Chronobiology and Chronotherapy in Depression: Current Knowledge and Chronotherapeutic Promises

Page: [179 - 193] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Depression is a heavily prevalent mental disorder. Symptoms of depression extend beyond mood, cognition, and behavior to include a spectrum of somatic manifestations in all organic systems. Changes in sleep and neuroendocrine rhythms are especially prominent, and disruptions of circadian rhythms have been closely related to the neurobiology of depression. With the advent of increased research in chronobiology, various pathophysiologic mechanisms have been proposed, including anomalies of sleep architecture, the effects of clock gene polymorphisms in monoamine metabolism, and the deleterious impact of social zeitgebers. The identification of these chronodisruptions has propelled the emergence of several chronotherapeutic strategies, both pharmacological and non-pharmacological, with varying degrees of clinical evidence.

Methods: The fundamental objective of this review is to integrate current knowledge about the role of chronobiology and depression and to summarize the interventions developed to resynchronize biorhythms both within an individual and with geophysical time.

Results: We have found that among the non-pharmacological alternatives, triple chronotherapywhich encompasses bright light therapy, sleep deprivation therapy, and consecutive sleep phase advance therapy-has garnered the most considerable scientific interest. On the other hand, agomelatine appears to be the most promising pharmacological option, given its unique melatonergic pharmacodynamics.

Conclusion: Research in chronotherapy as a treatment for depression is currently booming. Novel interventions could play a significant role in adopting new options for the treatment of depression, with Tripe Cronotherapy standing out as the most promising treatment.

Keywords: Depression, chronobiology, chronotherapy, chronodisruption, agomelatine, sleep.

Graphical Abstract

[1]
Ng CWM, How CH, Ng YP. Major depression in primary care: making the diagnosis. Singapore Med J 2016; 57(11): 591-7.
[http://dx.doi.org/10.11622/smedj.2016174 ] [PMID: 27872937]
[2]
Salgado-Delgado R, Tapia Osorio A, Saderi N, Escobar C. Disruption of circadian rhythms: a crucial factor in the etiology of depression. Depress Res Treat 2011; 2011839743
[http://dx.doi.org/10.1155/2011/839743 ] [PMID: 21845223]
[3]
World Health Organization Depression and Other Common Mental DisordersAvailable at: http://www.who.int/mental_health/management/depression/prevalence_global_health_estimates/en/
[4]
Larios J, Laborde C, Gaviria S. M, Lastre G. Caracterización de Factores de Riesgo Psicosociales Que Inciden En Trastorno Depresivo Mayor En. Adolescentes Cienc Innov Salud 2017; 4(2): 1-8.
[5]
Vera K, Anguisaca K, Davila M, et al. Obesidad en los pacientes con trastornos mentales: aspectos epidemiológicos, etiológicos y prácticos. Rev Latinoam Hipertens 2019; 14(2): 155-9.
[6]
Solimany F, Mohammadi E, Omidfar F. Comparison of cognitive abilities, depression and anxiety of type II diabetic patients with healthy individuals in Isfahan Province in 2015. Rev Latinoam Hipertens 2018; 13(3): 297-304.
[7]
Veintimilla P, Guamán M, Guamán R, et al. Relación entre el grado de severidad de la psoriasis y la depresión. AVFT 2017; 36(6): 153-7.
[8]
Berenzon S, Lara MA, Robles R, Medina-Mora ME. Depresión: estado del conocimiento y la necesidad de políticas públicas y planes de acción en México. Salud Publica Mex 2013; 55(1): 74-80.
[http://dx.doi.org/10.1590/S0036-36342013000100011 ] [PMID: 23370261]
[9]
Hernández GO, Torres SK, Ávila CE, Livingston CJ, Pinzón MM. Consumos y costos de medicamentos: herramienta para la gestión de suministro del servicio farmacéuticoCienc innov salud 2015; 3(1): 45-52.
[10]
De La Cruz Vargas J A, Dos Santos F, Dyzinger W, Herzog S. Medicina del estilo de vida: trabajando juntos para revertir la epidemia de las enfermedades crónicas en latinoaméricaCienc innov salud 2017; 4(2): 1-7.
[11]
Chávez-Castillo M, Núñez V, Nava M, et al. Depression as a neuroendocrine disorder: emerging neuropsychopharmacological approaches beyond monoamines. Adv Pharmacol Sci 2019; 2019(1)7943481
[http://dx.doi.org/10.1155/2019/7943481 ] [PMID: 30719038]
[12]
Chávez-Castillo M, Nava M, Ortega Á, et al. Depression as an immunometabolic disorder: exploring shared pharmacotherapeutics with cardiovascular disease. Curr Neuropharmacol 2020; 18(11): 1138-53.
[http://dx.doi.org/10.2174/1570159X18666200413144401 ] [PMID: 32282306]
[13]
Vera K, Davila M, Gusqui I, Anguisaca K, Lopez M, Salazar R. Función tiroidea y trastornos mentales: una relación subestimada. AVFT 2017; 36(6): 63-7.
[14]
Hasler G. Pathophysiology of depression: do we have any solid evidence of interest to clinicians? World Psych 2010; 9(3): 155-61.
[http://dx.doi.org/10.1002/j.2051-5545.2010.tb00298.x ] [PMID: 20975857]
[15]
Kuhlman SJ, Craig LM, Duffy JF. Introduction to Chronobiology. Cold Spring Harb Perspect Biol 2018; 10(9)a033613
[http://dx.doi.org/10.1101/cshperspect.a033613 ] [PMID: 29038118]
[16]
Jones SG, Benca RM. Circadian Disruption in psychiatric disorders. Sleep Med Clin 2015; 10(4): 481-93.
[http://dx.doi.org/10.1016/j.jsmc.2015.07.004 ] [PMID: 26568124]
[17]
Davies KJA. Adaptive homeostasis. Mol Aspects Med 2016; 49: 1-7.
[http://dx.doi.org/10.1016/j.mam.2016.04.007 ] [PMID: 27112802]
[18]
Modell H, Cliff W, Michael J, McFarland J, Wenderoth MP, Wright A. A physiologist’s view of homeostasis. Adv Physiol Educ 2015; 39(4): 259-66.
[http://dx.doi.org/10.1152/advan.00107.2015 ] [PMID: 26628646]
[19]
Xie Y, Tang Q, Chen G, et al. New insights into the circadian rhythm and its related diseases. Front Physiol 2019; 10: 682.
[http://dx.doi.org/10.3389/fphys.2019.00682 ] [PMID: 31293431]
[20]
Fuhr L, Abreu M, Pett P, Relógio A. Circadian systems biology: When time matters. Comput Struct Biotechnol J 2015; 13: 417-26.
