A Comprehensive Overview of Perimidines: Synthesis, Chemical Transformations, and Applications

Page: [248 - 271] Pages: 24

  • * (Excluding Mailing and Handling)

Abstract

Perimidines are nitrogen-containing heterocyclic scaffolds with a wide range of biological and material properties. Several synthetic transformations on perimidines afford fused heterocycles. This review focuses on every aspect of perimidines, including different synthetic procedures, reactions and applications, and covers the literature published up to the year 2020, using more than 170 references.

Keywords: Perimidines, heterocycles, synthesis, 1, 8-diaminonaphthalene, dihydroperimidines, photochromism, anti-cancer, applications.

Graphical Abstract

[1]
Pozharskii, A.F.; Dal’nikovskaya, V.V. Perimidines. Russ. Chem. Rev., 1981, 50, 816-835.
[2]
de Aguiar, A. Ueber einige Abkömmlinge des α- und β-diamidonaphtalins. Ber. Dtsch. Chem. Ges., 1874, 7, 309-319.
[http://dx.doi.org/10.1002/cber.187400701103]
[3]
Sachs, F. Ueber ringschlüsse in peristellung der naphtalinreihe. Ann Chem., 1909, 365, 53-134.
[http://dx.doi.org/10.1002/jlac.19093650108]
[4]
Herbert, J.M.; Woodgate, P.D.; Denny, W.A. Potential antitumor agents. 53. Synthesis, DNA binding properties, and biological activity of perimidines designed as “minimal” DNA-intercalating agents. J. Med. Chem., 1987, 30(11), 2081-2086.
[http://dx.doi.org/10.1021/jm00394a025] [PMID: 3669016]
[5]
Alkorta, I.; Elguero, J. Theoretical studies of perimidine and its derivatives: structures, energies, and spectra. Struct. Chem., 2020, 31, 25-35.
[http://dx.doi.org/10.1007/s11224-019-01451-5]
[6]
(a)Minkin, V.I.; Komissarov, V.N. Perimidmespirocyclohexadienones - a novel photo and thermochromic system. Mol. Cryst. Liq. Cryst. Sci. Technol, 1997, 297, 205-212.
[http://dx.doi.org/10.1080/10587259708036123]
(b)Norikane, Y.; Davis, R.; Tamaoki, N. Photochromism of a spiroperimidine compound in polymer matrices. New J. Chem., 2009, 33, 1327-1331.
[http://dx.doi.org/10.1039/b822914g]
[7]
Ramsden, W.D.; Valente, L.F.; Bernard, L.S. Method of making dihydroperimidine squaraine compounds. U.S. Patent US6348592 B1, February 19 2002.
[8]
(a)Bazinet, P.; Yap, G.P.A.; Richeson, D.S. Constructing a stable carbene with a novel topology and electronic framework. J. Am. Chem. Soc.,, 2003, 125(44), 13314-13315.
[http://dx.doi.org/10.1021/ja0372661] [PMID: 14583000]
(b)Verlinden, K.; Ganter, C. Converting a perimidine derivative to a cationic N-heterocyclic Carbene. J. Organomet. Chem., 2014, 750, 23-29.
[http://dx.doi.org/10.1016/j.jorganchem.2013.10.047]
[9]
Zhang, D.; Yang, H.; Martinez, A.; Jamieson, K.; Dutasta, J-P.; Gao, G. N-heterocyclic carbene formation induced fluorescent and colorimetric sensing of fluoride using perimidinium derivatives. Chemistry, 2014, 20(51), 17161-17167.
[http://dx.doi.org/10.1002/chem.201404806] [PMID: 25346203]
[10]
(a)Sierra, M.A.; Mancheño, M.J.; del Amo, J.C.; Fernández, I.; Gómez-Gallego, M. Unexpected reaction pathways in the reaction of alkoxyalkynylchromium( 0) carbenes with aromatic dinucleophiles. Chemistry,, 2003, 9(20), 4943-4953.
[http://dx.doi.org/10.1002/chem.200305138] [PMID: 14562313]
(b)Rewcastle, G.W. Pyrimidines and their benzo derivatives InComprehensive Heterocyclic Chemistry III; Elsevier: Oxford, 2008, Vol. 8, pp. 117-272.
[http://dx.doi.org/10.1016/B978-008044992-0.00702-1]
(c)Sahiba, N.; Agarwal, S. Recent advances in the synthesis of perimidines and their applications. Top. Curr. Chem. (Cham), 2020, 378(4-5), 44.
[http://dx.doi.org/10.1007/s41061-020-00307-5] [PMID: 32776212]
[11]
Paragamian, V.; Baker, M.B.; Puma, B.M.; Reale, J. A study of the synthesis and some reactions of perimidines. J. Heterocycl. Chem., 1968, 5, 591-597.
[http://dx.doi.org/10.1002/jhet.5570050502]
[12]
Maquestiau, A.; Berte, L.; Mayence, A.; Eynde, J-J.V. An improved one-pot method for the preparation of 2-substituted 1H-perimidines. Synth. Commun., 1991, 21, 2171-2180.
[http://dx.doi.org/10.1080/00397919108055450]
[13]
(a)Mobinikhaledi, A.; Amrollahi, M.A.; Foroughifar, N.; Jirandehi, H.F. Microwave assisted synthesis of some 2-alkyl and 2-arylperimidines. Asian J. Chem., 2005, 17, 2411-2414.
(b)Mobinikhaledi, A.; Foroughifar, N.; Goli, R. Synthesis of some benzotriazole-substituted perimidines.Phosphorus Sulfur Silicon Relat. Elem, 2005, 180, 2549-2554.
[http://dx.doi.org/10.1080/104265090930191]
(c)Zhu, W-J.; Ding, J.; Jiang, B.; Tu, S-J. Highly efficient synthesis of tricyclic perimidines under microwave heating. J. Heterocycl. Chem., 2013, 50, E63-E66.
[http://dx.doi.org/10.1002/jhet.1057]
[14]
(a)Honda, K.; Nakanishi, H.; Yabe, A. Reaction of 1,8-naphthalenediamine with dimethyl and diethyl acetylenedicarboxylates Bull. Chem. Soc. Jpn.,, 1983, 56, 2338-2340.
[http://dx.doi.org/10.1246/bcsj.56.2338]
(b)Eynde, J.J.V.; Mayence, A.; Maquestiau, A.; Anders, E. Novel syntheses of heterocycles with n-(1-haloalkyl)azinium halides. Part 4. An unexpected one-pot preparation of 1H-perimidines. Synth. Commun., 1992, 22, 3141-3150.
[http://dx.doi.org/10.1080/00397919209409265]
[15]
(a)Deady, L.W.; Rodemann, T. Synthesis of perimidine and fused perimidine derivatives from reaction of 1,8-naphthalene diamine with an iminoisocoumarine. J. Heterocycl. Chem , 1998, 35, 1417-1419.
[http://dx.doi.org/10.1002/jhet.5570350633]
(b)Schwob, T.; Ade, M.; Kempe, R. A cobalt catalyst permits the direct hydrogenative synthesis of 1-H perimidines from a dinitroarene and an aldehyde. ChemSusChem, 2019, 12(13), 3013-3017.
[http://dx.doi.org/10.1002/cssc.201900498] [PMID: 30939231]
[16]
Mehrabi, H.; Najafian-Ashrafi, F.; Esfandiarpour, Z.; Ranjbar-Karimi, R. Synthesis of 2-aryl-1H-benzimidazoles and 2-aryl-1H-perimidines using arylidene meldrum’s acid as a source of the aryl group and oxidant. J. Chem. Res., 2018, 42, 125-128.
