Metallodrugs for the Treatment of Trypanosomatid Diseases: Recent Advances and New Insights

Page: [1763 - 1789] Pages: 27

  • * (Excluding Mailing and Handling)

Abstract

Trypanosomatid parasites are responsible for many Neglected Tropical Diseases (NTDs). NTDs are a group of illnesses that prevail in low-income populations, such as in tropical and subtropical areas of Africa, Asia, and the Americas. The three major human diseases caused by trypanosomatids are African trypanosomiasis, Chagas disease and leishmaniasis. There are known drugs for the treatment of these diseases that are used extensively and are affordable; however, the use of these medicines is limited by several drawbacks such as the development of chemo-resistance, side effects such as cardiotoxicity, low selectivity, and others. Therefore, there is a need to develop new chemotherapeutic against these tropical parasitic diseases. Metal-based drugs against NTDs have been discussed over the years as alternative ways to overcome the difficulties presented by approved antiparasitic agents. The study of late transition metal-based drugs as chemotherapeutics is an exciting research field in chemistry, biology, and medicine due to the ability to develop multitarget antiparasitic agents. The evaluation of the late transition metal complexes for the treatment of trypanosomatid diseases is provided here, as well as some insights about their mechanism of action.

Keywords: Trypanosomatid diseases, metallodrugs, Leishmania, Chagas diseases, African trypanosomiasis, metals in medicine, targets.

[1]
Farrell NP. The Uses of Inorganic Chemistry in Medicine; The Royal Society of Chemistry. J Med Chem 1999; 42: 4926.
[2]
Farrell N. Metal complexes as drugs and chemotherapeutic agents. Compr Coord Chem II 2004; 9: 809-40.
[3]
Dabrowiak JC. Metals in Medicine. 2009.
[http://dx.doi.org/10.1002/9780470684986]
[4]
Alesso E. Bioinorganic Medicinal Chemistry. Weinheim: Wiley‐VCH 2011.
[http://dx.doi.org/10.1002/9783527633104]
[5]
Mjos KD, Orvig C. Metallodrugs in medicinal inorganic chemistry. Chem Rev 2014; 114(8): 4540-63.
[http://dx.doi.org/10.1021/cr400460s] [PMID: 24456146]
[6]
Johnstone TC, Suntharalingam K, Lippard SJ. The next generation of platinum drugs: Targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem Rev 2016; 116(5): 3436-86.
[http://dx.doi.org/10.1021/acs.chemrev.5b00597] [PMID: 26865551]
[7]
Allardyce CS, Dyson PJ. Metal-based drugs that break the rules. Dalton Trans 2016; 45(8): 3201-9.
[http://dx.doi.org/10.1039/C5DT03919C] [PMID: 26820398]
[8]
Barry NPE, Sadler PJ, Sadler P. Exploration of the medical periodic table: towards new targets. Chem Commun (Camb) 2013; 49(45): 5106-31.
[http://dx.doi.org/10.1039/c3cc41143e] [PMID: 23636600]
[9]
Englinger B, Pirker C, Heffeter P, et al. Metal drugs and the anticancer immune response. Chem Rev 2019; 119(2): 1519-624.
[http://dx.doi.org/10.1021/acs.chemrev.8b00396] [PMID: 30489072]
[10]
Alessio E, Messori L. NAMI-A and KP1019/1339, Two iconic ruthenium anticancer drug candidates face-to-face: a case story in medicinal inorganic chemistry. Molecules 2019; 24(10): 1-20.
[http://dx.doi.org/10.3390/molecules24101995] [PMID: 31137659]
[11]
Kenny RG, Marmion CJ. Toward multi-targeted platinum and ruthenium drugs-a new paradigm in cancer drug treatment regimens? Chem Rev 2019; 119(2): 1058-137.
[http://dx.doi.org/10.1021/acs.chemrev.8b00271] [PMID: 30640441]
[12]
Osredkar J, Sustar N. Copper and Zinc, Biological role and significance of copper/zinc imbalance. J Clin Toxicol 2011; 1-26.
[13]
Sheykhansari S, Kozielski K, Bill J, et al. Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: a review. Cell Death Dis 2018; 9(3): 348.
[http://dx.doi.org/10.1038/s41419-018-0379-2] [PMID: 29497049]
[14]
Weiss G, Carver PL. Role of divalent metals in infectious disease susceptibility and outcome. Clin Microbiol Infect 2018; 24(1): 16-23.
[http://dx.doi.org/10.1016/j.cmi.2017.01.018] [PMID: 28143784]
[15]
Van Cleave C, Crans DC. The first-row transition metals in the periodic table of medicine. Inorganics 2019; 7: 111.