[http://dx.doi.org/10.1016/j.csbj.2015.07.001 ] [PMID: 26288701]
[21]
Mermet J, Yeung J, Naef F. Systems chronobiology: global analysis of gene regulation in a 24-hour periodic world. Cold Spring Harb Perspect Biol 2017; 9(3): 1-16.
[http://dx.doi.org/10.1101/cshperspect.a028720 ] [PMID: 27920039]
[22]
Wirz-Justice A. Chronobiology comes of age. Acta Psychiatr Scand 2017; 136(6): 531-3.
[http://dx.doi.org/10.1111/acps.12828 ] [PMID: 29069527]
[23]
Bass J. Circadian topology of metabolism. Nature 2012; 491(7424): 348-56.
[http://dx.doi.org/10.1038/nature11704 ] [PMID: 23151577]
[24]
Ángeles-Castellanos M, Rodríguez K, Salgado R, Escobar C. Cronobiología médica. Fisiología y fisiopatología de los ritmos biológicos. Rev Fac Med UNAM 2007; 50(6): 238-41.
[25]
Bollinger T, Schibler U. Circadian rhythms - from genes to physiology and disease Swiss Med Wkly 2014.144w13984..
[http://dx.doi.org/10.4414/smw.2014.13984] [PMID: 25058693]
[26]
McKenna HT, Reiss IK, Martin DS. The significance of circadian rhythms and dysrhythmias in critical illness. J Intensive Care Soc 2017; 18(2): 121-9.
[http://dx.doi.org/10.1177/1751143717692603 ] [PMID: 28979558]
[27]
Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 2010; 72: 517-49.
[http://dx.doi.org/10.1146/annurev-physiol-021909-135821 ] [PMID: 20148687]
[28]
Golombek DA, Rosenstein RE. Physiology of circadian entrainment. Physiol Rev 2010; 90(3): 1063-102.
[http://dx.doi.org/10.1152/physrev.00009.2009 ] [PMID: 20664079]
[29]
Wright KP Jr, McHill AW, Birks BR, Griffin BR, Rusterholz T, Chinoy ED. Entrainment of the human circadian clock to the natural light-dark cycle. Curr Biol 2013; 23(16): 1554-8.
[http://dx.doi.org/10.1016/j.cub.2013.06.039 ] [PMID: 23910656]
[30]
Germain A, Kupfer DJ. Circadian rhythm disturbances in depression. Hum Psychopharmacol 2008; 23(7): 571-85.
[http://dx.doi.org/10.1002/hup.964 ] [PMID: 18680211]
[31]
Rosenwasser AM, Turek FW. Neurobiology of circadian rhythm regulation. Sleep Med Clin 2015; 10(4): 403-12.
[http://dx.doi.org/10.1016/j.jsmc.2015.08.003 ] [PMID: 26568118]
[32]
Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 2010; 72: 551-77.
[http://dx.doi.org/10.1146/annurev-physiol-021909-135919 ] [PMID: 20148688]
[33]
Varadarajan S, Tajiri M, Jain R, et al. Connectome of the Suprachiasmatic Nucleus: New Evidence of the Core-Shell Relationship eNeuro 2018; 5(5)ENEURO.0205-18.2018..
[http://dx.doi.org/10.1523/ENEURO.0205-18.2018] [PMID: 30283813]
[34]
Reghunandanan V, Reghunandanan R. Neurotransmitters of the suprachiasmatic nuclei. J Circadian Rhythms 2006; 4: 2.
[http://dx.doi.org/10.1186/1740-3391-4-2 ] [PMID: 16480518]
[35]
Goel N, Basner M, Rao H, Dinges DF. Circadian rhythms, sleep deprivation, and human performance. Prog Mol Biol Transl Sci 2013; 119: 155-90.
[http://dx.doi.org/10.1016/B978-0-12-396971-2.00007-5 ] [PMID: 23899598]
[36]
Gerber A, Saini C, Curie T, et al. The systemic control of circadian gene expression. Diabetes Obes Metab 2015; 17(Suppl. 1): 23-32.
[http://dx.doi.org/10.1111/dom.12512 ] [PMID: 26332965]
[37]
Husse J, Leliavski A, Tsang AH, Oster H, Eichele G. The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock. FASEB J 2014; 28(11): 4950-60.
[http://dx.doi.org/10.1096/fj.14-256594 ] [PMID: 25063847]
[38]
Charrier A, Olliac B, Roubertoux P, Tordjman S. Clock genes and altered sleep-wake rhythms: their role in the development of psychiatric disorders. Int J Mol Sci 2017; 18(5): 938.
[http://dx.doi.org/10.3390/ijms18050938 ] [PMID: 28468274]
[39]
Evans JA. Collective timekeeping among cells of the master circadian clock. J Endocrinol 2016; 230(1): R27-49.
[http://dx.doi.org/10.1530/JOE-16-0054 ] [PMID: 27154335]
[40]
Herzog ED, Hermanstyne T, Smyllie NJ, Hastings MH. Regulating the Suprachiasmatic Nucleus (SCN) Circadian Clockwork: interplay between cell-autonomous and circuit-level mechanisms. Cold Spring Harb Perspect Biol 2017; 9(1)a027706
[http://dx.doi.org/10.1101/cshperspect.a027706 ] [PMID: 28049647]
[41]
Honma S. The mammalian circadian system: a hierarchical multi-oscillator structure for generating circadian rhythm. J Physiol Sci 2018; 68(3): 207-19.
[http://dx.doi.org/10.1007/s12576-018-0597-5 ] [PMID: 29460036]
[42]
Meijer JH, Michel S. Neurophysiological analysis of the suprachiasmatic nucleus: a challenge at multiple levels. Methods Enzymol 2015; 552: 75-102.
[http://dx.doi.org/10.1016/bs.mie.2014.11.001 ] [PMID: 25707273]
[43]
Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 2012; 35: 445-62.
[http://dx.doi.org/10.1146/annurev-neuro-060909-153128 ] [PMID: 22483041]
[44]
Hirota T, Fukada Y. Resetting mechanism of central and peripheral circadian clocks in mammals. Zool Sci 2004; 21(4): 359-68.
[http://dx.doi.org/10.2108/zsj.21.359 ] [PMID: 15118222]
[45]
Evans JA, Gorman MR. In synch but not in step: Circadian clock circuits regulating plasticity in daily rhythms. Neuroscience 2016; 320: 259-80.
[http://dx.doi.org/10.1016/j.neuroscience.2016.01.072 ] [PMID: 26861419]
[46]
Bedont JL, Blackshaw S. Constructing the suprachiasmatic nucleus: a watchmaker’s perspective on the central clockworks. Front Syst Neurosci 2015; 9: 74.
[http://dx.doi.org/10.3389/fnsys.2015.00074 ] [PMID: 26005407]
[47]
Lee B, Li A, Hansen KF, Cao R, Yoon JH, Obrietan K. CREB influences timing and entrainment of the SCN circadian clock. J Biol Rhythms 2010; 25(6): 410-20.