[http://dx.doi.org/10.3184/174751918X15199196317528]
[17]
Smellie, I.A.S.; Fromm, A.; Paton, R.M. A new route to 2-substituted perimidines based on nitrile oxide chemistry. Tetrahedron Lett., 2009, 50, 4104-4106.
[http://dx.doi.org/10.1016/j.tetlet.2009.04.118]
[18]
Tokimizu, Y.; Ohta, Y.; Chiba, H.; Oishi, S.; Fujii, N.; Ohno, H. Direct synthesis of highly fused perimidines by copper (I)-catalyzed hydroamination of 2-ethynylbenzaldehydes. Tetrahedron, 2011, 67, 5168-5175.
[http://dx.doi.org/10.1016/j.tet.2011.05.051]
[19]
Feng, B-B.; Liu, J-Q.; Wang, X-S. Cu(OAc)2-catalyzed aerobic oxidative dehydrogenation coupling: synthesis of heptacyclic quinolizino[3,4,5,6-kla]perimidines. J. Org. Chem., 2017, 82(3), 1817-1822.
[http://dx.doi.org/10.1021/acs.joc.6b02644] [PMID: 28029790]
[20]
Kimura, T.; Kamata, K.; Mizuno, N. A bifunctional tungstate catalyst for chemical fixation of CO2 at atmospheric pressure. Angew. Chem. Int. Ed. Engl., 2012, 51(27), 6700-6703.
[http://dx.doi.org/10.1002/anie.201203189] [PMID: 22674893]
[21]
Krishna, M.H.; Thriveni, P. A green alternative approach for synthesis of 2-substituted-1H-perimidine catalysed by NBS in ultrasonication method. J. Chem. Pharm. Res., 2016, 8, 809-814.
[22]
Mobinikhaledi, A.; Foroughifar, N.; Basaki, N. Zeolite catalyzed efficient synthesis of perimidines at room temperature. Turk. J. Chem., 2009, 33, 555-560.
[http://dx.doi.org/10.3906/kim-0806-15]
[23]
Zendehdel, M.; Mobinikhaledi, A.; Alikhani, H.; Jafari, N. Preparation of heteropoly acid/porous hybrid materials and investigation of their catalytic behavior in the synthesis of perimidine. J. Chin. Chem. Soc. (Taipei), 2010, 57, 683-689.
[http://dx.doi.org/10.1002/jccs.201000095]
[24]
Kalhor, M.; Khodaparast, N. Use of nano-CuY zeolite as an efficient and eco-friendly nanocatalyst for facile synthesis of perimidine derivatives. Res. Chem. Intermed., 2015, 41, 3235-3242.
[http://dx.doi.org/10.1007/s11164-013-1428-1]
[25]
Farrokhi, A.; Ghodrati, K.; Yavari, I. Fe3O4/SiO2/(CH2)3N+Me3Br3− core–shell nanoparticles: a novel catalyst for the solvent-free synthesis of five- and six-membered heterocycles. Catal. Commun., 2015, 63, 41-46.
[http://dx.doi.org/10.1016/j.catcom.2014.09.046]
[26]
Bamoniri, A.; Mirjalili, B.B.F.; Saleh, S. Nano-γ-Al2O3/SbCl5: an efficient catalyst for the synthesis of 2,3-dihydroperimidines. RSC Adv., 2018, 8, 6178-6182.
[http://dx.doi.org/10.1039/C7RA13593A]
[27]
Ali, M.A.; Vahidnia, F. Decoration of β-CD-ZrO on Fe3O4 magnetic nanoparticles as a magnetically, recoverable and reusable catalyst for the synthesis of 2,3-dihydro-1H-perimidines. Res. Chem. Intermed., 2018, 44, 7569-7581.
[http://dx.doi.org/10.1007/s11164-018-3574-y]
[28]
Mobinikhaledi, A.; Steel, P.J. Synthesis of perimidines using copper nitrate as an efficient catalyst. Synth. React. Inorg. M., 2009, 39, 133-135.
[http://dx.doi.org/10.1080/15533170902784961]
[29]
Belmonte, M.M.; Adán, E.C.E. -; Buchholz, J. B.-; Haak, R. M.; Kleij, A. W. Facile synthesis of substituted mono‐, di‐, tri‐ and tetra‐2‐aryl‐2,3‐dihydro‐1H‐perimidines. Eur. J. Org. Chem., 2010, 2010(25), 4823-4831.
[http://dx.doi.org/10.1002/ejoc.201000670]
[30]
Behbahani, F.K.; Golchin, F.M. A new catalyst for the synthesis of 2-substituted perimidinescatalysed by FePO4. J. Taibah Univ. Sci., 2017, 11, 85-89.
[http://dx.doi.org/10.1016/j.jtusci.2015.10.004]
[31]
Bahrami, K.; Saleh, S. [BTBA]Cl-FeCl3 as an efficient lewis acid ionic liquid for the synthesis of perimidine derivatives. Synth. React. Inorg. M., 2015, 46, 852-856.
[http://dx.doi.org/10.1080/15533174.2014.989602]
[32]
Azeez, H.J.; Salih, K.M. Synthesis, characterization and biological activity of 2-Aryl -2, 3-dihydro-1H-perimidine. Res. Pharm. Biotech, 2014, 5, 1-6.
[http://dx.doi.org/10.5897/RPB13.0088]
[33]
Bodaghifard, M.A.; Ahadi, N. Sulfamic acid: a green and efficient catalyst for synthesis of mono-, bis-, and spiro- perimidines. Iran. J. Catal, 2016, 6, 377-380.
[34]
Harry, N.A.; Cherian, R.M.; Radhika, S.; Anilkumar, G. A novel catalyst-free, eco-friendly, on water protocol for the synthesis of 2,3-dihydro-1H-perimidines. Tetrahedron Lett., 2019, 60, 150946-150949.
[http://dx.doi.org/10.1016/j.tetlet.2019.150946]
[35]
Harry, N.A.; Radhika, S.; Neetha, M.; Anilkumar, G. A novel catalyst-free mechanochemical protocol for the synthesis of 2,3-dihydro-1H-perimidines. J. Heterocycl. Chem., 2020, 57, 2037-2043.
[http://dx.doi.org/10.1002/jhet.3880]
[36]
Akita, M.; Seto, H.; Aoyama, R.; Kimura, J.; Kobayashi, K. Novel rearrangements in the reactions directed toward preparation of spiro-N,N-ketals: reactions of naphthalene-1,8-diamine with ninhydrin and isatin. Molecules, 2012, 17(12), 13879-13890.
[http://dx.doi.org/10.3390/molecules171213879] [PMID: 23174903]
[37]
Norikane, Y.; Davis, R.; Nishimura, Y.; Arai, T.; Tamaoki, N. Drastic solvent effect on thermal back reaction of spiroperimidine photochromic compounds. J. Photochem. Photobiol. Chem., 2009, 205, 116-121.
[http://dx.doi.org/10.1016/j.jphotochem.2009.04.016]
[38]
Zhang, J.; Zhang, S.L.; Zhang, J.M. Ruthenium(III) chloride as an efficient catalyst for the synthesis of perimidine derivatives under mild conditions. Chin. Chem. Lett., 2007, 18, 1057-1060.
[http://dx.doi.org/10.1016/j.cclet.2007.07.004]
[39]
Zhang, J.; Zhang, S. Bismuth(III) chloride–promoted efficient synthesis of perimidine derivatives under ambient conditions. Synth. Commun., 2007, 37, 2615-2624.