[http://dx.doi.org/10.3390/inorganics7090111]
[16]
Kachadourian R, Brechbuhl HM, Ruiz-Azuara L, Gracia-Mora I, Day BJ. Casiopeína IIgly-induced oxidative stress and mitochondrial dysfunction in human lung cancer A549 and H157 cells. Toxicology 2010; 268(3): 176-83.
[http://dx.doi.org/10.1016/j.tox.2009.12.010] [PMID: 20026372]
[17]
Biot C, Nosten F, Fraisse L, Ter-Minassian D, Khalife J, Dive D. The antimalarial ferroquine: from bench to clinic. Parasite 2011; 18(3): 207-14.
[http://dx.doi.org/10.1051/parasite/2011183207] [PMID: 21894260]
[18]
Zhang P, Sadler PJ. Redox-active metal complexes for anticancer therapy. Eur J Inorg Chem 2017; 1541-8.
[http://dx.doi.org/10.1002/ejic.201600908]
[19]
Haas KL, Franz KJ. Application of metal coordination chemistry to explore and manipulate cell biology. Chem Rev 2009; 109(10): 4921-60.
[http://dx.doi.org/10.1021/cr900134a] [PMID: 19715312]
[20]
Sánchez-Delgado RA, Anzellotti A. Metal complexes as chemotherapeutic agents against tropical diseases: trypanosomiasis, malaria and leishmaniasis. Mini Rev Med Chem 2004; 4(1): 23-30.
[http://dx.doi.org/10.2174/1389557043487493] [PMID: 14754440]
[21]
Navarro M. Gold complexes as potential anti-parasitic agents. Coord Chem Rev 2009; 253: 1619-26.
[http://dx.doi.org/10.1016/j.ccr.2008.12.003]
[22]
Navarro M, Gabbiani C, Messori L, Gambino D. Metal-based drugs for malaria, trypanosomiasis and leishmaniasis: recent achievements and perspectives. Drug Discov Today 2010; 15(23-24): 1070-8.
[http://dx.doi.org/10.1016/j.drudis.2010.10.005] [PMID: 20974285]
[23]
Caballero AB, Salas JM, Sánchez-Moreno M. Metal-based therapeutics for leishmaniasis Leishmaniasis-trends in epidemiology, diagnosis and treatment. 1st ed. InTech 2014.
[24]
Glišić BĐ, Djuran MI. Gold complexes as antimicrobial agents: an overview of different biological activities in relation to the oxidation state of the gold ion and the ligand structure. Dalton Trans 2014; 43(16): 5950-69.
[http://dx.doi.org/10.1039/C4DT00022F] [PMID: 24598838]
[25]
Ong YC, Roy S, Andrews PC, Gasser G. Metal compounds against neglected tropical diseases. Chem Rev 2019; 119(2): 730-96.
[http://dx.doi.org/10.1021/acs.chemrev.8b00338] [PMID: 30507157]
[26]
Field MC, Horn D, Fairlamb AH, et al. Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nat Rev Microbiol 2017; 15(4): 217-31.
[http://dx.doi.org/10.1038/nrmicro.2016.193] [PMID: 28239154]
[27]
Nussbaum K, Honek J, Cadmus CM, Efferth T. Trypanosomatid parasites causing neglected diseases. Curr Med Chem 2010; 17(15): 1594-617.
[http://dx.doi.org/10.2174/092986710790979953] [PMID: 20166934]
[29]
Chagas disease (also known as American trypanosomiasis) World Health Organization. Available from:. www.who.int/newsroom/ fact-sheets/detail/
[30]
Trypanosomiasis, human African (sleeping sickness). World Health Organization. Available from:. www.who.int/newsroom/ fact-sheets/detail/ trypanosomiasis-humanafrican-(sleeping-sickness)
[31]
Ettari R, Tamborini L, Angelo IC, et al. Inhibition of rhodesain as a novel therapeutic modality for human African trypanosomiasis. J Med Chem 2013; 56(14): 5637-58.
[http://dx.doi.org/10.1021/jm301424d] [PMID: 23611656]
[32]
Fairlamb AH, Horn D. Melarsoprol resistance in African Trypanosomiasis. Trends Parasitol 2018; 34(6): 481-92.
[http://dx.doi.org/10.1016/j.pt.2018.04.002] [PMID: 29705579]
[33]
Neau P, Hänel H, Lameyre V, Strub-Wourgaft N, Kuykens L. Innovative partnerships for the elimination of human African trypanosomiasis and the development of fexinidazole. Trop Med Infect Dis 2020; 5(1): 17.
[http://dx.doi.org/10.3390/tropicalmed5010017] [PMID: 32012658]
[34]
Chalmers R. Diet and health: Implications for reducing chronic disease risk. Washington, D.C.: The National Academies Press 1989.
[35]
RA S BL O Handbook of Nutritionally Essential Mineral Elements. 1st ed. United States: CRC Press 2019.
