From Endodontic Therapy to Regenerative Endodontics: New Wine in Old Bottles

Page: [577 - 588] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

The concept of regenerative endodontics wherein one can replace damaged pulp structures and recuperate the functionality in erstwhile necrotic and infected root canal systems has been a cutting-edge technology. Though the notion started as early as the 1960s, even before the discovery of stem cells and regenerative medicine, it was in the 2000s that this procedure gained momentum. Ever since then, researchers continue to discover its essential benefit to immature teeth and its ability to overcome the caveats of endodontic therapy, which is commonly known as root canal treatment. Further, through this therapy, one can redevelop root even in immature teeth with necrotic pulps, which overall helps in maintaining skeletal and dental development. Past literature indicates that regenerative endodontic procedures seem to be successful, especially when compared with other conventional techniques such as Mineral Trioxide Aggregate apexification. Besides, many clinicians have begun to apply regenerative endodontic procedures to mature teeth in adult patients, with several clinical case reports that have shown complete resolution of signs and symptoms of pulp necrosis. Generally, the three most desirable outcomes anticipated by clinicians from this procedure include resolution of clinical signs and symptoms, root maturation and redevelopment of the neurogenesis process. Despite this, whether these objectives and true regeneration of the pulp/dentin complex are achieved is still a question mark. Following the discovery that regenerative endodontics indeed is a stem cell-based treatment, addressing the fundamental issue surrounding stem cells might assist in achieving all identified clinical outcomes while favoring tissue formation that closely resembles the pulp-dentin complex.

Keywords: Dental pulp stem cells, immature teeth, mature teeth, pulpectomy, pulpotomy, apexification.

[1]
Loewenstein WR, Rathkamp R. A study on the pressoreceptive sensibility of the tooth. J Dent Res 1955; 34(2): 287-94.
[http://dx.doi.org/10.1177/00220345550340021701] [PMID: 14367626]
[2]
Linden RW. Touch thresholds of vital and nonvital human teeth. Exp Neurol 1975; 48(2): 387-90.
[http://dx.doi.org/10.1016/0014-4886(75)90166-1] [PMID: 1149862]
[3]
Cadden SW, Lisney SJ, Matthews B. Thresholds to electrical stimulation of nerves in cat canine tooth-pulp with A beta-, A delta- and C-fibre conduction velocities. Brain Res 1983; 261(1): 31-41.
[http://dx.doi.org/10.1016/0006-8993(83)91280-5] [PMID: 6301627]
[4]
Chudler EH, Dong WK, Kawakami Y. Tooth pulp-evoked potentials in the monkey: Cortical surface and intracortical distribution. Pain 1985; 22(3): 221-33.
[http://dx.doi.org/10.1016/0304-3959(85)90022-3] [PMID: 4034222]
[5]
Dong WK, Chudler EH. Origins of tooth pulp-evoked far-field and early near-field potentials in the cat. J Neurophysiol 1984; 51(5): 859-89.
[http://dx.doi.org/10.1152/jn.1984.51.5.859] [PMID: 6726315]
[6]
Kubo K, Shibukawa Y, Shintani M, Suzuki T, Ichinohe T, Kaneko Y. Cortical representation area of human dental pulp. J Dent Res 2008; 87(4): 358-62.
[http://dx.doi.org/10.1177/154405910808700409] [PMID: 18362319]
[7]
Robertson LT, Levy JH, Petrisor D, Lilly DJ, Dong WK. Vibration perception thresholds of human maxillary and mandibular central incisors. Arch Oral Biol 2003; 48(4): 309-16.
[http://dx.doi.org/10.1016/S0003-9969(03)00006-2] [PMID: 12663076]
[8]
Petrisor D, Ed. Tactile thresholds of human mandibular and maxillary incisors. J Dent Res 2002; 81: A397.
[9]
Levy J, Ed. Possible role of intradental afferents in the methanoreception of tooth contacts in humans. J Dent Res 2002; 81: A396.
[10]
Levy J, Robertson L, Lilly D. Low frequency vibration thresholds of human maxillary central incisors. J Dent Res 2003; 82: 1110.
[11]
Aquilino SA, Caplan DJ. Relationship between crown placement and the survival of endodontically treated teeth. J Prosthet Dent 2002; 87(3): 256-63.
[http://dx.doi.org/10.1067/mpr.2002.122014] [PMID: 11941351]
[12]
Östby BN. The role of the blood clot in endodontic therapy. An experimental histologic study. Acta Odontol Scand 1961; 19(3-4): 324-53.
[http://dx.doi.org/10.3109/00016356109043395] [PMID: 14482575]
[13]
Nygaard-Ostby B, Hjortdal O. Tissue formation in the root canal following pulp removal. Scand J Dent Res 1971; 79(5): 333-49.