[http://dx.doi.org/10.1080/00397910701463011]
[40]
Zhang; Lin, S.-; Zhang, J-Mina, Ytterbium(III) triflate as an efficient catalyst for the synthesis of perimidine derivatives under mild conditions. Chin. J. Chem., 2008, 26, 185-189.
[http://dx.doi.org/10.1002/cjoc.200890019]
[41]
Phadtare, S.B.; Vijayraghavan, R.; Shankarling, G.S.; MacFarlane, D.R. Efficient synthesis of 2, 3-dihydro-1H-perimidine derivatives using HBOB as a novel solid acid catalyst. Aust. J. Chem., 2012, 65, 86-90.
[http://dx.doi.org/10.1071/CH11381]
[42]
Prakash, G.K.S.; Paknia, F.; Narayan, A.; Mathew, T.; Olah, G.A. Synthesis of perimidine and 1,5-benzodiazepine derivatives using tamed brønsted acid, BF3-H2O. J. Fluor. Chem., 2013, 152, 99-105.
[http://dx.doi.org/10.1016/j.jfluchem.2013.03.023]
[43]
Shelke, P.B.; Mali, S.N.; Chaudhari, H.K.; Pratap, A.P. Chitosan hydrochloride mediated efficient, green catalysis for the synthesis of perimidine derivatives. J. Heterocycl. Chem., 2019, 56, 3048-3054.
[http://dx.doi.org/10.1002/jhet.3700]
[44]
Khopkar, S.; Shankarling, G. Squaric acid: an impressive organocatalyst for the synthesis of biologically relevant 2,3-dihydro-1H-perimidines in water. J. Chem. Sci., 2020, 132, 31-41.
[http://dx.doi.org/10.1007/s12039-019-1735-1]
[45]
Harry, N.A.; Shilpa, T.; Ujwaldev, S.M.; Anilkumar, G. A novel eco‐friendly on‐water protocol for the synthesis of 2,2‐disubstituted 2,3‐dihydro‐1H‐perimidines. J. Heterocycl. Chem., 2020, 2020, 1-7.
[http://dx.doi.org/10.1002/jhet.4146]
[46]
(a)Llamas-Saiz, A.L.; Foces-Foces, C.; Sanz, D.; Claramunt, R.M.; Dotor, J.; Elguero, C.; Catalán, J.; del Valle, J.C. 2-Arylperimidine derivatives. Part 1. Synthesis, NMR spectroscopy, X-ray crystal and molecular structures. J. Chem. Soc. Perkin. Trans. 1, 1995, 2, 1389-1398.
[http://dx.doi.org/10.1039/P29950001389]
(b)Yavari, I.; Adib, M.; Moghaddam, F.J.; Bijanzadeh, H. R. Vinylphosphonium salt mediated simple synthesis of 7-oxo-7H-pyrido[1,2,3-cd]perimidine derivatives. Dynamic NMR spectroscopic study of prototropic tautomerism in ethyl 1H-perimidine-2-carboxylate Tetrahedron, 2002, 58, 6901-6906.
[http://dx.doi.org/10.1016/S0040-4020(02)00759-7]
(c)Maloshitskaya, O.; Jarisinkkonen, O.V.V.; Zelenin, K.N.; Pihlajaa, K. Chain-ring-chain tautomerism in 2-aryl-substituted hexahydropyrimidines and 1H–2,3-dihydroperimidines. Does it appear? Tetrahedron, 2004, 60, 6913-6921.
[http://dx.doi.org/10.1016/j.tet.2004.05.092]
[47]
Claramunt, R.M.; Dotor, J.; Sanz, D.; Foces-Foces, C.; Llamas-Saiz, A.L.; Elguero, J.; Flammang, R.; Morizur, J.P.; Chapon, E.; Tortajada, J. The structure of 1H‐perimidin‐2(3H)‐one and its derivatives in the solid state (x‐ray crystallography and CP/MAS 13C‐NMR), in solution (13C‐NMR), and in the gas phase (mass spectrometry). Helv. Chim. Acta, 1994, 77, 121-139.
[http://dx.doi.org/10.1002/hlca.19940770115]
[48]
Sovic´, I.; Pavlovic´, G.; Papadopoulos, A.G.; Šišak, D.; Zamola, G.K. - 2-Substituted-1H-perimidines: synthesis, crystal structure and DFT calculations. J. Mol. Struct., 2013, 1041, 156-163.
[http://dx.doi.org/10.1016/j.molstruc.2013.03.020]
[49]
Roeda, D.; Dolle, F.; Crouzel, C. Unexpected perimidine formation in the ring opening of 1,2-dihydro-2-piperidinomethylperimidines with di-iso-butylaluminium hydride to 1-amino-8-(2-piperidinoethyl)aminonaphthalenes. New J. Chem., 1998, 22, 1151-1154.
[http://dx.doi.org/10.1039/a805660i]
[50]
(a)Aksenov, A.V.; Lyakhovnenko, A.S.; Spicin, A.N.; Aksenova, I.V. Reaction of acetylperimidines with sodium nitrite in polyphosphoric acid. Chem. Heterocycl. Compd, 2011, 47, 1183-1184.
[http://dx.doi.org/10.1007/s10593-011-0892-z]
(b)Huang, M.Q.; Liu, J.Q.; Wang, X.S. Copper-catalyzed synthesis of 13-aminoisoquinolino[2,1-a]perimidine-12-carboxylates via α-arylation with a high chemoselectivity. J. Heterocycl. Chem., 2019, 56, 663-669.
[http://dx.doi.org/10.1002/jhet.3445]
[51]
Pozharskii, A.F.; Koroleva, V.N. Heterocyclic analogs of pleiadiene. XVI. Nitration of perimidine and its 1- and 2-methyl derivatives. Chem. Heterocycl. Compd., 1975, 11, 486-491.
[http://dx.doi.org/10.1007/BF00502442]
[52]
Aksenov, A.V.; Lyakhovnenko, A.S.; Perlova, T.S.; Aksenova, I.V. Ammonium nitrate in acetic acid, an efficient reagent for the nitration of perimidines and the one-pot synthesis of 6(7)-aminoperimidines. Chem. Heterocycl. Compd., 2011, 47, 245-246.
[http://dx.doi.org/10.1007/s10593-011-0748-6]
[53]
Pozharskii, A.F.; Borovlev, I.V.; Kashparov, I.S. Heterocyclic analogs of pleiadiene. XV. Direct acylation of perimidines in the naphthalene ring. Synthesis of 4 (9)- and 6 (7)-acylperimidines. Chem. Heterocycl. Compd., 1975, 11, 480-485.
[http://dx.doi.org/10.1007/BF00502441]
[54]
Borovlev, I.V.; Pozharskii, A.F.; Filatova, E.A. Heterocyclic analogs of pleiadiene. 72. Sulfones of perimidine and 2,3-dihydroperimidine synthesis and some properties. Chem. Heterocycl. Compd., 2002, 38, 1084-1090.
[http://dx.doi.org/10.1023/A:1021257332066]
[55]
Demidov, O.P.; Borovlev, I.V.; Pozharskii, A.F. Change in the regioselectivity of the reaction of perimidine with cinnamic acid depending on the concentration of polyphosphoric acid. Chem. Heterocycl. Compd., 2001, 37, 127-128.
[http://dx.doi.org/10.1023/A:1017561405687]
[56]
Aksenov, A.V.; Aksenova, I.V. Use of the ring opening reactions of 1,3,5-triazines in organic synthesis. Chem. Heterocycl. Compd., 2009, 45, 130-150.