[http://dx.doi.org/10.1177/0748730410381229 ] [PMID: 21135157]
[48]
Hanna L, Walmsley L, Pienaar A, Howarth M, Brown TM. Geniculohypothalamic GABAergic projections gate suprachiasmatic nucleus responses to retinal input. J Physiol 2017; 595(11): 3621-49.
[http://dx.doi.org/10.1113/JP273850 ] [PMID: 28217893]
[49]
Atger F, Mauvoisin D, Weger B, Gobet C, Gachon F. Regulation of mammalian physiology by interconnected circadian and feeding rhythms. Front Endocrinol (Lausanne) 2017; 8: 42.
[http://dx.doi.org/10.3389/fendo.2017.00042 ] [PMID: 28337174]
[50]
Belle MDC. Circadian tick-talking across the neuroendocrine system and suprachiasmatic nuclei circuits: the enigmatic communication between the molecular and electrical membrane clocks. J Neuroendocrinol 2015; 27(7): 567-76.
[http://dx.doi.org/10.1111/jne.12279 ] [PMID: 25845396]
[51]
Guadarrama-Ortiz P, Ramírez-Aguilar R, Madrid-Sánchez A, Castillo-Rangel C, Carrasco-Alcántara D, Aguilar-Roblero R. Aging process entrainment: suprachiasmatic nucleus and pineal gland. Int J Morphol 2014; 32(2): 409-14.
[http://dx.doi.org/10.4067/S0717-95022014000200004]
[52]
Borjigin J, Zhang LS, Calinescu A-A. Circadian regulation of pineal gland rhythmicity. Mol Cell Endocrinol 2012; 349(1): 13-9.
[http://dx.doi.org/10.1016/j.mce.2011.07.009 ] [PMID: 21782887]
[53]
Pevet P, Challet E. Melatonin: both master clock output and internal time-giver in the circadian clocks network. J Physiol Paris 2011; 105(4-6): 170-82.
[http://dx.doi.org/10.1016/j.jphysparis.2011.07.001 ] [PMID: 21914478]
[54]
Brown SA, Azzi A. Peripheral circadian oscillators in mammals. Handb Exp Pharmacol 2013; (217): 45-66.
[http://dx.doi.org/10.1007/978-3-642-25950-0_3 ] [PMID: 23604475]
[55]
Schibler U, Gotic I, Saini C, et al. Clock-talk: interactions between central and peripheral circadian oscillators in mammals. Cold Spring Harb Symp Quant Biol 2015; 80: 223-32.
[http://dx.doi.org/10.1101/sqb.2015.80.027490 ] [PMID: 26683231]
[56]
Liu Z, Chu G. Chronobiology in mammalian health. Mol Biol Rep 2013; 40(3): 2491-501.
[http://dx.doi.org/10.1007/s11033-012-2330-4 ] [PMID: 23224435]
[57]
Rivera-Estrada D, Aguilar-Roblero R, Alva-Sánchez C, Villanueva I. The homeostatic feeding response to fasting is under chronostatic control. Chronobiol Int 2018; 35(12): 1680-8.
[http://dx.doi.org/10.1080/07420528.2018.1507036 ] [PMID: 30095282]
[58]
Schmutz I, Albrecht U, Ripperger JA. The role of clock genes and rhythmicity in the liver. Mol Cell Endocrinol 2012; 349(1): 38-44.
[http://dx.doi.org/10.1016/j.mce.2011.05.007 ] [PMID: 21664421]
[59]
Inder ML, Crowe MT, Porter R. Effect of transmeridian travel and jetlag on mood disorders: evidence and implications. Aust N Z J Psychiatry 2016; 50(3): 220-7.
[http://dx.doi.org/10.1177/0004867415598844 ] [PMID: 26268923]
[60]
Reyes A, Huailas W, Naranjo R, et al. Cambios cardiometabólicos en trabajadores del área de la salud: papel de la disrupción del sueño. Rev Latinoam Hipertens 2019; 14(2): 230-6.
[61]
Scott J. Clinical parameters of circadian rhythms in affective disorders. Eur Neuropsychopharmacol 2011; 21(Suppl. 4): S671-5.
[http://dx.doi.org/10.1016/j.euroneuro.2011.07.006 ] [PMID: 21852075]
[62]
Reid KJ, Abbott SM. Jet lag and shift work disorder. Sleep Med Clin 2015; 10(4): 523-35.
[http://dx.doi.org/10.1016/j.jsmc.2015.08.006 ] [PMID: 26568127]
[63]
Angerer P, Schmook R, Elfantel I, Li J. Night work and the risk of depression. Dtsch Arztebl Int 2017; 114(24): 404-11.
[PMID: 28669378]
[64]
Reynolds CF III, O’Hara R. DSM-5 sleep-wake disorders classification: overview for use in clinical practice. Am J Psychiatry 2013; 170(10): 1099-101.
[http://dx.doi.org/10.1176/appi.ajp.2013.13010058 ] [PMID: 24084814]
[65]
Chellappa SL, Schröder C, Cajochen C. Chronobiology, excessive daytime sleepiness and depression: is there a link? Sleep Med 2009; 10(5): 505-14.
[http://dx.doi.org/10.1016/j.sleep.2008.05.010 ] [PMID: 18824409]
[66]
Vadnie CA, McClung CA. Circadian rhythm disturbances in mood disorders: insights into the role of the suprachiasmatic nucleus. Neural Plast 2017; 20171504507
[http://dx.doi.org/10.1155/2017/1504507 ] [PMID: 29230328]
[67]
Álamo C, López-Muñoz F. Depresión y ritmos circadianos: relación farmacológica. El papel de la agomelatina. Rev Psiquiatr Salud Ment 2010; 3: 2-11.
[http://dx.doi.org/10.1016/S1888-9891(10)70008-2]
[68]
Wulff K, Gatti S, Wettstein JG, Foster RG. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci 2010; 11(8): 589-99.
[http://dx.doi.org/10.1038/nrn2868 ] [PMID: 20631712]
[69]
Bechtel W. Circadian rhythms and mood disorders: are the phenomena and mechanisms causally related? Front Psychiatry 2015; 6: 118.
[http://dx.doi.org/10.3389/fpsyt.2015.00118 ] [PMID: 26379559]
[70]
Turek FW. From circadian rhythms to clock genes in depression. Int Clin Psychopharmacol 2007; 22(Suppl. 2): S1-8.
[http://dx.doi.org/10.1097/01.yic.0000277956.93777.6a ] [PMID: 17917561]
[71]
Wirz-Justice A. Chronobiology and mood disorders. Dialogues Clin Neurosci 2003; 5(4): 315-25.
[PMID: 22033593]
[72]
Wehr TA, Wirz-Justice A, Goodwin FK, Duncan W, Gillin JC. Phase advance of the circadian sleep-wake cycle as an antidepressant. Science 1979; 206(4419): 710-3.