[http://dx.doi.org/10.1111/j.1600-0722.1971.tb02019.x] [PMID: 5315973]
[14]
Banchs F, Trope M. Revascularization of immature permanent teeth with apical periodontitis: New treatment protocol? J Endod 2004; 30(4): 196-200.
[http://dx.doi.org/10.1097/00004770-200404000-00003] [PMID: 15085044]
[15]
Kvinnsland SR, Bårdsen A, Fristad I. Apexogenesis after initial root canal treatment of an immature maxillary incisor - a case report. Int Endod J 2010; 43(1): 76-83.
[http://dx.doi.org/10.1111/j.1365-2591.2009.01645.x] [PMID: 20002804]
[16]
Trope M. Regenerative potential of dental pulp. J Endod 2008; 34(7)(Suppl.): S13-7.
[http://dx.doi.org/10.1016/j.joen.2008.04.001] [PMID: 18565365]
[17]
Lenzi R, Trope M. Revitalization procedures in two traumatized incisors with different biological outcomes. J Endod 2012; 38(3): 411-4.
[http://dx.doi.org/10.1016/j.joen.2011.12.003] [PMID: 22341086]
[18]
Paryani K, Kim SG. Regenerative endodontic treatment of permanent teeth after completion of root development: A report of 2 cases. J Endod 2013; 39(7): 929-34.
[http://dx.doi.org/10.1016/j.joen.2013.04.029] [PMID: 23791266]
[19]
Nagas E, Uyanik MO, Cehreli ZC. Revitalization of necrotic mature permanent incisors with apical periodontitis: A case report. Restor Dent Endod 2018; 43(3): e31.
[http://dx.doi.org/10.5395/rde.2018.43.e31] [PMID: 30135850]
[20]
Shabahang S. Treatment options: Apexogenesis and apexification. J Endod 2013; 39(3)(Suppl.): S26-9.
[http://dx.doi.org/10.1016/j.joen.2012.11.046] [PMID: 23439042]
[21]
Dimitriu B, Vârlan C, Suciu I, Vârlan V, Bodnar D. Current considerations concerning endodontically treated teeth: Alteration of hard dental tissues and biomechanical properties following endodontic therapy. J Med Life 2009; 2(1): 60-5.
[PMID: 20108492]
[22]
Kanwal A, et al. The Current Status of Stem Cell Regeneration in Intra Oral Applications A Systematic Review. Open Journal of Stomatology 2017; 7(4): 197-224.
[23]
Ito T, Kaneko T, Sueyama Y, Kaneko R, Okiji T. Dental pulp tissue engineering of pulpotomized rat molars with bone marrow mesenchymal stem cells. Odontology 2017; 105(4): 392-7.
[http://dx.doi.org/10.1007/s10266-016-0283-0] [PMID: 27848099]
[24]
Chen YJ, Zhao YH, Zhao YJ, et al. Potential dental pulp revascularization and odonto-/osteogenic capacity of a novel transplant combined with dental pulp stem cells and platelet-rich fibrin. Cell Tissue Res 2015; 361(2): 439-55.
[http://dx.doi.org/10.1007/s00441-015-2125-8] [PMID: 25797716]
[25]
Dissanayaka WL, Hargreaves KM, Jin L, Samaranayake LP, Zhang C. The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogel on angiogenesis and pulp regeneration in vivo. Tissue Eng Part A 2015; 21(3-4): 550-63.
[http://dx.doi.org/10.1089/ten.tea.2014.0154] [PMID: 25203774]
[26]
Kuang R, Zhang Z, Jin X, et al. Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp. Acta Biomater 2016; 33: 225-34.
[http://dx.doi.org/10.1016/j.actbio.2016.01.032] [PMID: 26826529]
[27]
Choung HW, Lee JH, Lee DS, Choung PH, Park JC. The role of preameloblast-conditioned medium in dental pulp regeneration. J Mol Histol 2013; 44(6): 715-21.
[http://dx.doi.org/10.1007/s10735-013-9513-8] [PMID: 23673900]
[28]
Syed-Picard FN, Ray HL Jr, Kumta PN, Sfeir C. Scaffoldless tissue-engineered dental pulp cell constructs for endodontic therapy. J Dent Res 2014; 93(3): 250-5.
[http://dx.doi.org/10.1177/0022034513517901] [PMID: 24401375]
[29]
Jia W, Zhao Y, Yang J, et al. Simvastatin promotes dental pulp stem cell-induced coronal pulp regeneration in pulpotomized teeth. J Endod 2016; 42(7): 1049-54.