[http://dx.doi.org/10.1007/s10593-009-0243-5]
[57]
Aksenov, A.V.; Borovlev, I.V.; Lyakhovnenko, A.S.; Aksenova, I.V. Acylation of perimidine with 1,3,5-triazines in polyphosphoric acid. Chem. Heterocycl. Compd., 2007, 43, 527-528.
[http://dx.doi.org/10.1007/s10593-007-0085-y]
[58]
Borovlev, I.V.; Demidov, O.P. Diazapyrenes. Chem. Heterocycl. Compd., 2003, 39, 1417-1442.
[http://dx.doi.org/10.1023/B:COHC.0000014408.07085.75]
[59]
Roknić, S.; Glavas-Obrovac, L.; Karner, I.; Piantanida, I.; Zinić, M.; Pavelić, K. In vitro cytotoxicity of three 4,9-diazapyrenium hydrogensulfate derivatives on different human tumor cell lines. Chemotherapy, 2000, 46(2), 143-149.
[http://dx.doi.org/10.1159/000007269] [PMID: 10671766]
[60]
Aksenov, A.V.; Borovlev, I.V.; Aksenova, I.V.; Pisarenko, S.V.; Kovalev, D.A. A new method for [c, d] pyridine peri-annelation: synthesis of azapyrenes from phenalenes and their dihydro derivatives. Tetrahedron Lett., 2008, 49, 707-709.
[http://dx.doi.org/10.1016/j.tetlet.2007.11.132]
[61]
Aksenov, A.V.; Lyahovnenko, A.S.; Aksenova, I.V.; Nadein, O.N. Novel three-component peri-annelation reactions of carbocyclic and pyridine rings with perimidines-synthesis of 1,3-diazapyrenes and 1,3,7-triazapyrenes. Tetrahedron Lett., 2008, 49, 1808-1811.
[http://dx.doi.org/10.1016/j.tetlet.2008.01.064]
[62]
Aksenov, A.V.; Aksenova, I.V.; Lyakhovnenko, A.S.; Lobach, D.A. Synthesis of 1,3-diazapyrenes by the reaction of 1 H-perimidines with 1,3-dicarbonyl compounds. Russ. Chem. Bull., 2009, 58, 859-861.
[http://dx.doi.org/10.1007/s11172-009-0108-1]
[63]
Borovlev, I.V.; Demidov, O.P.; Pozharskii, A.F. Heterocyclic analogs of pleiadene. 71. Synthesis of 1,3-diazapyrene. Chem. Heterocycl. Compd., 2002, 38, 968-973.
[http://dx.doi.org/10.1023/A:1020977715188]
[64]
Aksenov, A.V.; Lyakhovnenko, A.S.; Aksenov, N.A.; Spicin, A.N.; Aksenova, I.V. Three-component reaction of perimidines with acetophenone and sodium nitrite in polyphosphoric acid. Chem. Heterocycl. Compd., 2011, 47, 1185-1187.
[http://dx.doi.org/10.1007/s10593-011-0893-y]
[65]
(a)Huang, M.Q.; Liu, J.Q.; Wang, X.S. Copper-catalyzed synthesis of 13 aminoisoquinolino[2,1-a]perimidine-12-carboxylates via α-arylation with a high chemoselectivity. J. Heterocycl. Chem, 2019, 56, 663-669.
[http://dx.doi.org/10.1002/jhet.3445]
(b)Koca, I.; Üngören, Ş.H; Kıbrıza, I.E; Yılmaz, F. The synthesis of new pyrrolo[1,2-a]perimidin-10-one dyes via two convenient routes and its characterizations. Dye Pigm,, 2012, 95, 421-426.
[http://dx.doi.org/10.1016/j.dyepig.2012.04.016]
((c)Liu,, K.C.; Huang, H.S. Synthesis of ethyl 4(1H)-oxopyrimido[1,2- a]perimidine-3-carboxylate. Arch. Pharm. (Weinheim, 1989, 322, 303-304.
[http://dx.doi.org/10.1002/ardp.19893220515]
(d)Starshikovand, N.M.; Pozharski, F.T. Synthesis of 2-(5-halogeno-2-furyl)-2,3-dihydroperimidines. Chem. Heterocycl. Compd., 1973, 9, 922-924.
[66]
Aksenov, A.V.; Shcherbakov, S.V.; Lobach, I.V.; Aksenova, I.V.; Rubin, M. Pyrimidines as surrogates for 1,3‐dicarbonyl compounds in peri annulation of perimidines en route to 1,3‐diazapyrenes. Eur. J. Org. Chem., 2017, 1666-1673.
[http://dx.doi.org/10.1002/ejoc.201601589]
[67]
Aksenova, I.V.; Aksenov, A.V.; Lyakhovnenko, A.S. Unexpected result of the reaction of perimidines with 1,3,5-triazine in the presence of sodium nitrite. Chem. Heterocycl. Compd., 2008, 44, 765-766.
[http://dx.doi.org/10.1007/s10593-008-0095-4]
[68]
Pozharskii, A.F.; Koroleva, V.N.; Komissarov, I.V.; Fillippov, I.T.; Borovlev, I.V. Synthesis and neurotropic activity of 4(9)- and 6(7)-amino-perimidines. Comparison with 4(9)- and 6(7)-acetylperimidines. Pharm. Chem. J., 1976, 10, 1613-1617.
[http://dx.doi.org/10.1007/BF00759996]
[69]
Aksenov, A.V.; Ovcharov, D.S.; Aksenov, N.A.; Aksenov, D.A.; Nadeina, O.N.; Rubin, M. Dual role of polyphosphoric acid-activated nitroalkanes in oxidative peri-annulations: efficient synthesis of 1,3,6,8-tetraazapyrenes. RSC Advances, 2017, 7, 29927-29932.
[http://dx.doi.org/10.1039/C7RA04751G]
[70]
Hou, D.; Balli, H. A novel heterocyclic ring system: synthesis and spectral data of 4,8,9b‐triazacyclopenta[c, d]phenalene. Helv. Chim. Acta, 1992, 75, 2608-2612.
[http://dx.doi.org/10.1002/hlca.19920750815]
[71]
Aksenov, A.V.; Lyakhovnenko, A.S.; Karaivanov, N.C.; Levina, I.I. Synthesis of 1H-1,5,7-triazacyclopenta[c,d]phenalenes by the electrophilic amination of perimidines using sodium azide in PPA. Chem. Heterocycl. Compd., 2011, 46, 1266-1270.
[http://dx.doi.org/10.1007/s10593-011-0662-y]
[72]
Aksenov, A.V.; Lyakhovnenko, A.S.; Andrienko, A.V.; Levina, I.I. A new method for pyrrole peri-annulation: synthesis of 1H-1, 5, 7-triazacyclopenta [c,d] phenalenes from 1H-perimidines. Tetrahedron Lett., 2010, 51, 2406-2408.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.129]
[73]
Aksenov, A.V.; Lyakhovnenko, A.S.; Spicin, A.N.; Aksenova, I.V. Three-component reaction of acetyl-perimidines with sodium azide and nitrite in polyphosphoric acid. Chem. Heterocycl. Compd., 2011, 47, 1180-1182.
[http://dx.doi.org/10.1007/s10593-011-0891-0]
[74]
Aksenov, A.V.; Aksenov, N.A.; Tsys, A.E.; Nadein, O.N. Novel method for the peri-annelation of pyrrole ring to perimidines. Chem. Heterocycl. Compd., 2011, 46, 1547-1548.