[http://dx.doi.org/10.1126/science.227056 ] [PMID: 227056]
[73]
Borbély AA. The S-deficiency hypothesis of depression and the two-process model of sleep regulation. Pharmacopsychiatry 1987; 20(1): 23-9.
[http://dx.doi.org/10.1055/s-2007-1017069 ] [PMID: 3823126]
[74]
Borbély AA, Daan S, Wirz-Justice A, Deboer T. The two-process model of sleep regulation: a reappraisal. J Sleep Res 2016; 25(2): 131-43.
[http://dx.doi.org/10.1111/jsr.12371 ] [PMID: 26762182]
[75]
Wirz-Justice A. Biological rhythm disturbances in mood disorders. Int Clin Psychopharmacol 2006; 21(Suppl. 1): S11-5.
[http://dx.doi.org/10.1097/01.yic.0000195660.37267.cf ] [PMID: 16436934]
[76]
Zaki NFW, Spence DW. BaHammam AS, Pandi-Perumal SR, Cardinali DP, Brown GM. Chronobiological theories of mood disorder. Eur Arch Psychiatry Clin Neurosci 2018; 268(2): 107-18.
[http://dx.doi.org/10.1007/s00406-017-0835-5 ] [PMID: 28894915]
[77]
Hoffmann R, Hendrickse W, Rush AJ, Armitage R. Slow-wave activity during non-REM sleep in men with schizophrenia and major depressive disorders. Psychiatry Res 2000; 95(3): 215-25.
[http://dx.doi.org/10.1016/S0165-1781(00)00181-5 ] [PMID: 10974360]
[78]
Goldschmied JR, Cheng P, Hoffmann R, Boland EM, Deldin PJ, Armitage R. Effects of slow-wave activity on mood disturbance in major depressive disorder. Psychol Med 2019; 49(4): 639-45.
[http://dx.doi.org/10.1017/S0033291718001332 ] [PMID: 29807554]
[79]
Franken P. A role for clock genes in sleep homeostasis. Curr Opin Neurobiol 2013; 23(5): 864-72.
[http://dx.doi.org/10.1016/j.conb.2013.05.002 ] [PMID: 23756047]
[80]
Schuch JB, Genro JP, Bastos CR, Ghisleni G, Tovo-Rodrigues L. The role of CLOCK gene in psychiatric disorders: Evidence from human and animal research. Am J Med Genet B Neuropsychiatr Genet 2018; 177(2): 181-98.
[http://dx.doi.org/10.1002/ajmg.b.32599 ] [PMID: 28902457]
[81]
Kennaway DJ. Clock genes at the heart of depression. J Psychopharmacol 2010; 24(2)(Suppl.): 5-14.
[http://dx.doi.org/10.1177/1359786810372980 ] [PMID: 20663803]
[82]
Etain B, Milhiet V, Bellivier F, Leboyer M. Genetics of circadian rhythms and mood spectrum disorders. Eur Neuropsychopharmacol 2011; 21(Suppl. 4): S676-82.
[http://dx.doi.org/10.1016/j.euroneuro.2011.07.007 ] [PMID: 21835597]
[83]
Valenzuela FJ, Vera J, Venegas C, et al. Evidences of polymorphism associated with circadian system and risk of pathologies: a review of the literature. Int J Endocrinol 2016; 20162746909
[http://dx.doi.org/10.1155/2016/2746909 ] [PMID: 27313610]
[84]
Soria V, Martínez-Amorós E, Escaramís G, et al. Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology 2010; 35(6): 1279-89.
[http://dx.doi.org/10.1038/npp.2009.230 ] [PMID: 20072116]
[85]
Jagannath A, Taylor L, Wakaf Z, Vasudevan SR, Foster RG. The genetics of circadian rhythms, sleep and health. Hum Mol Genet 2017; 26(R2): R128-38.
[http://dx.doi.org/10.1093/hmg/ddx240 ] [PMID: 28977444]
[86]
Li JZ, Bunney BG, Meng F, et al. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci USA 2013; 110(24): 9950-5.
[http://dx.doi.org/10.1073/pnas.1305814110 ] [PMID: 23671070]
[87]
McCarthy MJ, Welsh DK. Cellular circadian clocks in mood disorders. J Biol Rhythms 2012; 27(5): 339-52.
[http://dx.doi.org/10.1177/0748730412456367 ] [PMID: 23010657]
[88]
Wirz-Justice A. Circadian rhythms in mammalian neurotransmitter receptors. Prog Neurobiol 1987; 29(3): 219-59.
[http://dx.doi.org/10.1016/0301-0082(87)90022-0 ] [PMID: 3037606]
[89]
Hampp G, Ripperger JA, Houben T, et al. Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr Biol 2008; 18(9): 678-83.
[http://dx.doi.org/10.1016/j.cub.2008.04.012 ] [PMID: 18439826]
[90]
Bussi IL, Levín G, Golombek DA, Agostino PV. Involvement of dopamine signaling in the circadian modulation of interval timing. Eur J Neurosci 2014; 40(1): 2299-310.
[http://dx.doi.org/10.1111/ejn.12569 ] [PMID: 24689904]
[91]
Kim M, de la Peña JB, Cheong JH, Kim HJ. Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2. Biomol Ther (Seoul) 2018; 26(4): 358-67.
[http://dx.doi.org/10.4062/biomolther.2017.131 ] [PMID: 29223143]
[92]
Albrecht U. Circadian clocks and mood-related behaviors. Handb Exp Pharmacol 2013; (217): 227-39.
[http://dx.doi.org/10.1007/978-3-642-25950-0_9 ] [PMID: 23604481]
[93]
Shumay E, Fowler JS, Wang G-J, et al. Repeat variation in the human PER2 gene as a new genetic marker associated with cocaine addiction and brain dopamine D2 receptor availability. Transl Psychiatry 2012; 2e86
[http://dx.doi.org/10.1038/tp.2012.11 ] [PMID: 22832851]
[94]
Caldelas I, Challet E, Saboureau M, Pevet P. Light and melatonin inhibit in vivo serotonergic phase advances without altering serotonergic-induced decrease of per expression in the hamster suprachiasmatic nucleusJMN 2005; 25(1): 053-64.
[95]
Horikawa K, Yokota S, Fuji K, et al. Nonphotic entrainment by 5-HT1A/7 receptor agonists accompanied by reduced Per1 and Per2 mRNA levels in the suprachiasmatic nuclei. J Neurosci 2000; 20(15): 5867-73.
[http://dx.doi.org/10.1523/JNEUROSCI.20-15-05867.2000 ] [PMID: 10908630]
[96]
Cuesta M, Clesse D, Pévet P, Challet E. New light on the serotonergic paradox in the rat circadian system. J Neurochem 2009; 110(1): 231-43.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06128.x ] [PMID: 19457131]
[97]
Morin LP. Serotonin and the regulation of mammalian circadian rhythmicity. Ann Med 1999; 31(1): 12-33.
