, L.; Xiang, T.L.; Tang, Y.J. Discover 4β-NH-(6-aminoindole)-4-desoxy-podophyllotoxin with nanomolar-potency antitumor activity by improving the tubulin binding affinity on the basis of a potential binding site nearby colchicine domain. Eur. J. Med. Chem., 2019, 170, 73-86.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.006] [PMID: 30878833]
[64]
Bassou, O.; Chicha, H.; Allam, A.; Monticone, M.; Gangemi, R.; Maric, I.; Viale, M.; Rakib, E.M. Synthesis and anti-proliferative activity of novel polysubstitued indazole derivatives. J. Heterocycl. Chem., 2019, 56, 343-348.
[http://dx.doi.org/10.1002/jhet.3408]
[65]
Mohareb, R.M.; Al-Omran, F.; Ibrahim, R.A. The uses of cyclohexan-1,4-dione for the synthesis of thiophene derivatives as new anti-proliferative, prostate anticancer, c-Met and tyrosine kinase inhibitors. Med. Chem. Res., 2018, 27(2), 618-633.
[http://dx.doi.org/10.1007/s00044-017-2087-3]
[66]
Bayomi, S.M.; El-Kashef, H.A.; El-Ashmawy, M.B.; Nasr, M.N.A.; El-Sherbeny, M.A.; Abdel-Aziz, N.I.; El-Sayed, M.A.A.; Suddek, G.M.; El-Messery, S.M.; Ghaly, M.A. Synthesis and biological evaluation of new curcumin analogues as antioxidant and antitumor agents: molecular modeling study. Eur. J. Med. Chem., 2015, 101, 584-594.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.014] [PMID: 26197162]
[67]
Ashok, A.; Thanukrishnan, K.; Naik, H.S.B.; Ghosh, S. 6,7-Dimethoxy-quinazolin-4-yl-amino-nicotinamide derivatives as potent inhibitors of VEGF receptor II. J. Heterocycl. Chem., 2017, 54, 1723-1728.
[http://dx.doi.org/10.1002/jhet.2750]
[68]
Al-Rawi, M.S.; Hassan, H.A.; Hassan, D.F. New series of substituted heterocycles derived from α, β-unsaturated ketone and their cytotoxic activity in tumor cell lines. Orient. J. Chem., 2018, 34(6), 2826-2831.
[http://dx.doi.org/10.13005/ojc/340620]
[69]
Yoon, J.Y.; Lee, J.J.; Gu, S.; Jung, M.E.; Cho, H.S.; Lim, J.H.; Jun, S.Y.; Ahn, J.H.; Min, J.S.; Choi, M.H.; Jeon, S.J.; Lee, Y.J.; Go, A.; Heo, Y.J.; Jung, C.R.; Choi, G.; Lee, K.; Jeon, M.K.; Kim, N.S. Novel indazole-based small compounds enhance TRAIL-induced apoptosis by inhibiting the MKK7-TIPRL interaction in hepatocellular carcinoma. Oncotarget, 2017, 8(68), 112610-112622.
[http://dx.doi.org/10.18632/oncotarget.22614] [PMID: 29348850]
[70]
Ong, Y.C.; Gasser, G. Organometallic compounds in drug discovery: Past, present and future. Drug Discov. Today. Technol., 2020. (In Press)
[http://dx.doi.org/10.1016/j.ddtec.2019.06.001]
[71]
Santos, M.M.; Bastos, P.; Catela, I.; Zalewska, K.; Branco, L.C. Recent advances of metallocenes for medicinal chemistry. Mini Rev. Med. Chem., 2017, 17(9), 771-784.
[http://dx.doi.org/10.2174/1389557516666161031141620] [PMID: 27804886]
[72]
Wang, R.; Chen, H.; Yan, W.; Zheng, M.; Zhang, T.; Zhang, Y. Ferrocene-containing hybrids as potential anticancer agents: Current developments, mechanisms of action and structure-activity relationships. Eur. J. Med. Chem., 2020, 190112109
[http://dx.doi.org/10.1016/j.ejmech.2020.112109] [PMID: 32032851]
[73]
Sansook, S.; Hassell-Hart, S.; Ocasio, C.; Spencer, J. Ferrocenes in medicinal chemistry; a personal perspective. J. Organomet. Chem., 2020, 905e121017
[http://dx.doi.org/10.1016/j.jorganchem.2019.121017]
[74]
Bauer, E.B.; Haase, A.A.; Reich, R.M.; Crans, D.C.; Kuhn, F.E. Organometallic and coordination rhenium compounds and their potential in cancer therapy. Coord. Chem. Rev., 2019, 393, 79-117.