[http://dx.doi.org/10.1016/j.joen.2016.03.007] [PMID: 27207592]
[30]
Tsutsui TW. In vivo stem cell transplantation using reduced cell numbers. Methods Mol Biol 2015; 1212: 201-7.
[http://dx.doi.org/10.1007/7651_2014_120] [PMID: 25208754]
[31]
Sui B, Chen C, Kou X, et al. Pulp stem cell-mediated functional pulp regeneration. J Dent Res 2019; 98(1): 27-35.
[http://dx.doi.org/10.1177/0022034518808754] [PMID: 30372659]
[32]
Ishizaka R, Hayashi Y, Iohara K, et al. Stimulation of angiogenesis, neurogenesis and regeneration by side population cells from dental pulp. Biomaterials 2013; 34(8): 1888-97.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.045] [PMID: 23245334]
[33]
Wang Y, Zhao Y, Jia W, Yang J, Ge L. Preliminary study on dental pulp stem cell-mediated pulp regeneration in canine immature permanent teeth. J Endod 2013; 39(2): 195-201.
[http://dx.doi.org/10.1016/j.joen.2012.10.002] [PMID: 23321230]
[34]
Jung C, Kim S, Sun T, Cho YB, Song M. Pulp-dentin regeneration: Current approaches and challenges. J Tissue Eng 2019; 10: 2041731418819263.
[http://dx.doi.org/10.1177/2041731418819263] [PMID: 30728935]
[35]
Jung IY, Lee SJ, Hargreaves KM. Biologically based treatment of immature permanent teeth with pulpal necrosis: A case series. J Endod 2008; 34(7): 876-87.
[http://dx.doi.org/10.1016/j.joen.2008.03.023] [PMID: 18571000]
[36]
Torabinejad M, Faras H, Corr R, Wright KR, Shabahang S. Histologic examinations of teeth treated with 2 scaffolds: A pilot animal investigation. J Endod 2014; 40(4): 515-20.
[http://dx.doi.org/10.1016/j.joen.2013.12.025] [PMID: 24666902]
[37]
Surendran S, Sivamurthy G. Current applications and future prospects of stem cells in dentistry. Dent Update 2015; 42(6): 555-8.
[http://dx.doi.org/10.12968/denu.2015.42.6.556]
[38]
Shiehzadeh V, Aghmasheh F, Shiehzadeh F, Joulae M, Kosarieh E, Shiehzadeh F. Healing of large periapical lesions following delivery of dental stem cells with an injectable scaffold: New method and three case reports. Indian J Dent Res 2014; 25(2): 248-53.
[http://dx.doi.org/10.4103/0970-9290.135937] [PMID: 24992862]
[39]
Nakashima M, Iohara K, Murakami M, et al. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: A pilot clinical study. Stem Cell Res Ther 2017; 8(1): 61.
[http://dx.doi.org/10.1186/s13287-017-0506-5] [PMID: 28279187]
[40]
Xuan K, Li B, Guo H, et al. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Sci Transl Med 2018; 10(455): eaaf3227.
[http://dx.doi.org/10.1126/scitranslmed.aaf3227] [PMID: 30135248]
[41]
Torabinejad M, Turman M. Revitalization of tooth with necrotic pulp and open apex by using platelet-rich plasma: A case report. J Endod 2011; 37(2): 265-8.
[http://dx.doi.org/10.1016/j.joen.2010.11.004] [PMID: 21238815]
[42]
Martin G, Ricucci D, Gibbs JL, Lin LM. Histological findings of revascularized/revitalized immature permanent molar with apical periodontitis using platelet-rich plasma. J Endod 2013; 39(1): 138-44.
[http://dx.doi.org/10.1016/j.joen.2012.09.015] [PMID: 23228274]
[43]
Zhu X, Wang Y, Liu Y, Huang GT, Zhang C. Immunohistochemical and histochemical analysis of newly formed tissues in root canal space transplanted with dental pulp stem cells plus platelet-rich plasma. J Endod 2014; 40(10): 1573-8.
[http://dx.doi.org/10.1016/j.joen.2014.05.010] [PMID: 25260728]
[44]
Torabinejad M, Milan M, Shabahang S, Wright KR, Faras H. Histologic examination of teeth with necrotic pulps and periapical lesions treated with 2 scaffolds: An animal investigation. J Endod 2015; 41(6): 846-52.
[http://dx.doi.org/10.1016/j.joen.2015.01.026] [PMID: 25749255]
[45]
Rodríguez-Benítez S, Stambolsky C, Gutiérrez-Pérez JL, Torres-Lagares D, Segura-Egea JJ. Pulp revascularization of immature dog teeth with apical periodontitis using triantibiotic paste and platelet-rich plasma: A radiographic study. J Endod 2015; 41(8): 1299-304.