[http://dx.doi.org/10.3109/07853899909019259 ] [PMID: 10219711]
[98]
Ehlers CL, Frank E, Kupfer DJ. Social zeitgebers and biological rhythms. A unified approach to understanding the etiology of depression. Arch Gen Psychiatry 1988; 45(10): 948-52.
[http://dx.doi.org/10.1001/archpsyc.1988.01800340076012 ] [PMID: 3048226]
[99]
Grandin LD, Alloy LB, Abramson LY. The social zeitgeber theory, circadian rhythms, and mood disorders: review and evaluation. Clin Psychol Rev 2006; 26(6): 679-94.
[http://dx.doi.org/10.1016/j.cpr.2006.07.001 ] [PMID: 16904251]
[100]
Gandhi AV, Mosser EA, Oikonomou G, Prober DA. Melatonin is required for the circadian regulation of sleep. Neuron 2015; 85(6): 1193-9.
[http://dx.doi.org/10.1016/j.neuron.2015.02.016 ] [PMID: 25754820]
[101]
Touitou Y, Touitou D, Reinberg A. Disruption of adolescents’ circadian clock: the vicious circle of media use, exposure to light at night, sleep loss and risk behaviors. J Physiol Paris 2016; 110(4 Pt B): 467-79.
[http://dx.doi.org/10.1016/j.jphysparis.2017.05.001 ] [PMID: 28487255]
[102]
Fonken LK, Nelson RJ. The effects of light at night on circadian clocks and metabolism. Endocr Rev 2014; 35(4): 648-70.
[http://dx.doi.org/10.1210/er.2013-1051 ] [PMID: 24673196]
[103]
Lunn RM, Blask DE, Coogan AN, et al. Health consequences of electric lighting practices in the modern world: a report on the National Toxicology Program’s workshop on shift work at night, artificial light at night, and circadian disruption. Sci Total Environ 2017; 607-608: 1073-84.
[http://dx.doi.org/10.1016/j.scitotenv.2017.07.056 ] [PMID: 28724246]
[104]
Haynes PL, Gengler D, Kelly M. Social rhythm therapies for mood disorders: an update. Curr Psychiatry Rep 2016; 18(8): 75.
[http://dx.doi.org/10.1007/s11920-016-0712-3 ] [PMID: 27338753]
[105]
Miklowitz DJ, Otto MW, Frank E, et al. Psychosocial treatments for bipolar depression: a 1-year randomized trial from the systematic treatment enhancement program. Arch Gen Psychiatry 2007; 64(4): 419-26.
[http://dx.doi.org/10.1001/archpsyc.64.4.419 ] [PMID: 17404119]
[106]
Frank E, Kupfer DJ, Thase ME, et al. Two-year outcomes for interpersonal and social rhythm therapy in individuals with bipolar I disorder. Arch Gen Psychiatry 2005; 62(9): 996-1004.
[http://dx.doi.org/10.1001/archpsyc.62.9.996 ] [PMID: 16143731]
[107]
Inder ML, Crowe MT, Luty SE, et al. Randomized, controlled trial of interpersonal and social rhythm therapy for young people with bipolar disorder. Bipolar Disord 2015; 17(2): 128-38.
[http://dx.doi.org/10.1111/bdi.12273 ] [PMID: 25346391]
[108]
Hlastala SA, Kotler JS, McClellan JM, McCauley EA. Interpersonal and social rhythm therapy for adolescents with bipolar disorder: treatment development and results from an open trial. Depress Anxiety 2010; 27(5): 457-64.
[http://dx.doi.org/10.1002/da.20668 ] [PMID: 20186968]
[109]
Hoberg AA, Ponto J, Nelson PJ, Frye MA. Group interpersonal and social rhythm therapy for bipolar depression. Perspect Psychiatr Care 2013; 49(4): 226-34.
[http://dx.doi.org/10.1111/ppc.12008 ] [PMID: 25187443]
[110]
Bouwkamp CG, de Kruiff ME, van Troost TM, et al. Interpersonal and social rhythm group therapy for patients with bipolar disorder. Int J Group Psychother 2013; 63(1): 97-115.
[http://dx.doi.org/10.1521/ijgp.2013.63.1.97 ] [PMID: 23252817]
[111]
Swartz HA, Frank E, Cheng Y. A randomized pilot study of psychotherapy and quetiapine for the acute treatment of bipolar II depression. Bipolar Disord 2012; 14(2): 211-6.
[http://dx.doi.org/10.1111/j.1399-5618.2012.00988.x ] [PMID: 22420597]
[112]
Flory R, Ametepe J, Bowers B. A randomized, placebo-controlled trial of bright light and high-density negative air ions for treatment of seasonal affective disorder. Psychiatry Res 2010; 177(1-2): 101-8.
[http://dx.doi.org/10.1016/j.psychres.2008.08.011 ] [PMID: 20381162]
[113]
Rohan KJ, Mahon JN, Evans M, et al. Randomized trial of cognitive-behavioral therapy versus light therapy for seasonal affective disorder: acute outcomes. Am J Psychiatry 2015; 172(9): 862-9.
[http://dx.doi.org/10.1176/appi.ajp.2015.14101293 ] [PMID: 25859764]
[114]
Reeves GM, Nijjar GV, Langenberg P, et al. Improvement in depression scores after 1 hour of light therapy treatment in patients with seasonal affective disorder. J Nerv Ment Dis 2012; 200(1): 51-5.
[http://dx.doi.org/10.1097/NMD.0b013e31823e56ca ] [PMID: 22210362]
[115]
Terman M, Terman JS, Ross DC. A controlled trial of timed bright light and negative air ionization for treatment of winter depression. Arch Gen Psychiatry 1998; 55(10): 875-82.
[http://dx.doi.org/10.1001/archpsyc.55.10.875 ] [PMID: 9783557]
[116]
Wirz-Justice A, Benedetti F, Berger M, et al. Chronotherapeutics (light and wake therapy) in affective disorders. Psychol Med 2005; 35(7): 939-44.
[http://dx.doi.org/10.1017/S003329170500437X ] [PMID: 16045060]
[117]
Terman JS, Terman M, Lo ES, Cooper TB. Circadian time of morning light administration and therapeutic response in winter depression. Arch Gen Psychiatry 2001; 58(1): 69-75.
[http://dx.doi.org/10.1001/archpsyc.58.1.69 ] [PMID: 11146760]
[118]
Wirz-Justice A, Bader A, Frisch U, et al. A randomized, double-blind, placebo-controlled study of light therapy for antepartum depression. J Clin Psychiatry 2011; 72(7): 986-93.