[http://dx.doi.org/10.1016/j.ccr.2019.04.014]
[75]
Martins, P.; Marques, M.; Coito, L.; Pombeiro, A.J.L.; Baptista, P.V.; Fernandes, A.R. Organometallic compounds in cancer therapy: past lessons and future directions. Anticancer. Agents Med. Chem., 2014, 14(9), 1199-1212.
[http://dx.doi.org/10.2174/1871520614666140829124925] [PMID: 25173559]
[76]
Sadafi, F.Z.; Massai, L.; Bartolommei, G.; Moncelli, M.R.; Messori, L.; Tadini-Buoninsegni, F. Anticancer ruthenium(III) complex KP1019 interferes with ATP-dependent Ca2+ translocation by sarco-endoplasmic reticulum Ca2+-ATPase (SERCA). ChemMedChem, 2014, 9(8), 1660-1664.
[http://dx.doi.org/10.1002/cmdc.201402128] [PMID: 24920093]
[77]
Kuhn, P.S.; Meier, S.M.; Jovanovic, K.K.; Sandler, I.; Freitag, L.; Novitchi, G.; Gonzalez, L.; Radulovic, S.; Arion, V.B. Ruthenium carbonyl complexes with azole heterocycles-Synthesis, X-ray diffraction structures, DFT calculations, solution behavior, and antiproliferative activity. Eur. J. Inorg. Chem., 2016, 2016, 1566-1576.
[http://dx.doi.org/10.1002/ejic.201501393]
[78]
Flocke, L.S.; Trondl, R.; Jakupec, M.A.; Keppler, B.K. Molecular mode of action of NKP-1339 - a clinically investigated ruthenium-based drug - involves ER- and ROS-related effects in colon carcinoma cell lines. Invest. New Drugs, 2016, 34(3), 261-268.
[http://dx.doi.org/10.1007/s10637-016-0337-8] [PMID: 26988975]
[79]
Spiewak, K.; Swiatek, S.; Jachimska, B.; Brindell, M. Induction of transferrin aggregation by indazolium [tetrachlorobis(1H-indazole)ruthenate(iii)] (KP1019) and its biological function. New J. Chem., 2019, 43(28), 11296-11306.
[http://dx.doi.org/10.1039/C9NJ01342C]
[80]
Schreiber-Brynzak, E.; Klapproth, E.; Unger, C.; Lichtscheidl-Schultz, I.; Göschl, S.; Schweighofer, S.; Trondl, R.; Dolznig, H.; Jakupec, M.A.; Keppler, B.K. Three-dimensional and co-culture models for preclinical evaluation of metal-based anticancer drugs. Invest. New Drugs, 2015, 33(4), 835-847.
[http://dx.doi.org/10.1007/s10637-015-0260-4] [PMID: 26091914]
[81]
Heffeter, P.; Böck, K.; Atil, B.; Reza Hoda, M.A.; Körner, W.; Bartel, C.; Jungwirth, U.; Keppler, B.K.; Micksche, M.; Berger, W.; Koellensperger, G. Intracellular protein binding patterns of the anticancer ruthenium drugs KP1019 and KP1339. J. Biol. Inorg. Chem., 2010, 15(5), 737-748.
[http://dx.doi.org/10.1007/s00775-010-0642-1] [PMID: 20221888]
[82]
Hudej, R.; Turel, I.; Kanduser, M.; Scancar, J.; Kranjc, S.; Sersa, G.; Miklavcic, D.; Jakupec, M.A.; Keppler, B.K.; Cemazar, M. Tumor-specificity and apoptosis-inducing activity of stilbenes and flavonoids. Anticancer Res., 2010, 30(6), 2055-2063.