[36]
Wani WA, Baig U, Shreaz S, et al. Recent advances in iron complexes as potential anticancer agents. New J Chem 2016; 40: 1063-90.
[http://dx.doi.org/10.1039/C5NJ01449B]
[37]
Patra M, Gasser G. The medicinal chemistry of ferrocene. Natl Rev 2017; 1: 1-12.
[38]
Howarth J, Hanlon K. N-ferrocenylmethyl, N′-methyl-2-substituted benzimidazolium iodide salts with in vitro activity against the Leishmania infantum parasite strain L1. Bioorg Med Chem Lett 2003; 13(12): 2017-20.
[http://dx.doi.org/10.1016/S0960-894X(03)00327-5] [PMID: 12781186]
[39]
Arancibia R, Klahn AH, Buono-core GE, et al. Synthesis, characterization and anti-Trypanosoma cruzi evaluation of ferrocenyl and cyrhetrenyl imines derived from 5-nitrofurane. J Organomet Chem 2011; 696: 3238-44.
[http://dx.doi.org/10.1016/j.jorganchem.2011.06.038]
[40]
Arancibia R, Klahn AH, Buono-core GE, et al. Organometallic Schiff bases derived from 5-nitrothiophene and 5-nitrofurane: Synthesis, crystallographic, electrochemical, ESR and anti Trypanosoma cruzi studies. J Organomet Chem 2013; 743: 49-54.
[http://dx.doi.org/10.1016/j.jorganchem.2013.06.014]
[41]
Arancibia R, Klahn AH, Lapier M, et al. Synthesis, characterization and in vitro anti-Trypanosoma cruzi and anti Mycobacterium tuberculosis evaluations of cyrhetrenyl and ferrocenyl thiosemicarbazones. J Organomet Chem 2014; 755: 1-6.
[http://dx.doi.org/10.1016/j.jorganchem.2013.12.049]
[42]
Echeverría C, Romero V, Arancibia R, et al. The characterization of anti-T. cruzi activity relationships between ferrocenyl, cyrhetrenyl complexes and ROS release. Biometals 2016; 29(4): 743-9.
[http://dx.doi.org/10.1007/s10534-016-9953-1] [PMID: 27460450]
[43]
Velásquez AMA, Francisco AI, Kohatsu AAN, et al. Synthesis and tripanocidal activity of ferrocenyl and benzyl diamines against Trypanosoma brucei and Trypanosoma cruzi. Bioorg Med Chem Lett 2014; 24(7): 1707-10.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.046] [PMID: 24630563]
[44]
Mendoza-Martínez C, Galindo-Sevilla N, Correa-Basurto J, et al. Antileishmanial activity of quinazoline derivatives: synthesis, docking screens, molecular dynamic simulations and electrochemical studies. Eur J Med Chem 2015; 92: 314-31.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.051] [PMID: 25576738]
[45]
Creaven BS, Egan DA, Karcz D, et al. Synthesis, characterisation and antimicrobial activity of copper(II) and manganese(II) complexes of coumarin-6,7-dioxyacetic acid (cdoaH2) and 4-methylcoumarin-6,7-dioxyacetic acid (4-MecdoaH2): X-ray crystal structures of [Cu(cdoa)(phen)28.8H2O and [Cu(4-Mecdoa) (phen)213H2O (phen=1,10-phenanthroline). J Inorg Biochem 2007; 101(8): 1108-19.
[http://dx.doi.org/10.1016/j.jinorgbio.2007.04.010] [PMID: 17555821]
[46]
Chimenti F, Bizzarri B, Bolasco A, et al. Synthesis, selective anti-Helicobacter pylori activity, and cytotoxicity of novel N-substituted-2-oxo-2H-1-benzopyran-3-carboxamides. Bioorg Med Chem Lett 2010; 20(16): 4922-6.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.048] [PMID: 20630755]
[47]
De Alcantara FC, Lozano VF, Vale Velosa AS, Dos Santos MRM, Pereira RMS. New coumarin complexes of Zn, Cu, Ni and Fe with antiparasitic activity. Polyhedron 2015; 101: 165-70.
[http://dx.doi.org/10.1016/j.poly.2015.09.010]
[48]
Urbanová K, Ramírez-Macías I, Martín-Escolano R, et al. Effective tetradentate compound complexes against leishmania spp. that act on critical enzymatic pathways of these parasites. Molecules 2018; 24(1): 1-21.
[http://dx.doi.org/10.3390/molecules24010134] [PMID: 30602705]
[49]
Festa RA, Thiele DJ. Copper: an essential metal in biology. Curr Biol 2011; 21(21): R877-83.
[http://dx.doi.org/10.1016/j.cub.2011.09.040] [PMID: 22075424]
[50]
Guengerich FP. Introduction to Metals in Biology 2018: Copper homeostasis and utilization in redox enzymes. J Biol Chem 2018; 293(13): 4603-5.