[http://dx.doi.org/10.1016/j.joen.2015.05.002] [PMID: 26081268]
[46]
Bezgin T, Yilmaz AD, Celik BN, Kolsuz ME, Sonmez H. Efficacy of platelet-rich plasma as a scaffold in regenerative endodontic treatment. J Endod 2015; 41(1): 36-44.
[http://dx.doi.org/10.1016/j.joen.2014.10.004] [PMID: 25459571]
[47]
Farea M, Husein A, Halim AS, et al. Synergistic effects of chitosan scaffold and TGFβ1 on the proliferation and osteogenic differentiation of dental pulp stem cells derived from human exfoliated deciduous teeth. Arch Oral Biol 2014; 59(12): 1400-11.
[http://dx.doi.org/10.1016/j.archoralbio.2014.08.015] [PMID: 25222336]
[48]
He X, Chen WX, Ban G, et al. A new method to develop human dental pulp cells and platelet-rich fibrin complex. J Endod 2016; 42(11): 1633-40.
[http://dx.doi.org/10.1016/j.joen.2016.08.011] [PMID: 27788772]
[49]
Woo SM, Kim WJ, Lim HS, et al. Combination of mineral trioxide aggregate and platelet-rich fibrin promotes the odontoblastic differentiation and mineralization of human dental pulp cells via BMP/Smad signaling pathway. J Endod 2016; 42(1): 82-8.
[http://dx.doi.org/10.1016/j.joen.2015.06.019] [PMID: 26364004]
[50]
Shivashankar VY, Johns DA, Maroli RK, et al. Comparison of the effect of PRP, PRF and induced bleeding in the revascularization of teeth with necrotic pulp and open apex: A triple blind randomized clinical trial. J Clin Diagn Res 2017; 11(6): ZC34-9.
[http://dx.doi.org/10.7860/JCDR/2017/22352.10056] [PMID: 28765825]
[51]
Dianat O, Mashhadi Abas F, Paymanpour P, Eghbal MJ, Haddadpour S, Bahrololumi N. Endodontic repair in immature dogs’ teeth with apical periodontitis: Blood clot vs plasma rich in growth factors scaffold. Dent Traumatol 2017; 33(2): 84-90.
[http://dx.doi.org/10.1111/edt.12306] [PMID: 27687583]
[52]
Kwon YS, Kim HJ, Hwang YC, Rosa V, Yu MK, Min KS. Effects of epigallocatechin gallate, an antibacterial cross-linking agent, on proliferation and differentiation of human dental pulp cells cultured in collagen scaffolds. J Endod 2017; 43(2): 289-96.
[http://dx.doi.org/10.1016/j.joen.2016.10.017] [PMID: 28132713]
[53]
Huang C-C, Narayanan R, Warshawsky N, Ravindran S. Dual ECM biomimetic scaffolds for dental pulp regenerative applications. Front Physiol 2018; 9(495): 495.
[http://dx.doi.org/10.3389/fphys.2018.00495] [PMID: 29887803]
[54]
Chen G, Chen J, Yang B, et al. Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration. Biomaterials 2015; 52: 56-70.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.011] [PMID: 25818413]
[55]
Liao F, Chen Y, Li Z, et al. A novel bioactive three-dimensional beta-tricalcium phosphate/chitosan scaffold for periodontal tissue engineering. J Mater Sci Mater Med 2010; 21(2): 489-96.
[http://dx.doi.org/10.1007/s10856-009-3931-x] [PMID: 19908128]
[56]
AbdulQader ST, Rahman IA, Thirumulu KP, Ismail H, Mahmood Z. Effect of biphasic calcium phosphate scaffold porosities on odontogenic differentiation of human dental pulp cells. J Biomater Appl 2016; 30(9): 1300-11.
[http://dx.doi.org/10.1177/0885328215625759] [PMID: 26740503]
[57]
Bordini EAF, Cassiano FB, Silva ISP, et al. Synergistic potential of 1α,25-dihydroxyvitamin D3 and calcium-aluminate-chitosan scaffolds with dental pulp cells. Clin Oral Investig 2020; 24(2): 663-74.
[http://dx.doi.org/10.1007/s00784-019-02906-z] [PMID: 31119382]
[58]
Sancilio S, Gallorini M, Di Nisio C, et al. Alginate/Hydroxyapatite-based nanocomposite scaffolds for bone tissue engineering improve dental pulp biomineralization and differentiation. Stem Cells Int 2018; 2018: 9643721.
[http://dx.doi.org/10.1155/2018/9643721] [PMID: 30154869]
[59]
AbdulQader ST, Kannan TP, Rahman IA, Ismail H, Mahmood Z. Effect of different calcium phosphate scaffold ratios on odontogenic differentiation of human dental pulp cells. Mater Sci Eng C 2015; 49: 225-33.