[http://dx.doi.org/10.1007/s10593-011-0710-7]
[75]
Aksenov, A.V.; Aksenov, N.A.; Nadein, O.N.; Aksenova, I.V. Nitroethane in polyphosphoric acid: a new reagent for acetamidation and amination of aromatic compounds. Synlett, 2010, 2010(17), 2628-2630.
[http://dx.doi.org/10.1055/s-0030-1258767]
[76]
Aksenov, A.V.; Aksenov, N.A.; Ovcharov, D.S.; Aksenov, D.A.; Griaznov, G.; Voskressensky, L.G.; Rubin, M. Rational design of an efficient one-pot synthesis of 6H-pyrrolo[2,3,4-gh]perimidines in polyphosphoric acid. RSC Adv, 2016, 6, 82425-82431.
[http://dx.doi.org/10.1039/C6RA17269E]
[77]
Shcherbakov, S.V.; Lobach, D.A.; Rubin, M.; Aksenov, A.V. Synthesis of N-phenyl-1,5,7-triazacyclopenta[cd]- phenalenes by the reaction of 1H-perimi-dine carbonyl derivatives with nitrobenzene. Chem. Heterocycl. Compd., 2014, 50, 757-760.
[http://dx.doi.org/10.1007/s10593-014-1531-2]
[78]
Molina, P.; Alias, A.; Balado, A.; Arques, A. Iminophosphorane-mediated synthesis of fused perimidines: preparation of quinazolino[3,4-a]perimidine derivatives. Liebigs Ann. Chem., 1994, 7, 745-749.
[http://dx.doi.org/10.1002/jlac.199419940717]
[79]
Wu, C.K.; Liou, T.J.; Wei, H.Y.; Tsai, P.S.; Yang, D.Y. Visible light photoredox catalysis: aerobic oxidation of perimidines to perimidinones. Tetrahedron, 2014, 70, 8219-8225.
[http://dx.doi.org/10.1016/j.tet.2014.09.036]
[80]
(a)Liu, Y.; Lindner, P.E.; Lemal, D.M. Thermodynamics of a diaminocarbene− tetraaminoethylene equilibrium J. Am. Chem. Soc, 1999, 121,, 10626--10627.
[http://dx.doi.org/10.1021/ja9922678]
(b)Hahn, F.E.; Wittenbecher, L.; Fröhlich, R.; Fro¨hlich, R.; Le Van, D. Evidence for an equilibrium between an N-heterocyclic carbene and its dimer in solution. Angew. Chem. Int. Ed. Engl., 2000, 39(3), 541-544.
[http://dx.doi.org/10.1002/(SICI)1521-3773(20000204)39:3<541:AID-ANIE541>3.0.CO;2-B] [PMID: 10671250]
[81]
Bazinet, P.; Ong, T-G.; O’ Brien, J.S.; Lavoie, N.; Bell, E.; Yap, G.P.A.; Korobkov, I.; Richeson, D.S. Design of sterically demanding, electron-rich carbene ligands with the perimidine scaffold. Organometallics, 2007, 26, 2885-2895.
[http://dx.doi.org/10.1021/om0701827]
[82]
Herrmann, W.A.; Schuetz, J. Frey, G. D; Herdtweck, E. N-heterocyclic carbenes: synthesis, structures, and electronic ligand properties. Organometallics, 2006, 25, 2437-2448.
[http://dx.doi.org/10.1021/om0600801]
[83]
(a)Ozdemir, I.; Alici, B.; Gurbuz, N.; Cetinkaya, E.; Cetinkaya, B. In situ generated palladium catalysts bearing 1, 3-dialkylperimidin-2-yline ligands for Suzuki reactions of aryl chlorides. J. Mol. Catal. Chem., 2004, 217, 37-40.
[http://dx.doi.org/10.1016/j.molcata.2004.03.029]
(b)Tu, T.; Malineni, J.; Bao, X.; Dotz, K.H. A lutidine‐bridged bis‐perimidinium salt: synthesis and application as a precursor in palladium‐catalyzed cross‐coupling reactions. Adv. Synth. Catal., 2009, 351, 1029-1034.
[http://dx.doi.org/10.1002/adsc.200800768]
[84]
Booysen, I.N.; Ebinumoliseh, I.; Sithebe, S.; Akerman, M.P.; Xulu, B. Coordination behaviours of perimidine ligands incorporating fused N-donor heterocyclics towards rhenium(I) and -(V). Polyhedron, 2016, 117, 755-760.
[http://dx.doi.org/10.1016/j.poly.2016.07.022]
[85]
Krieck, S.; Schulze, D.; Görls, H.; Westerhausen, M. Coordination chemistry of N,N‘-Bis(diphenylphosphanylmethyl)- 2,3-dihydro-1H-perimidine – Lewis acid-base complexes with the d 10-metals nickel(0) and gold(I). Z. Naturforsch., 2014, 69b, 1299-1305.
[http://dx.doi.org/10.5560/znb.2014-4150]
[86]
Cheng, H.; Xiong, M-Q.; Cheng, C-X.; Wang, H-J.; Lu, Q.; Liu, H-F.; Yao, F-B.; Chen, C.; Verpoort, F. In situ generated ruthenium catalyst systems bearing diverse N‐heterocyclic carbene precursors for atom‐economic amide synthesis from alcohols and amines. Chem. Asian J., 2018, 13(4), 440-448.
[http://dx.doi.org/10.1002/asia.201701734] [PMID: 29316301]
[87]
McQueen, C.M.A.; Hill, A.F.; Ma, C.; Ward, J.S. Ruthenium and osmium complexes of dihydroperimidine-based N-heterocyclic carbene pincer ligands. Dalton Trans., 2015, 44(47), 20376-20385.
[http://dx.doi.org/10.1039/C5DT03728J] [PMID: 26492361]
[88]
(a)Tsurugi, H.; Fujita, S.; Choi, G.; Yamagata, T.; Ito, S.; Miyasaka, H.; Mashima, K. Carboxylate ligand-induced intramolecular C−H bond activation of iridium complexes with N-phenylperimidine-based carbene ligands. Organometallics, 2010, 29,, 4120-4129.
[http://dx.doi.org/10.1021/om100604u]
(b)Hill, A.F.; Ma, C.; McQueen, C.M.A.; Ward, J.S. Iridium complexes of perimidine-based N-heterocyclic carbene pincer ligands via aminal C-H activation. Dalton Trans., 2018, 47(5), 1577-1587.
[http://dx.doi.org/10.1039/C7DT04572G] [PMID: 29323365]
[89]
Lee, S.; Gabidullin, B.; Richeson, D. Distinct palladium (II) carbene complexes supported by six-membered 1, 3-disubstituted permidin-2-ylidene, six-membered N-heterocyclic carbenes. ACS Omega, 2018, 3(6), 6587-6594.
[http://dx.doi.org/10.1021/acsomega.8b00437] [PMID: 31458835]
[90]
Hill, A.F.; McQueen, C.M.A. Dihydroperimidine-derived N-heterocyclic pincer carbene complexes via double C–H activation. Organometallics, 2012, 31, 8051-8054.
[http://dx.doi.org/10.1021/om300897w]
[91]
Jung, I.G.; Son, S.U.; Park, K.H.; Chung, K-C.; Lee, J.W.; Chung, Y.K. Synthesis of novel Pd−NCN pincer complexes having additional nitrogen coordination sites and their application as catalysts for the Heck reaction. Organometallics, 2003, 22, 4715-4720.
[http://dx.doi.org/10.1021/om030371z]
[92]
Akınc, P.A.; Gülcemal, S.; Kazheva, O.N.; Alexandrov, G.G.; Dyachenko, O.A.; Çetinkaya, E.; Çetinkaya, B. Perimidin-2-ylidene rhodium (I) complexes; unexpected halogen exchange and catalytic activities in transfer hydrogenation reaction. J. Organomet. Chem., 2014, 765, 23-30.