[PMID: 20651351]
[83]
Bytzek, A.K.; Boeck, K.; Hermann, G.; Hann, S.; Keppler, B.K.; Hartinger, C.G.; Koellensperger, G. LC- and CZE-ICP-MS approaches for the in vivo analysis of the anticancer drug candidate sodium trans-[tetrachloridobis(1H-indazole)ruthenate(III)] (KP1339) in mouse plasma. Metallomics, 2011, 3(10), 1049-1055.
[http://dx.doi.org/10.1039/c1mt00055a] [PMID: 21935553]
[84]
Dömötör, O.; Hartinger, C.G.; Bytzek, A.K.; Kiss, T.; Keppler, B.K.; Enyedy, E.A. Characterization of the binding sites of the anticancer ruthenium(III) complexes KP1019 and KP1339 on human serum albumin via competition studies. J. Biol. Inorg. Chem., 2013, 18(1), 9-17.
[http://dx.doi.org/10.1007/s00775-012-0944-6] [PMID: 23076343]
[85]
Heffeter, P.; Atil, B.; Kryeziu, K.; Groza, D.; Koellensperger, G.; Körner, W.; Jungwirth, U.; Mohr, T.; Keppler, B.K.; Berger, W. The ruthenium compound KP1339 potentiates the anticancer activity of sorafenib in vitro and in vivo. Eur. J. Cancer, 2013, 49(15), 3366-3375.
[http://dx.doi.org/10.1016/j.ejca.2013.05.018] [PMID: 23790465]
[86]
Egger, A.E.; Theiner, S.; Kornauth, C.; Heffeter, P.; Berger, W.; Keppler, B.K.; Hartinger, C.G. Quantitative bioimaging by LA-ICP-MS: a methodological study on the distribution of Pt and Ru in viscera originating from cisplatin- and KP1339-treated mice. Metallomics, 2014, 6(9), 1616-1625.
[http://dx.doi.org/10.1039/C4MT00072B] [PMID: 24823867]
[87]
Wernitznig, D.; Kiakos, K.; Del Favero, G.; Harrer, N.; Machat, H.; Osswald, A.; Jakupec, M.A.; Wernitznig, A.; Sommergruber, W.; Keppler, B.K. First-in-class ruthenium anticancer drug (KP1339/IT-139) induces an immunogenic cell death signature in colorectal spheroids in vitro. Metallomics, 2019, 11(6), 1044-1048.
[http://dx.doi.org/10.1039/C9MT00051H] [PMID: 30942231]
[88]
Schoenhacker-Alte, B.; Mohr, T.; Pirker, C.; Kryeziu, K.; Kuhn, P.S.; Buck, A.; Hofmann, T.; Gerner, C.; Hermann, G.; Koellensperger, G.; Keppler, B.K.; Berger, W.; Heffeter, P. Sensitivity towards the GRP78 inhibitor KP1339/IT-139 is characterized by apoptosis induction via caspase 8 upon disruption of ER homeostasis. Cancer Lett., 2017, 404, 79-88.
[http://dx.doi.org/10.1016/j.canlet.2017.07.009] [PMID: 28716523]
[89]
Golla, U.; Swagatika, S.; Chauhan, S.; Tomar, R.S. A systematic assessment of chemical, genetic, and epigenetic factors influencing the activity of anticancer drug KP1019 (FFC14A). Oncotarget, 2017, 8(58), 98426-98454.
[http://dx.doi.org/10.18632/oncotarget.21416] [PMID: 29228701]
[90]
Chang, S.W.; Lewis, A.R.; Prosser, K.E.; Thompson, J.R.; Gladkikh, M.; Bally, M.B.; Warren, J.J.; Walsby, C.J. CF3 derivatives of the anticancer Ru(III) complexes KP1019, NKP-1339, and their imidazole and pyridine analogues show enhanced lipophilicity, albumin interactions, and cytotoxicity. Inorg. Chem., 2016, 55(10), 4850-4863.