[http://dx.doi.org/10.1074/jbc.TM118.002255] [PMID: 29425098]
[51]
Mukherjee RN. The bioinorganic chemistry of copper. Indian J Chem 2003; 42: 2175-84.
[52]
Urbina JA. Ergosterol biosynthesis and drug development for Chagas disease. Mem Inst Oswaldo Cruz 2009; 104(Suppl. 1): 311-8.
[http://dx.doi.org/10.1590/S0074-02762009000900041] [PMID: 19753490]
[53]
McCall LI, El Aroussi A, Choi JY, et al. Targeting Ergosterol biosynthesis in Leishmania donovani: essentiality of sterol 14 alpha-demethylase. PLoS Negl Trop Dis 2015; 9(3): e0003588.
[http://dx.doi.org/10.1371/journal.pntd.0003588] [PMID: 25768284]
[54]
Sánchez-Delgado RA, Navarro M, Lazardi K, et al. Toward a novel metal based chemotherapy against tropical diseases 4. Synthesis and characterization of new metal-clotrimazole complexes and evaluation of their activity against Trypanosoma cruzi. Inorg Chim Acta 1998; 275-276: 528-40.
[http://dx.doi.org/10.1016/S0020-1693(98)00114-5]
[55]
Navarro M, Cisneros-Fajardo EJ, Lehmann T, et al. Toward a novel metal-based chemotherapy against tropical diseases. 6. Synthesis and characterization of new copper(II) and gold(I) clotrimazole and ketoconazole complexes and evaluation of their activity against Trypanosoma cruzi. Inorg Chem 2001; 40(27): 6879-84.
[http://dx.doi.org/10.1021/ic0103087] [PMID: 11754267]
[56]
Navarro M, Cisneros-Fajardo EJ, Sierralta A, et al. Design of copper DNA intercalators with leishmanicidal activity. J Biol Inorg Chem 2003; 8(4): 401-8.
[http://dx.doi.org/10.1007/s00775-002-0427-2] [PMID: 12761661]
[57]
Navarro M, Cisneros-Fajardo EJ, Fernandez-Mestre M, Arrieche D, Marchan E. Synthesis, characterization, DNA binding study and biological activity against Leishmania mexicana of [Cu(dppz)2]BF4. J Inorg Biochem 2003; 97(4): 364-9.
[http://dx.doi.org/10.1016/S0162-0134(03)00290-3] [PMID: 14568241]
[58]
Montalvetti A, Bailey BN, Martin MB, Severin GW, Oldfield E, Docampo R. Bisphosphonates are potent inhibitors of Trypanosoma cruzi farnesyl pyrophosphate synthase. J Biol Chem 2001; 276(36): 33930-7.
[http://dx.doi.org/10.1074/jbc.M103950200] [PMID: 11435429]
[59]
Demoro B, Caruso F, Rossi M, et al. Risedronate metal complexes potentially active against Chagas disease. J Inorg Biochem 2010; 104(12): 1252-8.
[http://dx.doi.org/10.1016/j.jinorgbio.2010.08.004] [PMID: 20817265]
[60]
da Silva Maffei R, Yokoyama-Yasunaka JKU, Miguel DC, Uliana SRB, Espósito BP. Synthesis, characterization and evaluation of antileishmanial activity of copper(II) with fluorinated α-hydroxycarboxylate ligands. Biometals 2009; 22(6): 1095-101.
[http://dx.doi.org/10.1007/s10534-009-9260-1] [PMID: 19680603]
[61]
Portas Ados S, Miguel DC, Yokoyama-Yasunaka JK, Uliana SRB, Espósito BP. Increasing the activity of copper(II) complexes against Leishmania through lipophilicity and pro-oxidant ability. J Biol Inorg Chem 2012; 17(1): 107-12.
[http://dx.doi.org/10.1007/s00775-011-0834-3] [PMID: 21866394]
[62]
Jockers-Scherübl MC, Schirmer RH, Krauth-Siegel RL. Trypanothione reductase from Trypanosoma cruzi. Catalytic properties of the enzyme and inhibition studies with trypanocidal compounds. Eur J Biochem 1989; 180(2): 267-72.
[http://dx.doi.org/10.1111/j.1432-1033.1989.tb14643.x] [PMID: 2647489]
[63]
Scozzafava A, Carta F, Supuran CT. Secondary and tertiary sulfonamides: a patent. Expert Opin Ther Patents 2013; 23: 203-13.
[64]
Chohan ZH, Shad HA. Structural elucidation and biological significance of 2-hydroxy-1-naphthaldehyde derived sulfonamides and their first row d-transition metal chelates. J Enzyme Inhib Med Chem 2008; 23(3): 369-79.