[http://dx.doi.org/10.1016/j.jorganchem.2014.04.033]
[93]
Fu, Q.; Zhang, L.; Yi, T.; Zou, M.; Wang, X.; Fu, H.; Li, R.; Chen, H. Synthesis of ruthenium (II) complexes containing a dihydroperimidine-derived phosphine ligand and their application in transfer hydrogenation of ketones. Inorg. Chem. Commun., 2013, 38, 28-32.
[http://dx.doi.org/10.1016/j.inoche.2013.10.013]
[94]
Lam, R.H.; McQueen, C.M.A.; Pernik, I.; McBurney, R.T.; Hill, A.F.; Messerle, B.A. Selective formylation or methylation of amines using carbon dioxide catalysed by a rhodium perimidine-based NHC complex. Green Chem., 2018, 21, 538-549.
[http://dx.doi.org/10.1039/C8GC03094D]
[95]
Choi, G.; Tsurugi, H.; Mashima, K. Hemilabile N-xylyl-N'-methylperimidine carbene iridium complexes as catalysts for C-H activation and dehydrogenative silylation: dual role of N-xylyl moiety for ortho-C-H bond activation and reductive bond cleavage. J. Am. Chem. Soc., 2013, 135(35), 13149-13161.
[http://dx.doi.org/10.1021/ja406519u] [PMID: 23914836]
[96]
Alder, R.W.; Hyland, N.P.; Jeffery, J.C.; Riis-Johannessen, T.; Riley, D.J. Poly(1,1-bis(dialkylamino)propan-1,3-diyl)s; conformationally-controlled oligomers bearing electroactive groups. Org. Biomol. Chem., 2009, 7(13), 2704-2715.
[http://dx.doi.org/10.1039/b901060b] [PMID: 19532986]
[97]
Jeffreys, R.A. Perimidine dyes and intermediates. J. Chem. Soc., 1955, 1955, 2394-2397.
[http://dx.doi.org/10.1039/JR9550002394]
[98]
Malherbe, R.F. 2,3-Dihydroperimidines as antioxidants for lubricants. U.S Patent US4389321, June 21 1983.
[99]
(a)Ozeryanskii, V.A.; Vlasenko, M.P.; Pozharskii, A.F. ‘Proton sponge’ amides: unusual chemistry and conversion into superba sic 6,7- bis(dimethylamino)perimidines. Tetrahedron,, 2013, 69, 1919-1929.
[http://dx.doi.org/10.1016/j.tet.2012.12.040]
(b)Ozeryanskii, V.A.; Filatova, E.A.; Sorokin, V.I.; Pozharskii, A.F. peri-Naphthylenediamines. 31. Study of interconversion of 2,3-dihydroperi-midines and 1,8-bis(dialkylamino)naphthalenes. Convenient synthesis of 1,2,2,3-tertramethyl-2,3-dihydroperimidines and a monoisopropyl analog of the “proton sponge”. Russ. Chem. Bull., 2001, 50, 846-853.
[http://dx.doi.org/10.1023/A:1011359109826]
[100]
(a)Kharlanov, V. Photophysics of photochromic spiroperimidinecyclohexadienone J. Photochem. Photobiol. Chem.,, 1999, 122, 191-197.
[http://dx.doi.org/10.1016/S1010-6030(99)00031-3]
(b)Nyulászi, L.; Pasinszki, T.; Réffy, J.; Veszprémi, T.; Fabian, J.; Thiel, W. Photoelectron spectroscopic investigation of perimidine derivatives. Struct. Chem., 1990, 1, 367-370.
[http://dx.doi.org/10.1007/BF01374484]
[101]
(a)Sun, L.; Zhang, F.; Wang, X.; Qiu, F.; Xue, M.; Tregnago, G.; Cacialli, F.; Osella, S.; Beljonne, D.; Feng, X. Geometric and electronic structures of boron(III)-cored dyes tailored by incorporation of heteroatoms into ligands. Chem. Asian J.,, 2015, 10(3), 709-714.
[http://dx.doi.org/10.1002/asia.201403272] [PMID: 25663517]
(b)Fan, S.Y.; Xu, H.T.; Li, Q.G.; Fang, D.M.; Yu, W.H.; Xiang, S.K.; Hu, P.; Zhao, K.Q.; Feng, C.; Wang, B.Q. Discotic mesogens based on triphenylene-fused benzimidazole or perimidine: facile synthesis, mesomorphism, optical properties and self-assembly. Liq Cryst Liq, 2019, 47, 1041-1054.
[http://dx.doi.org/10.1080/02678292.2019.1704898]
[102]
Pandian, T.S.; Srinivasadesikan, V.; Lin, M.C.; Kang, J. Nitrite selective anion receptor based on 1-methyl-1H-perimidine. Tetrahedron, 2015, 71, 7782-7788.
[http://dx.doi.org/10.1016/j.tet.2015.02.091]
[103]
World Health Organization. Guidelines for Drinking-water Quality; WHO, 2011.
[104]
Pathirathna, P.; Yang, Y.; Forzley, K.; McElmurry, S.P.; Hashemi, P. Fast-scan deposition-stripping voltammetry at carbon-fiber microelectrodes: real-time, subsecond, mercury free measurements of copper. Anal. Chem., 2012, 84(15), 6298-6302.
[http://dx.doi.org/10.1021/ac301358r] [PMID: 22856609]
[105]
Gonzáles, A.P.S.; Firmino, M.A.; Nomura, C.S.; Rocha, F.R.P.; Oliveira, P.V.; Gaubeur, I. Peat as a natural solid-phase for copper preconcentration and determination in a multicommuted flow system coupled to flame atomic absorption spectrometry. Anal. Chim. Acta, 2009, 636(2), 198-204.
[http://dx.doi.org/10.1016/j.aca.2009.01.047] [PMID: 19264168]
[106]
Becker, J.S.; Zoriy, M.V.; Pickhardt, C.; Palomero-Gallagher, N.; Zilles, K. Imaging of copper, zinc, and other elements in thin section of human brain samples (hippocampus) by laser ablation inductively coupled plasma mass spectrometry. Anal. Chem., 2005, 77(10), 3208-3216.
[http://dx.doi.org/10.1021/ac040184q] [PMID: 15889910]
[107]
(a)Royzen, M.; Dai, Z.; Canary, J.W. Ratiometric displacement approach to Cu(II) sensing by fluorescence. J. Am. Chem. Soc.,, 2005, 127(6), 1612-1613.
[http://dx.doi.org/10.1021/ja0431051] [PMID: 15700975]
(b)Zhao, Y.; Zhang, X.B.; Han, Z.X.; Qiao, L.; Li, C.Y.; Jian, L.X.; Shen, G.L.; Yu, R.Q. Highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ in aqueous solution and living cells. Anal.Chem., 2009, 81(16), 7022-7030.
[http://dx.doi.org/10.1021/ac901127n] [PMID: 19634898]
(c)Lee, S.J.; Lee, J.E.; Seo, J. Optical sensor based on nanomaterial for the selective detection of toxic metal ions. Adv. Funct. Mater., 2007, 17, 3441-3446.
[http://dx.doi.org/10.1002/adfm.200601202]
[108]
Roy, D.; Chakraborty, A.; Ghosh, R. Perimidine based selective colorimetric and fluorescent turn-off chemosensor of aqueous Cu2+: studies on its antioxidant property along with its interaction with calf thymus-DNA. RSC Adv, 2017, 7, 40563-40570.
