Formulation Development and Evaluation of Novel Vesicular Carrier for Enhancement of Bioavailability of Poorly Soluble Drug

Page: [70 - 82] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Niosomes are a vesicular carrier system comprised of a Nonionic surfactant bilayer surrounding an aqueous compartment. Niosomes are presumed to raise the intake of the poorly water-soluble drugs by M cells of Peyer's patches present in the intestine's lymphatic tissues, thereby avoiding the first-pass metabolism and increasing its oral bioavailability. Biodegradability, nonimmunogenic nature, minimal side effects, low cost, good stability, and flexibility to incorporate hydrophilic and lipophilic drugs are other advantages of niosomes.

Objective: To formulate and evaluate a novel vesicular carrier system of a poorly soluble drug Lurasidone hydrochloride for the enhancement of its solubility and bioavailability.

Methods: The thin-film hydration technique used to prepare Lurasidone hydrochloride loaded niosomes using different grades of nonionic surfactants like Brij, Span, and Tween. They evaluated for particle size, zeta potential, percent entrapment efficiency, in-vitro drug release, and in-vivo study.

Results: Niosomes comprised of Brij S-100 in drug: cholesterol: surfactant (1:1:1) showed particle size (1.15 ± 0.21 μm) and percent entrapment efficiency (97.02 ± 0.21%) and was selected for further studies. Various pharmacokinetic parameters like Cmax (281.27ng/ml), Tmax (5 h), and AUC (2640.197) were found to be significantly improved compared to plain drug solution.

Conclusion: The Niosomal formulation could be the promising drug delivery system for the controlled and sustained release of Lurasidone.

Keywords: Niosomes, vesicular carrier, bioavailability enhancement, poorly soluble drug, lurasidone hydrochloride, schizophrenia.