[http://dx.doi.org/10.1080/14756360701585692] [PMID: 18569342]
[65]
Chohan ZH, Hernandes MZ, Sensato FR, et al. Sulfonamide-metal complexes endowed with potent anti-Trypanosoma cruzi activity. J Enzyme Inhib Med Chem 2014; 29(2): 230-6.
[http://dx.doi.org/10.3109/14756366.2013.766608] [PMID: 23432595]
[66]
Singh MK, Bhaumik SK, Karmakar S, et al. Copper salisylaldoxime (CuSAL) imparts protective efficacy against visceral leishmaniasis by targeting Leishmania donovani topoisomerase IB. Exp Parasitol 2017; 175: 8-20.
[http://dx.doi.org/10.1016/j.exppara.2017.02.010] [PMID: 28174102]
[67]
Salas JM, Caballero AB, Esteban-Parra GM, Méndez-Arriaga JM. Leishmanicidal and Trypanocidal activity of metal complexes with 1,2,4-Triazolo[1,5-a]pyrimidines: Insights on their therapeutic potential against Leishmaniasis and Chagas disease. Curr Med Chem 2017; 24(25): 2796-806.
[http://dx.doi.org/10.2174/0929867324666170516122024] [PMID: 28521698]
[68]
Méndez-Arriaga JM, Rodríguez-Diéguez A, Sánchez-Moreno M. In vitro leishmanicidal activity of copper(II) 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine complex and analogous transition metal series. Polyhedron 2020; 176: 1-6.
[http://dx.doi.org/10.1016/j.poly.2019.114272]
[69]
Fonseca D, Páez C, Ibarra L, García-Huertas P, et al. Metal complex derivatives of bis(pyrazol-1-yl)methane ligands: synthesis, characterization and anti-Trypanosoma cruzi activity. Transit Met Chem 2019; 44: 135-44.
[http://dx.doi.org/10.1007/s11243-018-0277-6]
[70]
Paixão DA, Lopes CD, Carneiro ZA, et al. In vitro anti-Trypanosoma cruzi activity of ternary copper(II) complexes and in vivo evaluation of the most promising complex. Biomed Pharmacother 2019; 109: 157-66.
[http://dx.doi.org/10.1016/j.biopha.2018.10.057] [PMID: 30396072]
[71]
Paixão DA, De Oliveira BCA, Almeida C, et al. Inorganica Chimica Acta Crystal structure, anti-Trypanosoma cruzi and cytotoxic activities of Cu(II) complexes bearing β-diketone and α-diimine ligands. Inorg Chim Acta 2020; 499: 119164.
[http://dx.doi.org/10.1016/j.ica.2019.119164]
[72]
Falco EA, Goodwin LG, Hitchings GH, Rollo IM, Russell PB. 2:4-diaminopyrimidines- a new series of antimalarials. Br J Pharmacol Chemother 1951; 6(2): 185-200.
[http://dx.doi.org/10.1111/j.1476-5381.1951.tb00634.x] [PMID: 14848451]
[73]
Silva GL, Dias JSM, Silva HVR, et al. Synthesis, crystal structure and leishmanicidal activity of new trimethoprim Ru(III), Cu(II) and Pt(II) metal complexes. J Inorg Biochem 2020; 205: 111002.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111002] [PMID: 32007697]
[74]
da Silva BA, Pitasse-Santos P, Sueth-Santiago V, et al. Effects of Cu(II) and Zn(II) coordination on the trypanocidal activities of curcuminoid-based ligands. Inorg Chim Acta 2020; 50: 1119237.
[http://dx.doi.org/10.1016/j.ica.2019.119237]
[75]
Dudev T, Lim C. Tetrahedral vs Octahedral Zinc Complexes with Ligands of Biological Interest: A DFT/CDM Study. J Am Chem Soc 2000; 122: 11146-53.
[http://dx.doi.org/10.1021/ja0010296]
[76]
Marcus Y. Ionic radii in aqueous solutions. Chem Rev 1989; 88: 1475-98.
[http://dx.doi.org/10.1021/cr00090a003]
[77]
Cassandri M, Smirnov A, Novelli F, et al. Zinc-finger proteins in health and disease. Cell Death Discov 2017; 3: 17071.
[http://dx.doi.org/10.1038/cddiscovery.2017.71] [PMID: 29152378]
[78]
Frézard F, Silva H, Pimenta AMDC, Farrell N, Demicheli C. Greater binding affinity of trivalent antimony to a CCCH zinc finger domain compared to a CCHC domain of kinetoplastid proteins. Metallomics 2012; 4(5): 433-40.
[http://dx.doi.org/10.1039/c2mt00176d] [PMID: 22454083]
[79]
Mármol I, Quero J, Rodríguez-Yoldi MJ, Cerrada E. Gold as a possible alternative to platinum-based chemotherapy for colon cancer treatment. Cancers (Basel) 2019; 11(6): 780.