[http://dx.doi.org/10.4088/JCP.10m06188blu ] [PMID: 21535997]
[119]
Oren DA, Wisner KL, Spinelli M, et al. An open trial of morning light therapy for treatment of antepartum depression. Am J Psychiatry 2002; 159(4): 666-9.
[http://dx.doi.org/10.1176/appi.ajp.159.4.666 ] [PMID: 11925310]
[120]
Bais B, Kamperman AM, van der Zwaag MD, et al. Bright light therapy in pregnant women with major depressive disorder: study protocol for a randomized, double-blind, controlled clinical trial. BMC Psychiatry 2016; 16(1): 381.
[http://dx.doi.org/10.1186/s12888-016-1092-2 ] [PMID: 27821114]
[121]
Epperson CN, Terman M, Terman JS, et al. Randomized clinical trial of bright light therapy for antepartum depression: preliminary findings. J Clin Psychiatry 2004; 65(3): 421-5.
[http://dx.doi.org/10.4088/JCP.v65n0319 ] [PMID: 15096083]
[122]
Corral M, Wardrop AA, Zhang H, Grewal AK, Patton S. Morning light therapy for postpartum depression. Arch Women Ment Health 2007; 10(5): 221-4.
[http://dx.doi.org/10.1007/s00737-007-0200-1 ] [PMID: 17701271]
[123]
Crowley SK, Youngstedt SD. Efficacy of light therapy for perinatal depression: a review. J Physiol Anthropol 2012; 31: 15.
[http://dx.doi.org/10.1186/1880-6805-31-15 ] [PMID: 22738716]
[124]
Even C, Schröder CM, Friedman S, Rouillon F. Efficacy of light therapy in nonseasonal depression: a systematic review. J Affect Disord 2008; 108(1-2): 11-23.
[http://dx.doi.org/10.1016/j.jad.2007.09.008 ] [PMID: 17950467]
[125]
Lieverse R, Van Someren EJW, Nielen MMA, Uitdehaag BMJ, Smit JH, Hoogendijk WJG. Bright light treatment in elderly patients with nonseasonal major depressive disorder: a randomized placebo-controlled trial. Arch Gen Psychiatry 2011; 68(1): 61-70.
[http://dx.doi.org/10.1001/archgenpsychiatry.2010.183 ] [PMID: 21199966]
[126]
Goel N, Terman M, Terman JS, Macchi MM, Stewart JW. Controlled trial of bright light and negative air ions for chronic depression. Psychol Med 2005; 35(7): 945-55.
[http://dx.doi.org/10.1017/S0033291705005027 ] [PMID: 16045061]
[127]
Prasko J, Horacek J, Klaschka J, Kosova J, Ondrackova I, Sipek J. Bright light therapy and/or imipramine for inpatients with recurrent non-seasonal depression. Neuroendocrinol Lett 2002; 23(2): 109-13.
[PMID: 12011795]
[128]
Perera S, Eisen R, Bhatt M, et al. Light therapy for non-seasonal depression: systematic review and meta-analysis. BJPsych Open 2016; 2(2): 116-26.
[http://dx.doi.org/10.1192/bjpo.bp.115.001610 ] [PMID: 27703764]
[129]
Lam RW, Levitt AJ, Levitan RD, et al. Efficacy of bright light treatment, fluoxetine, and the combination in patients with nonseasonal major depressive disorder: a randomized clinical trial. JAMA Psychiatry 2016; 73(1): 56-63.
[http://dx.doi.org/10.1001/jamapsychiatry.2015.2235 ] [PMID: 26580307]
[130]
Martiny K, Lunde M, Undén M, Dam H, Bech P. Adjunctive bright light in non-seasonal major depression: results from clinician-rated depression scales. Acta Psychiatr Scand 2005; 112(2): 117-25.
[http://dx.doi.org/10.1111/j.1600-0447.2005.00574.x ] [PMID: 15992393]
[131]
Güzel Özdemir P, Boysan M, Smolensky MH, Selvi Y, Aydin A, Yilmaz E. Comparison of venlafaxine alone versus venlafaxine plus bright light therapy combination for severe major depressive disorder. J Clin Psychiatry 2015; 76(5): e645-54.
[http://dx.doi.org/10.4088/JCP.14m09376 ] [PMID: 26035199]
[132]
Niederhofer H, von Klitzing K. Bright light treatment as mono-therapy of non-seasonal depression for 28 adolescents. Int J Psychiatry Clin Pract 2012; 16(3): 233-7.
[http://dx.doi.org/10.3109/13651501.2011.625123 ] [PMID: 22809107]
[133]
Boland EM, Rao H, Dinges DF, et al. Meta-analysis of the antidepressant effects of acute sleep deprivation. J Clin Psychiatry 2017; 78(8): e1020-34.
[http://dx.doi.org/10.4088/JCP.16r11332 ] [PMID: 28937707]
[134]
Leibenluft E, Moul DE, Schwartz PJ, Madden PA, Wehr TA. A clinical trial of sleep deprivation in combination with antidepressant medication. Psychiatry Res 1993; 46(3): 213-27.
[http://dx.doi.org/10.1016/0165-1781(93)90090-4 ] [PMID: 8493292]
[135]
Berger M, Vollmann J, Hohagen F, et al. Sleep deprivation combined with consecutive sleep phase advance as a fast-acting therapy in depression: an open pilot trial in medicated and unmedicated patients. Am J Psychiatry 1997; 154(6): 870-2.
[http://dx.doi.org/10.1176/ajp.154.6.870 ] [PMID: 9167521]
[136]
Davies SK, Ang JE, Revell VL, et al. Effect of sleep deprivation on the human metabolome. Proc Natl Acad Sci USA 2014; 111(29): 10761-6.
[http://dx.doi.org/10.1073/pnas.1402663111 ] [PMID: 25002497]
[137]
Zant JC, Leenaars CHC, Kostin A, Van Someren EJW, Porkka-Heiskanen T. Increases in extracellular serotonin and dopamine metabolite levels in the basal forebrain during sleep deprivation. Brain Res 2011; 1399: 40-8.
[http://dx.doi.org/10.1016/j.brainres.2011.05.008 ] [PMID: 21645878]
[138]
Müller HU, Riemann D, Berger M, Müller WE. The influence of total sleep deprivation on urinary excretion of catecholamine metabolites in major depression. Acta Psychiatr Scand 1993; 88(1): 16-20.
[http://dx.doi.org/10.1111/j.1600-0447.1993.tb03407.x ] [PMID: 8396844]
[139]
Bunney BG, Bunney WE. Mechanisms of rapid antidepressant effects of sleep deprivation therapy: clock genes and circadian rhythms. Biol Psychiatry 2013; 73(12): 1164-71.
[http://dx.doi.org/10.1016/j.biopsych.2012.07.020 ] [PMID: 22906517]
[140]
Dallaspezia S, Benedetti F. Sleep deprivation therapy for depression. Curr Top Behav Neurosci 2015; 25: 483-502.