[http://dx.doi.org/10.1016/j.msec.2014.12.070] [PMID: 25686943]
[60]
Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials 2006; 27(19): 3675-83.
[PMID: 16519932]
[61]
Sackett SD, Tremmel DM, Ma F, et al. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Sci Rep 2018; 8(1): 10452.
[http://dx.doi.org/10.1038/s41598-018-28857-1] [PMID: 29993013]
[62]
Smith LR, Cho S, Discher DE. Stem cell differentiation is regulated by extracellular matrix mechanics. Physiology 2018; 33(1): 16-25.
[http://dx.doi.org/10.1152/physiol.00026.2017] [PMID: 29212889]
[63]
Matoug-Elwerfelli M, Duggal MS, Nazzal H, Esteves F, Raïf E. A biocompatible decellularized pulp scaffold for regenerative endodontics. Int Endod J 2018; 51(6): 663-73.
[http://dx.doi.org/10.1111/iej.12882] [PMID: 29197101]
[64]
Pina S, Ribeiro VP, Marques CF, et al. Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials 2019; 12(11): 1824.
[http://dx.doi.org/10.3390/ma12111824] [PMID: 31195642]
[65]
Faulk DM, Wildemann JD, Badylak SF. Decellularization and cell seeding of whole liver biologic scaffolds composed of extracellular matrix. J Clin Exp Hepatol 2015; 5(1): 69-80.
[http://dx.doi.org/10.1016/j.jceh.2014.03.043] [PMID: 25941434]
[66]
Uriel S, Labay E, Francis-Sedlak M, et al. Extraction and assembly of tissue-derived gels for cell culture and tissue engineering. Tissue Eng Part C Methods 2009; 15(3): 309-21.
[http://dx.doi.org/10.1089/ten.tec.2008.0309] [PMID: 19115821]
[67]
Stendahl JC, Kaufman DB, Stupp SI. Extracellular matrix in pancreatic islets: Relevance to scaffold design and transplantation. Cell Transplant 2009; 18(1): 1-12.
[http://dx.doi.org/10.3727/096368909788237195] [PMID: 19476204]
[68]
Hu L, Gao Z, Xu J, et al. Decellularized swine dental pulp as a bioscaffold for pulp regeneration. BioMed Res Int 2017; 2017: 9342714.
[http://dx.doi.org/10.1155/2017/9342714] [PMID: 29387727]
[69]
Atala A, Kasper FK, Mikos AG. Engineering complex tissues. Science Translational Medicine 2012; 4(160)
[http://dx.doi.org/10.1126/scitranslmed.3004890]
[70]
Niklason LE. Understanding the extracellular matrix to enhance stem cell-based tissue regeneration. Cell Stem Cell 2018; 22(3): 302-5.
[http://dx.doi.org/10.1016/j.stem.2018.02.001] [PMID: 29499149]
[71]
Chen FM, Liu X. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci 2016; 53: 86-168.
[http://dx.doi.org/10.1016/j.progpolymsci.2015.02.004] [PMID: 27022202]
[72]
Huang GTJ. Dental pulp and dentin tissue engineering and regeneration: Advancement and challenge. Front Biosci (Elite Ed) 2011; 3: 788-800.
[http://dx.doi.org/10.2741/e286] [PMID: 21196351]
[73]
Song JS, Takimoto K, Jeon M, Vadakekalam J, Ruparel NB, Diogenes A. Decellularized human dental pulp as a scaffold for regenerative endodontics. J Dent Res 2017; 96(6): 640-6.
[http://dx.doi.org/10.1177/0022034517693606] [PMID: 28196330]
[74]
Exposito JY, D’Alessio M, Solursh M, Ramirez F. Sea urchin collagen evolutionarily homologous to vertebrate pro-α 2(I) collagen. J Biol Chem 1992; 267(22): 15559-62.
[PMID: 1639795]
[75]
Constantinou CD, Jimenez SA. Structure of cDNAs encoding the triple-helical domain of murine α 2 (VI) collagen chain and comparison to human and chick homologues. Use of polymerase chain reaction and partially degenerate oligonucleotide for generation of novel cDNA clones. Matrix 1991; 11(1): 1-9.
[http://dx.doi.org/10.1016/S0934-8832(11)80221-0] [PMID: 1709252]
[76]
Dalgliesh AJ, Parvizi M, Lopera-Higuita M, Shklover J, Griffiths LG. Graft-specific immune tolerance is determined by residual antigenicity of xenogeneic extracellular matrix scaffolds. Acta Biomater 2018; 79: 253-64.