[http://dx.doi.org/10.3390/cancers11060780] [PMID: 31195711]
[80]
Bafghi AF, Noorbala M, Noorbala MT, Aghabagheri M. Anti leishmanial effect of zinc sulphate on the viability of Leishmania tropica and L. major promastigotes. J Chem Pharm Res 2014; 6: 1081-7.
[81]
Dey T, Anam K, Afrin F, Ali N. Antileishmanial activities of stearylamine-bearing liposomes. Antimicrob Agents Chemother 2000; 44(6): 1739-42.
[http://dx.doi.org/10.1128/AAC.44.6.1739-1742.2000] [PMID: 10817745]
[82]
Afrin F, Dey T, Anam K, Ali N. Leishmanicidal activity of stearylamine- bearing liposomes in vitro. J Parasitol 2001; 87(1): 188-93.
[http://dx.doi.org/10.1645/0022-3395(2001)087[0188:LAOSBL]2.0.CO;2] [PMID: 11227889]
[83]
Rice DR, Vacchina P, Norris-Mullins B, Morales MA, Smith BD. Zinc(II)dipicolylamine coordination complexes as targeting and chemotherapeutic agents for Leishmania major. Antimicrob Agents Chemother 2016; 60(5): 2932-40.
[http://dx.doi.org/10.1128/AAC.00410-16] [PMID: 26926632]
[84]
França JA de A. Synthesis and biological activity of novel zincitraconazole complexes in protozoan parasites and Sporothrix spp. Antimicrob Agents Chemother 2020; 64(5): e01980-19.
[85]
Pasetto LM, D’Andrea MR, Brandes AA, Rossi E, Monfardini S. The development of platinum compounds and their possible combination. Crit Rev Oncol Hematol 2006; 60(1): 59-75.
[http://dx.doi.org/10.1016/j.critrevonc.2006.02.003] [PMID: 16806960]
[86]
Deo KM, Ang DL, McGhie B, et al. Platinum coordination compounds with potent anticancer activity. Coord Chem Rev 2018; 375: 148-63.
[http://dx.doi.org/10.1016/j.ccr.2017.11.014]
[87]
Kinnamon KE, Steck EA, Rane DS. Activity of antitumor drugs against African trypanosomes. Antimicrob Agents Chemother 1979; 15(2): 157-60.
[http://dx.doi.org/10.1128/AAC.15.2.157] [PMID: 426509]
[88]
Farrell NP, Williamson J, McLaren DJM. Trypanocidal and antitumour activity of platinum-metal and platinum-metal-drug dual-function complexes. Biochem Pharmacol 1984; 33(7): 961-71.
[http://dx.doi.org/10.1016/0006-2952(84)90501-X] [PMID: 6538791]
[89]
Ruiz-Pérez LM, Osuna A, Castanys S, Gamarro F, Craciunescu D, Doadrio A. Evaluation of the toxicity of Rh(III) and Pt(II) complexes against Trypanosoma cruzi culture forms. Arzneimittel-Forschung. Drug Res 1986; 33: 13-6.
[90]
Osuna A, Ruiz-Perez LM, Lopez MC, et al. Antitrypanosomal action of cis-diamminedichloroplatinum (II) analogs. J Parasitol 1987; 73(2): 272-7.
[http://dx.doi.org/10.2307/3282078] [PMID: 2438397]
[91]
Mesa-Valle CM, Craciunescu D, Parrondo-Iglesias E, Osuna A. In vitro action of platinum (II) and platinum (IV) complexes on Trypanosoma cruzi and Leishmania donovani. Arzneimittelforschung 1989; 39(8): 838-42.
[PMID: 2684173]
[92]
Mesa-Valle CM, Moraleda V, Lazuen J, Craciunescu D, Osuna A. Action of new organometallic complexes against Leishmania donovani. J Antimicrob Chemother 1997; 40(1): 47-57.
[http://dx.doi.org/10.1093/jac/40.1.47] [PMID: 9249204]
[93]
Mesa-Valle CM, Rodriguez-Cabezas MN, Moraleda-Lindez V, Craciunescu D, Sanchez-Moreno M, Osuna A. In vitro and in vivo activity of two Pt(IV) salts against leishmania donovani. Pharmacology 1998; 57(3): 160-72.
[http://dx.doi.org/10.1159/000028237] [PMID: 9691236]
[94]
Lowe G. inventor; Isis Innovation Limited, assignee. Terpyridineplatinum(II) complexes. International publication number WO97/27202. 1997.
[95]
Lowe G, Droz AS, Vilaivan T, et al. Cytotoxicity of (2,2′:6′,2′'-terpyridine)platinum(II) complexes to Leishmania donovani, Trypanosoma cruzi, and Trypanosoma brucei. J Med Chem 1999; 42(6): 999-1006.