[http://dx.doi.org/10.1007/7854_2014_363 ] [PMID: 25549913]
[141]
Wirz-Justice A, Terman M. Chronotherapeutics (light and wake therapy) as a class of interventions for affective disorders. Handb Clin Neurol 2012; 106: 697-713.
[http://dx.doi.org/10.1016/B978-0-444-52002-9.00042-5 ] [PMID: 22608653]
[142]
Vollmann J, Berger M. Sleep deprivation with consecutive sleep-phase advance therapy in patients with major depression: a pilot study. Biol Psychiatry 1993; 33(1): 54-7.
[http://dx.doi.org/10.1016/0006-3223(93)90280-Q ] [PMID: 8420597]
[143]
Riemann D, König A, Hohagen F, et al. How to preserve the antidepressive effect of sleep deprivation: a comparison of sleep phase advance and sleep phase delay. Eur Arch Psychiatry Clin Neurosci 1999; 249(5): 231-7.
[http://dx.doi.org/10.1007/s004060050092 ] [PMID: 10591988]
[144]
Wu JC, Kelsoe JR, Schachat C, et al. Rapid and sustained antidepressant response with sleep deprivation and chronotherapy in bipolar disorder. Biol Psychiatry 2009; 66(3): 298-301.
[http://dx.doi.org/10.1016/j.biopsych.2009.02.018 ] [PMID: 19358978]
[145]
Sahlem GL, Kalivas B, Fox JB, et al. Adjunctive triple chronotherapy (combined total sleep deprivation, sleep phase advance, and bright light therapy) rapidly improves mood and suicidality in suicidal depressed inpatients: an open label pilot study. J Psychiatr Res 2014; 59: 101-7.
[http://dx.doi.org/10.1016/j.jpsychires.2014.08.015 ] [PMID: 25231629]
[146]
Echizenya M, Suda H, Takeshima M, Inomata Y, Shimizu T. Total sleep deprivation followed by sleep phase advance and bright light therapy in drug-resistant mood disorders. J Affect Disord 2013; 144(1-2): 28-33.
[http://dx.doi.org/10.1016/j.jad.2012.06.022 ] [PMID: 22835846]
[147]
Ramgopal S, Thome-Souza S, Loddenkemper T. Chronopharmacology of anti-convulsive therapy. Curr Neurol Neurosci Rep 2013; 13(4): 339.
[http://dx.doi.org/10.1007/s11910-013-0339-2 ] [PMID: 23456771]
[148]
Johnsson A, Engelmann W, Pflug B, Klemke W. Influence of lithium ions on human circadian rhythms. Z Naturforsch C Biosci 1980; 35(5-6): 503-7.
[http://dx.doi.org/10.1515/znc-1980-5-623 ] [PMID: 7405368]
[149]
Freyberg Z, McCarthy MJ. Dopamine D2 receptors and the circadian clock reciprocally mediate antipsychotic drug-induced metabolic disturbances. NPJ Schizophr 2017; 3: 17.
[http://dx.doi.org/10.1038/s41537-017-0018-4 ] [PMID: 28560263]
[150]
Rosenwasser AM. Alcohol, antidepressants, and circadian rhythms. Human and animal models. Alcohol Res Health 2001; 25(2): 126-35.
[PMID: 11584551]
[151]
Padiath QS, Paranjpe D, Jain S, Sharma VK. Glycogen synthase kinase 3beta as a likely target for the action of lithium on circadian clocks. Chronobiol Int 2004; 21(1): 43-55.
[http://dx.doi.org/10.1081/CBI-120027981 ] [PMID: 15129823]
[152]
Iitaka C, Miyazaki K, Akaike T, Ishida N. A role for glycogen synthase kinase-3beta in the mammalian circadian clock. J Biol Chem 2005; 280(33): 29397-402.
[http://dx.doi.org/10.1074/jbc.M503526200 ] [PMID: 15972822]
[153]
Dudley TE, Dinardo LA, Glass JD. In vivo assessment of the midbrain raphe nuclear regulation of serotonin release in the hamster suprachiasmatic nucleus. J Neurophysiol 1999; 81(4): 1469-77.
[http://dx.doi.org/10.1152/jn.1999.81.4.1469 ] [PMID: 10200183]
[154]
Sprouse J, Braselton J, Reynolds L. Fluoxetine modulates the circadian biological clock via phase advances of suprachiasmatic nucleus neuronal firing. Biol Psychiatry 2006; 60(8): 896-9.
[http://dx.doi.org/10.1016/j.biopsych.2006.03.003 ] [PMID: 16631132]
[155]
Wichniak A, Wierzbicka A, Walęcka M, Jernajczyk W. Effects of antidepressants on sleep. Curr Psychiatry Rep 2017; 19(9): 63.
[http://dx.doi.org/10.1007/s11920-017-0816-4 ] [PMID: 28791566]
[156]
Serretti A, Chiesa A. Treatment-emergent sexual dysfunction related to antidepressants: a meta-analysis. J Clin Psychopharmacol 2009; 29(3): 259-66.
[http://dx.doi.org/10.1097/JCP.0b013e3181a5233f ] [PMID: 19440080]
[157]
Chávez-Castillo M, Ortega Á, Nava M, et al. Metabolic risk in depression and treatment with selective serotonin reuptake inhibitors are the metabolic syndrome and an increase in cardiovascular risk unavoidable? Vessel Plus 2018; 2(4): 6.
[158]
Trindade E, Menon D, Topfer LA, Coloma C. Adverse effects associated with selective serotonin reuptake inhibitors and tricyclic antidepressants: a meta-analysis. CMAJ 1998; 159(10): 1245-52.
[PMID: 9861221]
[159]
Guardiola-Lemaitre B, De Bodinat C, Delagrange P, Millan MJ, Munoz C, Mocaër E. Agomelatine: mechanism of action and pharmacological profile in relation to antidepressant properties. Br J Pharmacol 2014; 171(15): 3604-19.
[http://dx.doi.org/10.1111/bph.12720 ] [PMID: 24724693]
[160]
Taylor D, Sparshatt A, Varma S, Olofinjana O. Antidepressant efficacy of agomelatine: meta-analysis of published and unpublished studiesBMJ 2014; 348: g1888.
[161]
Huang K-L, Lu W-C, Wang Y-Y, et al. Comparison of agomelatine and selective serotonin reuptake inhibitors/serotonin-norepinephrine reuptake inhibitors in major depressive disorder: A meta-analysis of head-to-head randomized clinical trials. Aust N Z J Psychiatry 2014; 48(7): 663-71.
[http://dx.doi.org/10.1177/0004867414525837 ] [PMID: 24604920]
[162]
Norris ER. Karen Burke , Correll JR, et al A double-blind, randomized, placebo-controlled trial of adjunctive ramelteon for the treatment of insomnia and mood stability in patients with euthymic bipolar disorder. J Affect Disord 2013; 144(1-2): 141-7.