[http://dx.doi.org/10.1016/j.actbio.2018.08.016] [PMID: 30130615]
[77]
Wong ML, Griffiths LG. Immunogenicity in xenogeneic scaffold generation: Antigen removal vs. decellularization. Acta Biomater 2014; 10(5): 1806-16.
[http://dx.doi.org/10.1016/j.actbio.2014.01.028] [PMID: 24486910]
[78]
Mastrolia I, Foppiani EM, Murgia A, et al. Challenges in clinical development of mesenchymal stromal/stem cells: Concise review. Stem Cells Transl Med 2019; 8(11): 1135-48.
[http://dx.doi.org/10.1002/sctm.19-0044] [PMID: 31313507]
[79]
Nekanti U, Rao VB, Bahirvani AG, Jan M, Totey S, Ta M. Long-term expansion and pluripotent marker array analysis of Wharton’s jelly-derived mesenchymal stem cells. Stem Cells Dev 2010; 19(1): 117-30.
[http://dx.doi.org/10.1089/scd.2009.0177] [PMID: 19619003]
[80]
Lei G, Yu Y, Jiang Y, et al. Differentiation of BMMSCs into odontoblast-like cells induced by natural dentine matrix. Arch Oral Biol 2013; 58(7): 862-70.
[http://dx.doi.org/10.1016/j.archoralbio.2013.01.002] [PMID: 23414708]
[81]
Zhang LX, Shen LL, Ge SH, et al. Systemic BMSC homing in the regeneration of pulp-like tissue and the enhancing effect of stromal cell-derived factor-1 on BMSC homing. Int J Clin Exp Pathol 2015; 8(9): 10261-71.
[PMID: 26617734]
[82]
Chen Y, Yu Y, Chen L, et al. Human umbilical cord mesenchymal stem cells: A new therapeutic option for tooth regeneration. Stem Cells Int 2015; 2015: 549432.
[http://dx.doi.org/10.1155/2015/549432] [PMID: 26136785]
[83]
Li TX, Yuan J, Chen Y, et al. Differentiation of mesenchymal stem cells from human umbilical cord tissue into odontoblast-like cells using the conditioned medium of tooth germ cells in vitro. BioMed Res Int 2013; 2013: 218543.
[http://dx.doi.org/10.1155/2013/218543] [PMID: 23762828]
[84]
Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 2005; 8(3): 191-9.
[http://dx.doi.org/10.1111/j.1601-6343.2005.00331.x] [PMID: 16022721]
[85]
Huang GT, Sonoyama W, Liu Y, Liu H, Wang S, Shi S. The hidden treasure in apical papilla: The potential role in pulp/dentin regeneration and bioroot engineering. J Endod 2008; 34(6): 645-51.
[http://dx.doi.org/10.1016/j.joen.2008.03.001] [PMID: 18498881]
[86]
Kerkis I, Caplan AI. Stem cells in dental pulp of deciduous teeth. Tissue Eng Part B Rev 2012; 18(2): 129-38.
[http://dx.doi.org/10.1089/ten.teb.2011.0327] [PMID: 22032258]
[87]
Ganguly P, El-Jawhari JJ, Giannoudis PV, Burska AN, Ponchel F, Jones EA. Age-related changes in bone marrow mesenchymal stromal cells: A potential impact on osteoporosis and osteoarthritis development. Cell Transplant 2017; 26(9): 1520-9.
[http://dx.doi.org/10.1177/0963689717721201] [PMID: 29113463]
[88]
Yamanaka S. Induced pluripotent stem cells: Past, present, and future. Cell Stem Cell 2012; 10(6): 678-84.
[http://dx.doi.org/10.1016/j.stem.2012.05.005] [PMID: 22704507]
[89]
Baldari S, Di Rocco G, Piccoli M, Pozzobon M, Muraca M, Toietta G. Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies. Int J Mol Sci 2017; 18(10): 2087.
[http://dx.doi.org/10.3390/ijms18102087] [PMID: 28974046]
[90]
García-Sánchez D, Fernández D, Rodríguez-Rey JC, Pérez-Campo FM. Enhancing survival, engraftment, and osteogenic potential of mesenchymal stem cells. World J Stem Cells 2019; 11(10): 748-63.
[http://dx.doi.org/10.4252/wjsc.v11.i10.748] [PMID: 31692976]
[91]
Haque N, Kasim NH, Rahman MT. Optimization of pre-transplantation conditions to enhance the efficacy of mesenchymal stem cells. Int J Biol Sci 2015; 11(3): 324-34.
[http://dx.doi.org/10.7150/ijbs.10567] [PMID: 25678851]
[92]
Marquez-Curtis LA, Gul-Uludag H, Xu P, Chen J, Janowska-Wieczorek A. CXCR4 transfection of cord blood mesenchymal stromal cells with the use of cationic liposome enhances their migration toward stromal cell-derived factor-1. Cytotherapy 2013; 15(7): 840-9.