[http://dx.doi.org/10.1021/acs.inorgchem.6b00359] [PMID: 27143338]
[91]
Bytzek, A.K.; Koellensperger, G.; Keppler, B.K.G.; Hartinger, C. Biodistribution of the novel anticancer drug sodium trans-[tetrachloridobis(1H-indazole)ruthenate(III)] KP-1339/IT139 in nude BALB/c mice and implications on its mode of action. J. Inorg. Biochem., 2016, 160, 250-255.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.02.037] [PMID: 26993078]
[92]
Shah, P.K.; Bhattacharjee, K.; Shukla, P.K. Mechanisms of reactions of Ru(III)-based drug NAMI-A and its aquated products with DNA purine bases: A DFT study. RSC Advances, 2016, 6(114), 113620-113629.
[http://dx.doi.org/10.1039/C6RA24251K]
[93]
Bierle, L.A.; Reich, K.L.; Taylor, B.E.; Blatt, E.B.; Middleton, S.M.; Burke, S.D.; Stultz, L.K.; Hanson, P.K.; Partridge, J.F.; Miller, M.E. DNA damage response checkpoint activation drives KP1019 dependent pre-anaphase cell cycle delay in S. cerevisiae. PLoS One, 2015, 10(9)e0138085
[http://dx.doi.org/10.1371/journal.pone.0138085] [PMID: 26375390]
[94]
Singh, V.; Azad, G.K.; Mandal, P.; Reddy, M.A.; Tomar, R.S. Anti-cancer drug KP1019 modulates epigenetics and induces DNA damage response in Saccharomyces cerevisiae. FEBS Lett., 2014, 588(6), 1044-1052.
[http://dx.doi.org/10.1016/j.febslet.2014.02.017] [PMID: 24561198]
[95]
Singh, V.; Azad, G.K.; Reddy, A.M.; Baranwal, S.; Tomar, R.S. Unique pharmacology of heteromeric α7β2 nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. Eur. J. Pharmacol., 2014, 736, 77-85.
[http://dx.doi.org/10.1016/j.ejphar.2014.04.032] [PMID: 24797784]
[96]
Alessio, E.; Messori, L. NAMI-A and KP1019/1339, two iconic ruthenium anticancer drug candidates face-to-face: A case story in medicinal inorganic chemistry. Molecules, 2019, 24(10)e1995
[http://dx.doi.org/10.3390/molecules24101995] [PMID: 31137659]
[97]
Demkowicz, S.; Kozak, W.; Daśko, M.; Rachon, J. Phosphoroorganic metal complexes in therapeutics. Mini Rev. Med. Chem., 2016, 16(17), 1359-1373.
[http://dx.doi.org/10.2174/1389557516666160505120005] [PMID: 27145849]
[98]
Thota, S.; Rodrigues, D.A.; Crans, D.C.; Barreiro, E.J. Ru(II) compounds: Next-generation anticancer metallotherapeutics? J. Med. Chem., 2018, 61(14), 5805-5821.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01689] [PMID: 29446940]
[99]
Trondl, R.; Heffeter, P.; Kowol, C.R.; Jakupec, M.A.; Berger, W.; Keppler, B.K. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem. Sci. (Camb.), 2014, 5(8), 2925-2932.
[http://dx.doi.org/10.1039/C3SC53243G]
[100]
Büchel, G.E.; Kossatz, S.; Sadique, A.; Rapta, P.; Zalibera, M.; Bucinsky, L.; Komorovsky, S.; Telser, J.; Eppinger, J.; Reiner, T.; Arion, V.B. cis-Tetrachlorido-bis(indazole)osmium(iv) and its osmium(iii) analogues: paving the way towards the cis-isomer of the ruthenium anticancer drugs KP1019 and/or NKP1339. Dalton Trans., 2017, 46(35), 11925-11941.
[http://dx.doi.org/10.1039/C7DT02194A] [PMID: 28850133]
[101]
Nardon, C.; Brustolin, L.; Fregona, D. Is matching ruthenium with dithiocarbamato ligands a potent chemotherapeutic weapon in oncology? Future Med. Chem., 2016, 8(2), 211-226.
[http://dx.doi.org/10.4155/fmc.15.175] [PMID: 26807601]
[102]
Adeniyi, A.A.; Ajibade, P.A. Development of ruthenium-based complexes as anticancer agents: Toward a rational design of alternative receptor targets. Rev. Inorg. Chem., 2016, 36(2), 53-75.