[http://dx.doi.org/10.1039/C7RA06687B]
[109]
Jakubek, M.; Kejík, Z.; Kaplánek, R.; Veselá, H.; Sýkora, D.; Martásek, P.; Král, V. Perimidine-based synthetic receptors for determination of copper (II) in water solution. Supramol. Chem., 2018, 30, 218-226.
[http://dx.doi.org/10.1080/10610278.2017.1414216]
[110]
Chakraborty, N.; Banik, S.; Chakraborty, A.; Bhattachary, S.K.; Das, S. Synthesis of a novel pyrene derived perimidine and exploration of its aggregation induced emission, aqueous copper ion sensing, effective antioxidant and BSA interaction properties. J. Photochem. Photobiol. Chem., 2019, 377, 236-246.
[http://dx.doi.org/10.1016/j.jphotochem.2019.03.014]
[111]
Gomes, A.; Fernandes, E.; Lima, J.L.F.C. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods, 2005, 65(2-3), 45-80.
[http://dx.doi.org/10.1016/j.jbbm.2005.10.003] [PMID: 16297980]
[112]
Shepherd, J.; Hilderbrand, S.A.; Waterman, P.; Heinecke, J.W.; Weissleder, R.; Libby, P. A fluorescent probe for the detection of myeloperoxidase activity in atherosclerosis-associated macrophages. Chem. Biol., 2007, 14(11), 1221-1231.
[http://dx.doi.org/10.1016/j.chembiol.2007.10.005] [PMID: 18022561]
[113]
Aoki, T.; Munemori, M. Continuous flow determination of free chlorine in water. Anal. Chem., 1983, 55, 209-212.
[http://dx.doi.org/10.1021/ac00253a010]
[114]
Hazen, S.L.; Hsu, F.F.; Duffin, K.; Heinecke, J.W. Molecular chlorine generated by the myeloperoxidase-hydrogen peroxide-chloride system of phagocytes converts low density lipoprotein cholesterol into a family of chlorinated sterols. J. Biol. Chem., 1996, 271(38), 23080-23088.
[http://dx.doi.org/10.1074/jbc.271.38.23080] [PMID: 8798498]
[115]
(a)Goswami, S.; Manna, A.; Paul, S.; Quah, C.K.; Fun, H-K. Rapid and ratiometric detection of hypochlorite with real application in tap water: molecules to low cost devices (TLC sticks). Chem. Commun. (Camb.),, 2013, 49((99)), 11656-11658.
[http://dx.doi.org/10.1039/c3cc47121g] [PMID: 24185489]
(b)Fan, J.; Mu, H.; Zhu, H.; Wang, J.; Peng, X. Light up ClO- in live cells using an aza-coumarin based fluorescent probe with fast response and high sensitivity. Analyst (Lond.), 2015, 140(13), 4594-4598.
[http://dx.doi.org/10.1039/C5AN00777A] [PMID: 25997521]
[116]
Shiraishi, Y.; Yamada, C.; Hirai, T. A coumarin-dihydroperimidine dye as a fluorescent chemosensor for hypochlorite in 99% water. RSC Adva, 2019, 9, 28636-28641.
[http://dx.doi.org/10.1039/C9RA05533A]
[117]
Entwistle, C.D.; Marder, T.B. Boron chemistry lights the way: optical properties of molecular and polymeric systems. Angew. Chem. Int. Ed. Engl., 2002, 41(16), 2927-2931.
[http://dx.doi.org/10.1002/1521-3773(20020816)41:16<2927:AID-ANIE2927>3.0.CO;2-L] [PMID: 12203415]
[118]
Mahapatra, A.K.; Maji, R.; Maiti, K.; Manna, S.K.; Mondal, S.; Mukhopadhyay, C.D.; Goswami, S.; Sarkar, D.; Mondal, T.K.; Quah, C.; Fun, H.K. Synthesis and anion sensing properties of novel N, O-chelated perimidine–BF complex. Sens. Actuators B Chem., 2014, 207, 878-886.
[http://dx.doi.org/10.1016/j.snb.2014.10.080]
[119]
Du¨rr, H.; Laurent, B. Photochromism-Molecules and Systems; Elsevier: Amsterdam, 1990.
[120]
Davis, R.; Tamaoki, N. Modulation of unconventional fluorescence of novel photochromic perimidine spirodimers. Chemistry, 2007, 13(2), 626-631.
[http://dx.doi.org/10.1002/chem.200600190] [PMID: 17004284]
[121]
(a)Mistol, J.; Ernst, S.; Keil, D.; Hennig, L. Structural studies of squaraines containing 2,3-dihydro-1H-perimidine terminal groups Dyes Pigm, 2015, 118,, 58-63.
[http://dx.doi.org/10.1016/j.dyepig.2015.02.019]
(b)Chen, W.Z.; Wei, H.Y.; Yang, D.Y. Visible light-sensitive properties of 1,2 -dimethyl-2-(2-nitrophenyl)-2,3-dihydro-1H-perimidine. Tetrahedron, 2013, 69, 2775-2781.
[http://dx.doi.org/10.1016/j.tet.2013.01.079]
[122]
Davis, R.; Tamaoki, N. Novel photochromic spiroheterocyclic molecules via oxidation of 1,8-diaminonaphthalene. Org. Lett., 2005, 7(8), 1461-1464.
[http://dx.doi.org/10.1021/ol050138s] [PMID: 15816727]
[123]
Bello, K.A.; Corns, S.N.; Griffiths, J. Near-infrared-absorbing squaraine dyes containing 2, 3-dihydroperimidine terminal groups. Chem. Commun., 1993, 1993, 452-454.
[http://dx.doi.org/10.1039/c39930000452]
[124]
Hsueh, S-Y.; Cheng, K-W.; Lai, C-C.; Chiu, S-H. Efficient solvent-free syntheses of [2]- and [4]rotaxanes. Angew. Chem. Int. Ed. Engl., 2008, 47(23), 4436-4439.
[http://dx.doi.org/10.1002/anie.200800530] [PMID: 18442154]
[125]
Butkute, R.; Lygaitis, R.; Gudeika, D.; Grazulevicius, J.V.; Obushak, M.D. Synthesis and properties of glass-forming 2-substituted perimidines. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2016, 640, 1-12.
[http://dx.doi.org/10.1080/15421406.2016.1255091]
[126]
He, X.; Mao, J.; Ma, Q.; Tang, Y. Corrosion inhibition of perimidine derivatives for mild steel in acidic media: electrochemical and computational studies. J. Mol. Liq., 2018, 269, 260-268.
[http://dx.doi.org/10.1016/j.molliq.2018.08.021]
[127]
(a)Kozyrev, A.; Ethirajan, M.; Chen, P.; Ohkubo, K.; Robinson, B.C.; Barkigia, K.M.; Fukuzumi, S.; Kadish, K.M.; Pandey, R.K. Synthesis, photophysical and electrochemistry of near-IR absorbing bacteriochlorins related to bacteriochlorophyll a J. Org. Chem, 2012, 77(22), 10260-10271.
[http://dx.doi.org/10.1021/jo301895p] [PMID: 23082726]
(b)Luthin, D.R.; Rabinovich, A.K.; Bhumralkar, D.R.; Youngblood, K.L.; Bychowski, R.A.; Dhanoa, D.S.; May, J.M. Synthesis and biological activity of oxo-7H-benzo[e]perimidine-4-carboxylic acid derivatives as potent, nonpeptide Corticotropin Releasing Factor (CRF) receptor antagonists. Bioorg.Med. Chem. Lett.,, 1999, 9(5), 765-770.