[http://dx.doi.org/10.1016/j.jcyt.2013.02.009] [PMID: 23623275]
[93]
Roell W, Lewalter T, Sasse P, et al. Engraftment of connexin 43- expressing cells prevents post-infarct arrhythmia. Nature 2007; 450(7171): 819-24.
[http://dx.doi.org/10.1038/nature06321] [PMID: 18064002]
[94]
Lee S, Choi E, Cha MJ, Hwang KC. Cell adhesion and long-term survival of transplanted mesenchymal stem cells: A prerequisite for cell therapy. Oxid Med Cell Longev 2015; 2015: 632902.
[http://dx.doi.org/10.1155/2015/632902] [PMID: 25722795]
[95]
Xiaowei C, Jia M, Xiaowei W, Yina Z. Overexpression of CXCL12 chemokine up-regulates connexin and integrin expression in mesenchymal stem cells through PI3K/Akt pathway. Cell Commun Adhes 2013; 20(3-4): 67-72.
[http://dx.doi.org/10.3109/15419061.2013.791682] [PMID: 23659290]
[96]
Haque N, Kasim NHA, Kassim NLA, Rahman MT. Autologous serum supplement favours in vitro regenerative paracrine factors synthesis. Cell Prolif 2017; 50(4): e12354.
[http://dx.doi.org/10.1111/cpr.12354] [PMID: 28682474]
[97]
Haque N, Abu Kasim NH. Pooled human serum increases regenerative potential of in vitro expanded stem cells from human extracted deciduous teeth. Adv Exp Med Biol 2018; 1083: 29-44.
[http://dx.doi.org/10.1007/5584_2017_74] [PMID: 28730381]
[98]
Peterson KM, Aly A, Lerman A, Lerman LO, Rodriguez-Porcel M. Improved survival of mesenchymal stromal cell after hypoxia preconditioning: Role of oxidative stress. Life Sci 2011; 88(1-2): 65-73.
[http://dx.doi.org/10.1016/j.lfs.2010.10.023] [PMID: 21062632]
[99]
Collino F, Lopes JA, Corrêa S, et al. Adipose-derived mesenchymal stromal cells under hypoxia: Changes in extracellular vesicles secretion and improvement of renal recovery after ischemic injury. Cell Physiol Biochem 2019; 52(6): 1463-83.
[PMID: 31099507]
[100]
Haque N, Ramasamy TS, Kasim NHA. Mechanisms of mesenchymal stem cells for autoimmune disease treatment. Stem cell transplantation for autoimmune diseases and inflammation Stem cells in clinical applications. Cham: Springer International Publishing 2019; pp. 27-44.
[http://dx.doi.org/10.1007/978-3-030-23421-8_2]
[101]
Podestà MA, Remuzzi G, Casiraghi F. Mesenchymal stromal cells for transplant tolerance. Front Immunol 2019; 10(1287): 1287.
[http://dx.doi.org/10.3389/fimmu.2019.01287] [PMID: 31231393]
[102]
Komoda H, Okura H, Lee CM, et al. Reduction of N-glycolylneuraminic acid xenoantigen on human adipose tissue-derived stromal cells/mesenchymal stem cells leads to safer and more useful cell sources for various stem cell therapies. Tissue Eng Part A 2010; 16(4): 1143-55.
[http://dx.doi.org/10.1089/ten.tea.2009.0386] [PMID: 19863253]
[103]
Li Y, Lin F. Mesenchymal stem cells are injured by complement after their contact with serum. Blood 2012; 120(17): 3436-43.
[http://dx.doi.org/10.1182/blood-2012-03-420612] [PMID: 22966167]
[104]
Patrikoski M, Juntunen M, Boucher S, et al. Development of fully defined xeno-free culture system for the preparation and propagation of cell therapy-compliant human adipose stem cells. Stem Cell Res Ther 2013; 4(2): 27.
[http://dx.doi.org/10.1186/scrt175] [PMID: 23497764]
[105]
Haque N, Khan IM, Abu Kasim NH. Survival and immunomodulation of stem cells from human extracted deciduous teeth expanded in pooled human and foetal bovine sera. Cytokine 2019; 120: 144-54.
[http://dx.doi.org/10.1016/j.cyto.2019.04.018] [PMID: 31071675]
[106]
Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: Immune evasive, not immune privileged. Nat Biotechnol 2014; 32(3): 252-60.