[http://dx.doi.org/10.1016/j.jad.2012.06.023 ] [PMID: 22963894]
[163]
Cipriani A, Furukawa TA, Salanti G, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet 2018; 391(10128): 1357-66.
[http://dx.doi.org/10.1016/S0140-6736(17)32802-7 ] [PMID: 29477251]
[164]
Zajecka J, Schatzberg A, Stahl S, Shah A, Caputo A, Post A. Efficacy and safety of agomelatine in the treatment of major depressive disorder: a multicenter, randomized, double-blind, placebo-controlled trial. J Clin Psychopharmacol 2010; 30(2): 135-44.
[http://dx.doi.org/10.1097/JCP.0b013e3181d420a7 ] [PMID: 20520286]
[165]
Mahableshwarkar AR, Calabrese JR, Macek TA, et al. Efficacy and safety of sublingual ramelteon as an adjunctive therapy in the maintenance treatment of bipolar I disorder in adults: a phase 3, randomized controlled trial. J Affect Disord 2017; 221: 275-82.
[http://dx.doi.org/10.1016/j.jad.2017.06.044 ] [PMID: 28662460]
[166]
Olié JP, Kasper S. Efficacy of agomelatine, a MT1/MT2 receptor agonist with 5-HT2C antagonistic properties, in major depressive disorder. Int J Neuropsychopharmacol 2007; 10(5): 661-73.
[PMID: 17477888]
[167]
Armstrong SM, McNulty OM, Guardiola-Lemaitre B, Redman JR. Successful use of S20098 and melatonin in an animal model of delayed sleep-phase syndrome (DSPS). Pharmacol Biochem Behav 1993; 46(1): 45-9.
[http://dx.doi.org/10.1016/0091-3057(93)90315-K ] [PMID: 8255922]
[168]
Kräuchi K, Cajochen C, Möri D, Graw P, Wirz-Justice A. Early evening melatonin and S-20098 advance circadian phase and nocturnal regulation of core body temperature. Am J Physiol 1997; 272(4 Pt 2): R1178-88.
[PMID: 9140018]
[169]
Quera Salva M-A, Vanier B, Laredo J, et al. Major depressive disorder, sleep EEG and agomelatine: an open-label study. Int J Neuropsychopharmacol 2007; 10(5): 691-6.
[PMID: 17477886]
[170]
Demyttenaere K, Corruble E, Hale A, Quera-Salva M-A, Picarel-Blanchot F, Kasper S. A pooled analysis of six month comparative efficacy and tolerability in four randomized clinical trials: agomelatine versus escitalopram, fluoxetine, and sertraline. CNS Spectr 2013; 18(3): 163-70.
[http://dx.doi.org/10.1017/S1092852913000060 ] [PMID: 23472671]
[171]
Pandi-Perumal SR, Srinivasan V, Maestroni GJM, Cardinali DP, Poeggeler B, Hardeland R. Melatonin: Nature’s most versatile biological signal? FEBS J 2006; 273(13): 2813-38.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05322.x ] [PMID: 16817850]
[172]
Kostoglou-Athanassiou I. Therapeutic applications of melatonin. Ther Adv Endocrinol Metab 2013; 4(1): 13-24.
[http://dx.doi.org/10.1177/2042018813476084 ] [PMID: 23515203]
[173]
Sánchez-Betancourt J, Ávila-Costa M, Meza-Amaya A, Ruiz-Vázquez J, Muñiz-Salazar R. Efecto agudo de la melatonina exógena sobre funciones cognitivas, en jóvenes adultos que consumen alcohol. AVFT 2018; 37(5): 434-7.
[174]
McElroy SL, Winstanley EL, Martens B, et al. A randomized, placebo-controlled study of adjunctive ramelteon in ambulatory bipolar I disorder with manic symptoms and sleep disturbance. Int Clin Psychopharmacol 2011; 26(1): 48-53.
[http://dx.doi.org/10.1097/YIC.0b013e3283400d35 ] [PMID: 20861739]
[175]
Dolberg OT, Hirschmann S, Grunhaus L. Melatonin for the treatment of sleep disturbances in major depressive disorder. Am J Psychiatry 1998; 155(8): 1119-21.
[http://dx.doi.org/10.1176/ajp.155.8.1119 ] [PMID: 9699707]
[176]
Dalton EJ, Rotondi D, Levitan RD, Kennedy SH, Brown GM. Use of slow-release melatonin in treatment-resistant depression. J Psychiatry Neurosci 2000; 25(1): 48-52.
[PMID: 10721684]
[177]
National Library of Medicine Integrated Chronotherapy for Perinatal Depression ClinicalTrialsgov NCT02053649, National Library of Medicine, Bethesda, Md, USA 2020.Available at:. http://clinicaltrials.gov/show/NCT02053649
[178]
National Library of Medicine Triple Chronotherapy in Adolescents (TCT-RCT) ClinicalTrialsgov NCT03679962, National Library of Medicine, Bethesda, Md, USA 2020.Available at:. http://clinicaltrials.gov/show/NCT03679962
[179]
National Library of Medicine Personalized Integrated Chronotherapy for Perinatal Depression ClinicalTrialsgov NCT04364646, National Library of Medicine, Bethesda, Md, USA. 2020.Available at:. https://clinicaltrials.gov/show/NCT04364646
[180]
National Library of Medicine Sleep/Wake Cycle and Depression: An Imaging and Treatment Study ClinicalTrialsgov NCT04350567, National Library of Medicine, Bethesda, Md, USA. 2020.Available at:. https://clinicaltrials.gov/show/NCT04350567
[181]
National Library of Medicine. Electronic Self-monitoring on Regulation of the Sleep-wake Cycle to Reduce Relapse of Depression After Discharge (SAFEII) ClinicalTrialsgov NCT02679768, National Library of Medicine, Bethesda, Md, USA 2020. Available at:. https://clinicaltrials.gov/show/NCT04350567
[182]
National Library of Medicine Investigation of Seasonal Variations of Brain Structure and Connectivity in SAD ClinicalTrialsgov NCT03313674, National Library of Medicine, Bethesda, Md, USA. 2020.Available at:. https://clinicaltrials.gov/show/NCT03313674
[183]
Wake Therapy in the Treatment of Depression ClinicalTrialsgov NCT01431573, National Library of Medicine, Bethesda, Md, USA 2020.Available at:. https://clinicaltrials.gov/show/NCT01431573
[184]
A Transdiagnostic Sleep and Circadian Treatment for Major Depressive Disorder ClinicalTrialsgov NCT03786731, National Library of Medicine, Bethesda, Md, USA 2020.Available at:. http://clinicaltrials.gov/show/NCT03786731