[http://dx.doi.org/10.1016/S0960-894X(99)00075-X] [PMID: 10201844]
(c)Braña,, M.F.; Garrido, M. LopezRodriguez, M.L; Morcillol, M.J.; Alvarez, Y.; Valladares, Y.; Klebe, G. Synthesis, structure and cytostatic activity of a series of 2-substituted perimidines Eur. J. Med. Chem, 1990, 25, 209-215..
[http://dx.doi.org/10.1016/0223-5234(90)90203-F]
(d)Alam, M.; Lee, D.U. Synthesis, spectroscopic and computational studies of 2-(thiophen-2-yl)-2,3-dihydro-1H-perimidine: an enzymes inhibition study. Comput. Biol. Chem., 2016, 64, 185-201.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.06.006] [PMID: 27398906]
[128]
Dzieduszycka, M.; Martelli, S.; Arciemiuk, M.; Bontemps-Gracz, M.M.; Kupiec, A.; Borowski, E. Effect of modification of 6-[(aminoalkyl)amino]-7H-benzo[e]-perimidin-7-ones on their cytotoxic activity toward sensitive and multidrug resistant tumor cell lines. Synthesis and biological evaluation. Bioorg. Med. Chem., 2002, 10(4), 1025-1035.
[http://dx.doi.org/10.1016/S0968-0896(01)00358-3] [PMID: 11836111]
[129]
Masaret, G.S.; Farghaly, T. A Synthesis of 8,10-disubstituted-triazoloperi-midines from (E)-3-(dimethylamino)-1-(8- phenyl-8H-[1,2,4]triazolo[4,3-a]perimidin-10-yl)prop-2-en-1-one and their antimicrobial activity. Curr. Org. Synth., 2018, 15, 126-136.
[http://dx.doi.org/10.2174/1570179414666170601121137]
[130]
Liu, K-C.; Chen, H-H.; Lin, Y-O. Synthesis and anorectic activity of thiazolo[3,2-a]perimidine. Arch. Pharm. (Weinheim), 1983, 316, 728-729.
[http://dx.doi.org/10.1002/ardp.19833160817] [PMID: 6615609]
[131]
(a)Farghaly, T.A.; Mahmoud, H.K. Site- and regioselectivity of the reaction of hydrazonoyl chlorides with perimidine ketene aminal. Antimicrobial evaluation of the products. J. Heterocyclic. Chem., 2015, 52, 86-91.
[http://dx.doi.org/10.1002/jhet.1985]
(b)Farghaly, T.A.; Abdallah, M.A.; Muhammad, Z.A. New 2-heterocyclic perimidines: synthesis and antimicrobial activity. Res. Chem. Intermed., 2015, 41, 3937-3947.
[http://dx.doi.org/10.1007/s11164-013-1501-9]
[132]
Varsha, G.; Arun, V.; Robinson, P.P.; Sebastian, M.; Varghese, D.; Leeju, P.; Jayachandran, V.P.; Yusuff, K.K.M. Two new fluorescent heterocyclic perimidines: first syntheses, crystal structure, and spectral characterization. Tetrahedron Lett., 2010, 51, 2174-2177.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.077]
[133]
Azam, M.; Warad, I. Al- Resayes, S.; Zahin, M.; Ahmad, I.; Shakir, M. Syntheses, physico‐chemical studies and antioxidant activities of transition metal complexes with a perimidine ligand. Z. Anorg. Allg. Chem., 2012, 638, 881-886.
[http://dx.doi.org/10.1002/zaac.201100561]
[134]
Bassyouni, F.A.; Abu-Bakr, S.M.; Hegab, K.H.; Eraky, W.E. -; Beih, A. A. E.; Rehim, M. E. A. Synthesis of new transition metal complexes of 1H-perimidine derivatives having antimicrobial and anti-inflammatory activities. Res. Chem. Intermed., 2012, 38, 1527-1550.
[http://dx.doi.org/10.1007/s11164-011-0482-9]
[135]
Zhang, H-J.; Wang, X-Z.; Cao, Q.; Gong, G-H.; Quan, Z-S. Design, synthesis, anti-inflammatory activity, and molecular docking studies of perimidine derivatives containing triazole. Bioorg. Med. Chem. Lett., 2017, 27(18), 4409-4414.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.014] [PMID: 28823493]
[136]
(a)Farghaly, T.A.; Abbas, E.M.H.; Dawood, K.M.; El-Naggar, T.B.A. Synthesis of 2-phenylazonaphtho[1,8-ef][1,4]diazepines and 9-(3-arylhydrazono) pyrrolo[1,2-a]perimidines as antitumor agents. Molecules,, 2014, 19(1), 740-755.
[http://dx.doi.org/10.3390/molecules19010740] [PMID: 24406785]
(b)Kumar, A.; Banerjee, S.; Roy, P.; Sondhi, S.M.; Sharma, A. Solvent-free synthesis and anticancer activity evaluation of benzimidazole and perimidine derivatives.Mol. Divers.,, 2018, 22(1), 113-127.
[http://dx.doi.org/10.1007/s11030-017-9790-3] [PMID: 29143160]
(c)Arya, K.; Dandia, A. Regioselective synthesis of biologically important scaffold spiro [indole-perimidines]: an antitumor agents. Lett. Org. Chem, 2007, 4, 378-383.
[http://dx.doi.org/10.2174/157017807781212175]
(d)Eldeab, H.A.; Eweas, A.F. A greener approach synthesis and docking studies of perimidine derivatives as potential anticancer agents. J. Heterocycl. Chem., 2018, 55, 431-439.
[http://dx.doi.org/10.1002/jhet.3059]
[137]
Suárez, R.M.; Bosch, P.; Sucunza, D.; Cuadro, A.M.; Domingo, A.; Mendicuti, F.; Vaquero, J.J. Targeting DNA with small molecules: a comparative study of a library of azonia aromatic chromophores. Org. Biomol. Chem., 2015, 13(2), 527-538.
[http://dx.doi.org/10.1039/C4OB01465K] [PMID: 25378061]
[138]
Kapuscinski, J.; Darzynkiewicz, Z.; Tráganos, F.; Melamed, M.R. Interactions of a new antitumor agent, 1,4-dihydroxy-5,8-bis[[2-[(2-hydroxyethyl)-amino]-ethyl]amino]-9,10-anthracenedione, with nucleic acids. Biochem. Pharmacol., 1981, 30(3), 231-240.
[http://dx.doi.org/10.1016/0006-2952(81)90083-6] [PMID: 7225141]
[139]
(a)Wasulko, W.; Noble, A.C.; Popp, F.D. Synthesis of potential antineoplastic agentsXIV. Some 2-substituted 2,3-dihydro-1h-perimidines J. Med.Chem.,, 1966, 9(4), 599-601.
[http://dx.doi.org/10.1021/jm00322a035] [PMID: 4165378]
(b)Popp, F.D.; Catala, A. Synthesis of potential antineoplastic agents. XI. Some 2‐aryl‐2,3‐dihydro‐1H‐perimidines and a perimidine mustard. J. Heterocycl. Chem., 1964, 1, 108-109.
[http://dx.doi.org/10.1002/jhet.5570010212]
[140]
Oehninger, L.; Küster, L.N.; Schmidt, C.; Muñoz-Castro, A.; Prokop, A.; Ott, I. A chemical-biological evaluation of rhodium(I) N-heterocyclic carbene complexes as prospective anticancer drugs. Chemistry, 2013, 19(52), 17871-17880.
[http://dx.doi.org/10.1002/chem.201302819] [PMID: 24243420]