Graphical Abstract

[1]
Kelly, S.; Jahanshad, N.; Zalesky, A.; Kochunov, P.; Agartz, I.; Alloza, C.; Andreassen, O.A.; Arango, C.; Banaj, N.; Bouix, S.; Bousman, C.A.; Brouwer, R.M.; Bruggemann, J.; Bustillo, J.; Cahn, W.; Calhoun, V.; Cannon, D.; Carr, V.; Catts, S.; Chen, J.; Chen, J.X.; Chen, X.; Chiapponi, C.; Cho, K.K.; Ciullo, V.; Corvin, A.S.; Crespo-Facorro, B.; Cropley, V.; De Rossi, P.; Diaz-Caneja, C.M.; Dickie, E.W.; Ehrlich, S.; Fan, F.M.; Faskowitz, J.; Fatouros-Bergman, H.; Flyckt, L.; Ford, J.M.; Fouche, J.P.; Fukunaga, M.; Gill, M.; Glahn, D.C.; Gollub, R.; Goudzwaard, E.D.; Guo, H.; Gur, R.E.; Gur, R.C.; Gurholt, T.P.; Hashimoto, R.; Hatton, S.N.; Henskens, F.A.; Hibar, D.P.; Hickie, I.B.; Hong, L.E.; Horacek, J.; Howells, F.M.; Hulshoff Pol, H.E.; Hyde, C.L.; Isaev, D.; Jablensky, A.; Jansen, P.R.; Janssen, J.; Jönsson, E.G.; Jung, L.A.; Kahn, R.S.; Kikinis, Z.; Liu, K.; Klauser, P.; Knöchel, C.; Kubicki, M.; Lagopoulos, J.; Langen, C.; Lawrie, S.; Lenroot, R.K.; Lim, K.O.; Lopez-Jaramillo, C.; Lyall, A.; Magnotta, V.; Mandl, R.C.W.; Mathalon, D.H.; McCarley, R.W.; McCarthy-Jones, S.; McDonald, C.; McEwen, S.; McIntosh, A.; Melicher, T.; Mesholam-Gately, R.I.; Michie, P.T.; Mowry, B.; Mueller, B.A.; Newell, D.T.; O’Donnell, P.; Oertel-Knöchel, V.; Oestreich, L.; Paciga, S.A.; Pantelis, C.; Pasternak, O.; Pearlson, G.; Pellicano, G.R.; Pereira, A.; Pineda Zapata, J.; Piras, F.; Potkin, S.G.; Preda, A.; Rasser, P.E.; Roalf, D.R.; Roiz, R.; Roos, A.; Rotenberg, D.; Satterthwaite, T.D.; Savadjiev, P.; Schall, U.; Scott, R.J.; Seal, M.L.; Seidman, L.J.; Shannon Weickert, C.; Whelan, C.D.; Shenton, M.E.; Kwon, J.S.; Spalletta, G.; Spaniel, F.; Sprooten, E.; Stäblein, M.; Stein, D.J.; Sundram, S.; Tan, Y.; Tan, S.; Tang, S.; Temmingh, H.S.; Westlye, L.T.; Tønnesen, S.; Tordesillas-Gutierrez, D.; Doan, N.T.; Vaidya, J.; van Haren, N.E.M.; Vargas, C.D.; Vecchio, D.; Velakoulis, D.; Voineskos, A.; Voyvodic, J.Q.; Wang, Z.; Wan, P.; Wei, D.; Weickert, T.W.; Whalley, H.; White, T.; Whitford, T.J.; Wojcik, J.D.; Xiang, H.; Xie, Z.; Yamamori, H.; Yang, F.; Yao, N.; Zhang, G.; Zhao, J.; van Erp, T.G.M.; Turner, J.; Thompson, P.M.; Donohoe, G. Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA schizophrenia DTI working group. Mol. Psychiatry, 2018, 23(5), 1261-1269.
[http://dx.doi.org/10.1038/mp.2017.170] [PMID: 29038599]
[2]
Crowe, L.M.; Crowe, J.H.; Rudolph, A.; Womersley, C.; Appel, L. Preservation of freeze-dried liposomes by trehalose. Arch. Biochem. Biophys., 1985, 242(1), 240-247.
[http://dx.doi.org/10.1016/0003-9861(85)90498-9] [PMID: 4051504]
[3]
Findlay, L.J.; El-Mallakh, P.; El-Mallakh, R.S. Management of bipolar I depression: clinical utility of lurasidone. Ther. Clin. Risk Manag., 2015, 11, 75-81.
[PMID: 25609973]
[4]
Li, P.; Snyder, G.L.; Vanover, K.E. Dopamine targeting drugs for treatment of schizophrenia: past, present and future. Curr. Top. Med. Chem., 2016, 16(29), 3385-3403.
[http://dx.doi.org/10.2174/1568026616666160608084834] [PMID: 27291902]
[5]
Arka, B.; Goutam, M. Double emulsions - A review with emphasis on updated stability enhancement perspective. World J. Pharm. Pharm. Sci., 2018, 7(6), 475.
[6]
Cosco, D.; Paolino, D.; Muzzalupo, R.; Celia, C.; Citraro, R.; Caponio, D.; Picci, N.; Fresta, M. Novel PEG-coated niosomes based on bola-surfactant as drug carriers for 5-fluorouracil. Biomed. Microdevices, 2009, 11(5), 1115-1125.
[http://dx.doi.org/10.1007/s10544-009-9328-2] [PMID: 19507033]
[7]
Rentel, CO; Bouwstra, JA; Naisbett, B; Junginger, HE Niosomes as a novel peroral vaccine delivery system. Int J Pharm, 1999, 7, 161.
[http://dx.doi.org/10.1016/S0378-5173(99)00167-2]
[8]
Rageeb, U.; Prasanna, R.; Bharat, V. Niosomes: A novel trend of drug delivery. Eur J Biomed Pharm Sci, 2017, 4, 436-442.
[9]
Veldurthi, R.; Abbaraju, K. Formulation and evaluation of Etoricoxib niosomes by thin film hydration technique and ether ejection method. Nano Biomed. Eng., 2017, 9(3), 242-248.
[10]
Bayindir, Z.S.; Yuksel, N. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. J. Pharm. Sci., 2010, 99(4), 2049-2060.
[http://dx.doi.org/10.1002/jps.21944] [PMID: 19780133]
[11]
Ruckmani, K.; Sankar, V. Formulation and optimization of Zidovudine niosomes. AAPS PharmSciTech, 2010, 11(3), 1119-1127.
[http://dx.doi.org/10.1208/s12249-010-9480-2] [PMID: 20635228]
[12]
Shilakari Asthana, G.; Sharma, P.K.; Asthana, A. In Vitro and In Vivo Evaluation of niosomal formulation for controlled delivery of clarithromycin. Scientifica (Cairo), 2016, 2016, 6492953.
[http://dx.doi.org/10.1155/2016/6492953] [PMID: 27293976]
[13]
Bansal, S.; Aggarwal, G.; Chandel, P.; Harikumar, S.L. Design and development of cefdinir niosomes for oral delivery. J. Pharm. Bioallied Sci., 2013, 5(4), 318-325.
[http://dx.doi.org/10.4103/0975-7406.120080] [PMID: 24302841]
[14]
Sahoo, R.K.; Biswas, N.; Guha, A.; Sahoo, N.; Kuotsu, K. Development and in vitro/in vivo evaluation of controlled release provesicles of a nateglinide-maltodextrin complex. Acta Pharm. Sin. B, 2014, 4(5), 408-416.
[http://dx.doi.org/10.1016/j.apsb.2014.08.001] [PMID: 26579411]
[15]
Patel, M.H.; Mundada, V.P.; Sawant, K.K. Fabrication of solid lipid nanoparticles of lurasidone HCl for oral delivery: optimization, in vitro characterization, cell line studies and in vivo efficacy in schizophrenia. Drug Dev. Ind. Pharm., 2019, 45(8), 1242-1257.
[http://dx.doi.org/10.1080/03639045.2019.1593434] [PMID: 30880488]
[16]
Kamboj, S.; Saini, V.; Bala, S. Formulation and characterization of drug loaded nonionic surfactant vesicles (niosomes) for oral bioavailability enhancement. Sci World J, 2014, 2014, 959741.
[http://dx.doi.org/10.1155/2014/959741] [PMID: 24672401]
[17]
Aranya, M.; Parveena, W.; Jiradej, M. Characterization of vesicles prepared with various nonionic surfactants mixed with cholesterol. Colloids Surf., 2003, 30, 129-138.
[http://dx.doi.org/10.1016/S0927-7765(03)00080-8]