[http://dx.doi.org/10.1038/nbt.2816] [PMID: 24561556]
[107]
Berglund AK, Fortier LA, Antczak DF, Schnabel LV. Immunoprivileged no more: Measuring the immunogenicity of allogeneic adult mesenchymal stem cells. Stem Cell Res Ther 2017; 8(1): 288.
[http://dx.doi.org/10.1186/s13287-017-0742-8] [PMID: 29273086]
[108]
Grau-Vorster M, Laitinen A, Nystedt J, Vives J. HLA-DR expression in clinical-grade bone marrow-derived multipotent mesenchymal stromal cells: A two-site study. Stem Cell Res Ther 2019; 10(1): 164.
[http://dx.doi.org/10.1186/s13287-019-1279-9] [PMID: 31196185]
[109]
Sun HH, Jin T, Yu Q, Chen FM. Biological approaches toward dental pulp regeneration by tissue engineering. J Tissue Eng Regen Med 2011; 5(4): e1-e16.
[http://dx.doi.org/10.1002/term.369] [PMID: 21413154]
[110]
Yang J, Yuan G, Chen Z. Pulp regeneration: Current approaches and future challenges. Front Physiol 2016; 7: 58.
[http://dx.doi.org/10.3389/fphys.2016.00058] [PMID: 27014076]
[111]
Verma P, Nosrat A, Kim JR, et al. Effect of Residual Bacteria on the Outcome of Pulp Regeneration in vivo. J Dent Res 2017; 96(1): 100-6.
[http://dx.doi.org/10.1177/0022034516671499] [PMID: 27694153]
[112]
Windley W III, Teixeira F, Levin L, Sigurdsson A, Trope M. Disinfection of immature teeth with a triple antibiotic paste. J Endod 2005; 31(6): 439-43.
[http://dx.doi.org/10.1097/01.don.0000148143.80283.ea] [PMID: 15917683]
[113]
Lenherr P, Allgayer N, Weiger R, Filippi A, Attin T, Krastl G. Tooth discoloration induced by endodontic materials: A laboratory study. Int Endod J 2012; 45(10): 942-9.
[http://dx.doi.org/10.1111/j.1365-2591.2012.02053.x] [PMID: 22506849]
[114]
Yassen GH, Al-Angari SS, Platt JA. The use of traditional and novel techniques to determine the hardness and indentation properties of immature radicular dentin treated with antibiotic medicaments followed by ethylenediaminetetraacetic acid. Eur J Dent 2014; 8(4): 521-7.
[http://dx.doi.org/10.4103/1305-7456.143636] [PMID: 25512735]
[115]
Yang JW, Zhang YF, Wan CY, et al. Autophagy in SDF-1α-mediated DPSC migration and pulp regeneration. Biomaterials 2015; 44: 11-23.
[http://dx.doi.org/10.1016/j.biomaterials.2014.12.006] [PMID: 25617122]
[116]
Lalu MM, McIntyre L, Pugliese C, et al. Canadian Critical Care Trials Group. Safety of cell therapy with mesenchymal stromal cells (SafeCell): A systematic review and meta-analysis of clinical trials. PLoS One 2012; 7(10): e47559.
[http://dx.doi.org/10.1371/journal.pone.0047559] [PMID: 23133515]
[117]
Hasselgren G, Reit C. Emergency pulpotomy: Pain relieving effect with and without the use of sedative dressings. J Endod 1989; 15(6): 254-6.
[http://dx.doi.org/10.1016/S0099-2399(89)80219-5] [PMID: 2592880]
[118]
Tomson PL, Grover LM, Lumley PJ, Sloan AJ, Smith AJ, Cooper PR. Dissolution of bio-active dentine matrix components by mineral trioxide aggregate. J Dent 2007; 35(8): 636-42.
[http://dx.doi.org/10.1016/j.jdent.2007.04.008] [PMID: 17566626]
[119]
Nair PN, Duncan HF, Pitt Ford TR, Luder HU. Histological, ultrastructural and quantitative investigations on the response of healthy human pulps to experimental capping with mineral trioxide aggregate: A randomized controlled trial. Int Endod J 2008; 41(2): 128-50.
[PMID: 17956562]
[120]
Simon S, Perard M, Zanini M, et al. Should pulp chamber pulpotomy be seen as a permanent treatment? Some preliminary thoughts. Int Endod J 2013; 46(1): 79-87.
[http://dx.doi.org/10.1111/j.1365-2591.2012.02113.x] [PMID: 22900881]
[121]
Alqaderi H, Lee CT, Borzangy S, Pagonis TC. Coronal pulpotomy for cariously exposed permanent posterior teeth with closed apices: A systematic review and meta-analysis. J Dent 2016; 44: 1-7.
[http://dx.doi.org/10.1016/j.jdent.2015.12.005] [PMID: 26687672]