[http://dx.doi.org/10.1515/revic-2015-0008]
[103]
Timerbaev, A.R. Role of metallomic strategies in developing ruthenium anticancer drugs. Trends Analyt. Chem., 2016, 80, 547-554.
[http://dx.doi.org/10.1016/j.trac.2016.04.015]
[104]
Novak, M.S.; Büchel, G.E.; Keppler, B.K.; Jakupec, M.A. Biological properties of novel ruthenium- and osmium-nitrosyl complexes with azole heterocycles. J. Biol. Inorg. Chem., 2016, 21(3), 347-356.
[http://dx.doi.org/10.1007/s00775-016-1345-z] [PMID: 26961253]
[105]
Cabrera, A.R.; Espinosa-Bustos, C.; Faúndez, M.; Meléndez, J.; Jaque, P.; Daniliuc, C.G.; Aguirre, A.; Rojas, R.S.; Salas, C.O. New imidoyl-indazole platinum (II) complexes as potential anticancer agents: Synthesis, evaluation of cytotoxicity, cell death and experimental-theoretical DNA interaction studies. J. Inorg. Biochem., 2017, 174, 90-101.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.06.001] [PMID: 28648925]
[106]
Yoo, M.; Yoo, M.; Kim, J.E.; Lee, H.K.; Lee, C.O.; Park, C.H.; Jung, K.Y. Synthesis and biological evaluation of indazole-4,7-dione derivatives as novel BRD4 inhibitors. Arch. Pharm. Res., 2018, 41(1), 46-56.
[http://dx.doi.org/10.1007/s12272-017-0978-y] [PMID: 29103140]
[107]
Jiang, J.; Zhang, Q.; Guo, J.; Fang, S.; Zhou, R.; Zhu, J.; Chen, X.; Zhou, Y.; Zheng, C. Synthesis and biological evaluation of 7-methoxy-1-(3,4,5-trimethoxyphenyl)-4,5-dihydro-2H-benzo[e]indazoles as new colchicine site inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(18), 2632-2634.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.042] [PMID: 31362922]
[108]
Jiang, J.; Zhang, H.; Wang, C.; Zhang, Q.; Fang, S.; Zhou, R.; Hu, J.; Zhu, J.; Zhou, Y.; Luo, C.; Zheng, C. 1-Phenyl-dihydrobenzoindazoles as novel colchicine site inhibitors: Structural basis and antitumor efficacy. Eur. J. Med. Chem., 2019, 177, 448-456.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.040] [PMID: 31174062]
[109]
Cui, Y.J.; Ma, C.C.; Zhang, C.M.; Tang, L.Q.; Liu, Z.P. The discovery of novel indazole derivatives as tubulin colchicine site binding agents that displayed potent antitumor activity both in vitro and in vivo. Eur. J. Med. Chem., 2020, 187111968
[http://dx.doi.org/10.1016/j.ejmech.2019.111968] [PMID: 31865012]
[110]
Ahmed, R.I.; Osman, E.E.A.; Awadallah, F.M.; El-Moghazy, S.M. Design, synthesis and molecular docking of novel diarylcyclohexenone and diarylindazole derivatives as tubulin polymerization inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 176-188.
[http://dx.doi.org/10.1080/14756366.2016.1244532 PMID: 27771966]
[111]
Liu, J.; Wen, Y.; Gao, L.; Gao, L.; He, F.; Zhou, J.; Wang, J.; Dai, R.; Chen, X.; Kang, D.; Hu, L. Design, synthesis and biological evaluation of novel 1H-1,2,4-triazole, benzothiazole and indazole-based derivatives as potent FGFR1 inhibitors viafragment-based virtual screening. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 72-84.
[http://dx.doi.org/10.1080/14756366.2019.1673745 PMID: 31682465]
[112]
Tomassi, S.; Lategahn, J.; Engel, J.; Keul, M.; Tumbrink, H.L.; Ketzer, J.; Mühlenberg, T.; Baumann, M.; Schultz-Fademrecht, C.; Bauer, S.; Rauh, D. Indazole-based covalent inhibitors to target drug-resistant epidermal growth factor receptor. J. Med. Chem., 2017, 60(6), 2361-2372.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01626] [PMID: 28225269]
[113]
Liu, J.; Peng, X.; Dai, Y.; Zhang, W.; Ren, S.; Ai, J.; Geng, M.; Li, Y. Design, synthesis and biological evaluation of novel FGFR inhibitors bearing an indazole scaffold. Org. Biomol. Chem., 2015, 13(28), 7643-7654.