[http://dx.doi.org/10.1021/jm981074c] [PMID: 10090783]
[96]
Bonse S, Richards JM, Ross SA, Lowe G, Krauth-Siegel RL. (2,2′:6′,2”-Terpyridine)platinum(II) complexes are irreversible inhibitors of Trypanosoma cruzi trypanothione reductase but not of human glutathione reductase. J Med Chem 2000; 43(25): 4812-21.
[http://dx.doi.org/10.1021/jm000219o] [PMID: 11123991]
[97]
Salas JM, Quirós M, Abul Haj M, et al. Activity of Pt(II) and Ru(III) triazolopyrimidine complexes against parasites of the genus Leishmania, Trypanosomas and Phytomonas. Met Based Drugs 2001; 8(3): 119-24.
[http://dx.doi.org/10.1155/MBD.2001.119] [PMID: 18475985]
[98]
Magán R, Marín C, Rosales MJ, Salas JM, Sánchez-Moreno M. Therapeutic potential of new Pt(II) and Ru(III) triazole-pyrimidine complexes against Leishmania donovani. Pharmacology 2005; 73(1): 41-8.
[http://dx.doi.org/10.1159/000081073] [PMID: 15452362]
[99]
Luque F, Fernández-Ramos C, Entrala E, et al. In vitro evaluation of newly synthesised [1,2,4]triazolo[1,5a]pyrimidine derivatives against Trypanosoma cruzi, Leishmania donovani and Phytomonas staheli. Comp Biochem Physiol C Toxicol Pharmacol 2000; 126(1): 39-44.
[PMID: 11048663]
[100]
Nguewa PA, Fuertes MA, Iborra S, et al. Water soluble cationic trans-platinum complexes which induce programmed cell death in the protozoan parasite Leishmania infantum. J Inorg Biochem 2005; 99(3): 727-36.
[http://dx.doi.org/10.1016/j.jinorgbio.2004.12.008] [PMID: 15708793]
[101]
Vieites M, Otero L, Santos D, et al. Platinum(II) metal complexes as potential anti-Trypanosoma cruzi agents. J Inorg Biochem 2008; 102(5-6): 1033-43.
[http://dx.doi.org/10.1016/j.jinorgbio.2007.12.005] [PMID: 18226837]
[102]
Vieites M, Smircich P, Parajón-Costa B, et al. Potent in vitro anti-Trypanosoma cruzi activity of pyridine-2-thiol N-oxide metal complexes having an inhibitory effect on parasite-specific fumarate reductase. J Biol Inorg Chem 2008; 13(5): 723-35.
[http://dx.doi.org/10.1007/s00775-008-0358-7] [PMID: 18322709]
[103]
Vieites M, Smircich P, Guggeri L, et al. Synthesis and characterization of a pyridine-2-thiol N-oxide gold(I) complex with potent antiproliferative effect against Trypanosoma cruzi and Leishmania sp. insight into its mechanism of action. J Inorg Biochem 2009; 103(10): 1300-6.
[PMID: 19361864]
[104]
Rodríguez Arce E, Mosquillo MF, Pérez-Díaz L, et al. Aromatic amine N-oxide organometallic compounds: searching for prospective agents against infectious diseases. Dalton Trans 2015; 44(32): 14453-64.
[PMID: 26203896]
[105]
Visbal G, Marchán E, Maldonado A, Simoni Z, Navarro M. Synthesis and characterization of platinum-sterol hydrazone complexes with biological activity against Leishmania (L.) mexicana. J Inorg Biochem 2008; 102(3): 547-54.
[PMID: 18164763]
[106]
Maldonado A, Simoni Z, Navarro M, Marcha E, Visbal G, Vela M. Antitrypanosomatid activity of platinum-sterol hydrazone imidazoline complexes. Transit Met Chem 2015; 40: 707-13.
[http://dx.doi.org/10.1007/s11243-015-9965-7]
[107]
Carmo AM, Silva FM, Machado PA, et al. Synthesis of 4-aminoquinoline analogues and their platinum(II) complexes as new antileishmanial and antitubercular agents. Biomed Pharmacother 2011; 65(3): 204-9.
[http://dx.doi.org/10.1016/j.biopha.2011.01.003] [PMID: 21602021]
[108]
Yadav MK, Rajput G, Srivastava K, et al. Anti-leishmanial activity of Ni(II), Pd(II) and Pt(II) β-oxodithioester complexes. New J Chem 2012; 00: 1-3.
[109]
Huynh HV. Electronic properties of N-heterocyclic carbenes and their experimental determination. Chem Rev 2018; 118(19): 9457-92.
[http://dx.doi.org/10.1021/acs.chemrev.8b00067] [PMID: 29601194]
[110]
Tabrizi L, Chiniforoshan H. New platinum(II) complexes of CCC-pincer N-heterocyclic carbene ligand: Synthesis, characterization, cytotoxicity and antileishmanial activity. J Organomet Chem 2016; 818(1): 98-105.