[http://dx.doi.org/10.1039/C5OB00778J] [PMID: 26080733]
[114]
Scott, J.S.; Bailey, A.; Buttar, D.; Carbajo, R.J.; Curwen, J.; Davey, P.R.J.; Davies, R.D.M.; Degorce, S.L.; Donald, C.; Gangl, E.; Greenwood, R.; Groombridge, S.D.; Johnson, T.; Lamont, S.; Lawson, M.; Lister, A.; Morrow, C.J.; Moss, T.A.; Pink, J.H.; Polanski, R. Tricyclic indazoles-A novel class of selective estrogen receptor degrader antagonists. J. Med. Chem., 2019, 62(3), 1593-1608.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01837] [PMID: 30640465]
[115]
Leo, V.; Stefanachi, A.; Nacci, C.; Leonetti, F.; de Candia, M.; Carotti, A.; Altomare, C.D.; Montagnani, M.; Cellamare, S. Galloyl benzamide-based compounds modulating tumour necrosis factor α-stimulated c-Jun N-terminal kinase and p38 mitogen-activated protein kinase signalling pathways. J. Pharm. Pharmacol., 2015, 67(10), 1380-1392.
[http://dx.doi.org/10.1111/jphp.12438] [PMID: 26078032]
[116]
Zhang, Z.; Zhao, D.; Dai, Y.; Cheng, M.; Geng, M.; Shen, J.; Ma, Y.; Ai, J.; Xiong, B. Design, synthesis and biological evaluation of 6-(2,6-dichloro-3,5-dimethoxyphenyl)-4-substituted-1H-indazoles as potent fibroblast growth factor receptor inhibitors. Molecules, 2016, 21(10)e1407
[http://dx.doi.org/10.3390/molecules21101407] [PMID: 27782099]
[117]
Tjin, C.C.; Wissner, R.F.; Jamali, H.; Schepartz, A.; Ellman, J.A. Synthesis and biological evaluation of an indazole-based selective protein arginine deiminase 4 (PAD4) inhibitor. ACS Med. Chem. Lett., 2018, 9(10), 1013-1018.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00283 PMID: 30344909]
[118]
Eddahmi, M.; Moura, N.M.M.; Bouissane, L.; Faustino, M.A.F.; Cavaleiro, J.A.S.; Paz, F.A.A.; Mendes, R.F.; Figueiredo, J.; Carvalho, J.; Cruz, C.; Neves, M.G.P.M.S.; Pakib, E.M. Synthesis and biological evaluation of new functionalized nitroindazolylacetonitrile derivatives. ChemistrySelect, 2019, 4, 14335-14342.
[http://dx.doi.org/10.1002/slct.201904344]
[119]
Molinari, A.; Oliva, A.; Arismendi-Macuer, M.; Guzmán, L.; Acevedo, W.; Aguayo, D.; Vinet, R.; San Feliciano, A. Antiproliferative benzoindazolequinones as potential cyclooxygenase-2 inhibitors. Molecules, 2019, 24(12)e2261
[http://dx.doi.org/10.3390/molecules24122261] [PMID: 31216654]
[120]
Cuartas, V.; Crespo, M.D.P.; Priego, E.M.; Persoons, L.; Daelemans, D.; Camarasa, M.J.; Insuasty, B.; Pérez-Pérez, M.J. Design and synthesis of new 6-nitro and 6-amino-3,3a,4,5-tetrahydro-2H-benzo[g]indazole derivatives: Antiproliferative and antibacterial activity. Molecules, 2019, 24(23)e4236
[http://dx.doi.org/10.3390/molecules24234236] [PMID: 31766444]
[121]
Raffa, D.; D’Anneo, A.; Plescia, F.; Daidone, G.; Lauricella, M.; Maggio, B. Novel 4-(3-phenylpropionamido), 4-(2-phenoxyacetamido) and 4-(cinnamamido) substituted benzamides bearing the pyrazole or indazole nucleus: synthesis, biological evaluation and mechanism of action. Bioorg. Chem., 2019, 83, 367-379.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.055] [PMID: 30408649]
[122]
Govek, S.P.; Bonnefous, C.; Julien, J.D.; Nagasawa, J.Y.; Kahraman, M.; Lai, A.G.; Douglas, K.L.; Aparicio, A.M.; Darimont, B.D.; Grillot, K.L.; Joseph, J.D.; Kaufman, J.A.; Lee, K.J.; Lu, N.; Moon, M.J.; Prudente, R.Y.; Sensintaffar, J.; Rix, P.J.; Hager, J.H.; Smith, N.D. Selective estrogen receptor degraders with novel structural motifs induce regression in a tamoxifen-resistant breast cancer xenograft. Bioorg. Med. Chem. Lett., 2019, 29(3), 367-372.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.042] [PMID: 30587451]
[123]
Mphahlele, M.J.; Magwaza, N.M.; Gildenhuys, S.; Setshedi, I.B. Synthesis, α-glucosidase inhibition and antioxidant activity of the 7-carbo-substituted 5-bromo-3-methylindazoles. Bioorg. Chem., 2020, 97103702
[http://dx.doi.org/10.1016/j.bioorg.2020.103702] [PMID: 32146175]
[124]
Sawant, A.S.; Kamble, S.S.; Pisal, P.M.; Meshram, R.J.; Sawant, S.S.; Kamble, V.A.; Kamble, V.T.; Gacche, R.N. Synthesis and evaluation of a novel series of 6-bromo-1-cyclopentyl-1H-indazole-4-carboxylic acid-substituted amide derivatives as anticancer, antiangiogenic, and antioxidant agents. Med. Chem. Res., 2020, 29(1), 17-32.
[http://dx.doi.org/10.1007/s00044-019-02454-x]
[125]
Lai, A.; Kahraman, M.; Govek, S.; Nagasawa, J.; Bonnefous, C.; Julien, J.; Douglas, K.; Sensintaffar, J.; Lu, N.; Lee, K.J.; Aparicio, A.; Kaufman, J.; Qian, J.; Shao, G.; Prudente, R.; Moon, M.J.; Joseph, J.D.; Darimont, B.; Brigham, D.; Grillot, K.; Heyman, R.; Rix, P.J.; Hager, J.H.; Smith, N.D. Identification of GDC-0810 (ARN-810), an orally bioavailable selective estrogen receptor degrader (SERD) that demonstrates robust activity in tamoxifen-resistant breast cancer xenografts. J. Med. Chem., 2015, 58(12), 4888-4904.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00054] [PMID: 25879485]
[126]
Hou, H.H.; Jia, W.; Liu, L.; Cheeti, S.; Li, J.; Nauka, E.; Nagapudi, K. Effect of microenvironmental pH modulation on the dissolution rate and oral absorption of the salt of a weak acid-case study of GDC-0810. Pharm. Res., 2018, 35(2), 37.
[http://dx.doi.org/10.1007/s11095-018-2347-z] [PMID: 29380076]
[127]
Liu, L.; Cheeti, S.; Yoshida, K.; Choo, E.; Chen, E.; Chen, B.; Gates, M.; Singel, S.; Morley, R.; Ware, J.; Sahasranaman, S. Effect of OATP1B1/1B3 inhibitor GDC-0810 on the pharmacokinetics of pravastatin and coproporphyrin I/III in healthy female subjects. J. Clin. Pharmacol., 2018, 58(11), 1427-1435.
[http://dx.doi.org/10.1002/jcph.1261] [PMID: 29786857]
[128]
Cheung, K.W.K.; Yoshida, K.; Cheeti, S.; Chen, B.; Morley, R.; Chan, I.T.; Sahasranaman, S.; Liu, L. GDC-0810 pharmacokinetics and transporter-mediated drug interaction evaluation with an endogenous biomarker in the first-in-human, dose escalation study. Drug Metab. Dispos., 2019, 47(9), 966-973.
[http://dx.doi.org/10.1124/dmd.119.087924] [PMID: 31266752]