[http://dx.doi.org/10.1016/j.jorganchem.2016.06.013]
[111]
Patra SC, Roy AS, Banerjee S, et al. Palladium(II) and platinum(II) complexes of glyoxalbis(N-aryl)osazone: molecular and electronic structures, anti-microbial activities and DNA-binding study. New J Chem 2019; 43: 9891-901.
[http://dx.doi.org/10.1039/C9NJ00223E]
[112]
Berners-Price SJ, Sadler PJ. Phosphines and metal phosphine complexes: Relationship of chemistry to anticancer and other biological activity Bioinorganic Chemistry Structure and Bonding. Berlin, Heidelberg: Springer-Verlag 1988; p. 70.
[http://dx.doi.org/10.1007/3-540-50130-4_2]
[113]
Zou T, Lum CT, Lok CN, Zhang JJ, Che CM. Chemical biology of anticancer gold(III) and gold(I) complexes. Chem Soc Rev 2015; 44(24): 8786-801.
[http://dx.doi.org/10.1039/C5CS00132C] [PMID: 25868756]
[114]
Bindoli A, Rigobello MP, Scutari G, Gabbiani C, Casini A, Messori L. Thioredoxin reductase: A target for gold compounds acting as potential anticancer drugs. Coord Chem Rev 2009; 253: 1692-707.
[115]
Berners-Price SJ, Filipovska A. Gold compounds as therapeutic agents for human diseases. Metallomics 2011; 3(9): 863-73.
[http://dx.doi.org/10.1039/c1mt00062d] [PMID: 21755088]
[116]
Nyarko E, Hara T, Grab DJ, et al. In vitro toxicity of palladium(II) and gold(III) porphyrins and their aqueous metal ion counterparts on Trypanosoma brucei brucei growth. Chem Biol Interact 2004; 148(1-2): 19-25.
[http://dx.doi.org/10.1016/j.cbi.2004.03.004] [PMID: 15223353]
[117]
Navarro M, Hernández C, Colmenares I, et al. Synthesis and characterization of [Au(dppz)2]Cl3. DNA interaction studies and biological activity against Leishmania (L) mexicana. J Inorg Biochem 2007; 101(1): 111-6.
[http://dx.doi.org/10.1016/j.jinorgbio.2006.08.015] [PMID: 17055060]
[118]
Navarro M, Cisneros-Fajardo EJ, Marchan E. New silver polypyridyl complexes: synthesis, characterization and biological activity on Leishmania mexicana. Arzneimittelforschung 2006; 56(8): 600-4.
[PMID: 17009842]
[119]
Smooker PM, Jayaraj R, Pike RN, Spithill TW. Cathepsin B proteases of flukes: the key to facilitating parasite control? Trends Parasitol 2010; 26(10): 506-14.
[http://dx.doi.org/10.1016/j.pt.2010.06.001] [PMID: 20580610]
[120]
Fricker SP, Mosi RM, Cameron BR, et al. Metal compounds for the treatment of parasitic diseases. J Inorg Biochem 2008; 102(10): 1839-45.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.05.010] [PMID: 18684510]
[121]
Yan S, Li F, Ding K, Sun H. Reduction of pentavalent antimony by trypanothione and formation of a binary and ternary complex of antimony(III) and trypanothione. J Biol Inorg Chem 2003; 8(6): 689-97.
[http://dx.doi.org/10.1007/s00775-003-0468-1] [PMID: 12827457]
[122]
Parish R V, Buckley RG, Fricker SP, et al. Chemical and biological reactions of diacetato [2-(dimethylaminomethyl)- phenyl gold(III)[Au(O2CMe)2(dmamp). J Chem Soc Dalt Trans 1996; 69-74.
[123]
Angelucci F, Sayed AA, Williams DL, et al. Inhibition of Schistosoma mansoni thioredoxin-glutathione reductase by auranofin: structural and kinetic aspects. J Biol Chem 2009; 284(42): 28977-85.
[http://dx.doi.org/10.1074/jbc.M109.020701] [PMID: 19710012]
[124]
Baiocco P, Colotti G, Franceschini S, Ilari A. Molecular basis of antimony treatment in leishmaniasis. J Med Chem 2009; 52(8): 2603-12.
[http://dx.doi.org/10.1021/jm900185q] [PMID: 19317451]
[125]
Ilari A, Baiocco P, Messori L, et al. A gold-containing drug against parasitic polyamine metabolism: the X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition. Amino Acids 2012; 42(2-3): 803-11.
[http://dx.doi.org/10.1007/s00726-011-0997-9] [PMID: 21833767]
[126]
Colotti G, Ilari A, Fiorillo A, et al. Metal-based compounds as prospective antileishmanial agents: inhibition of trypanothione reductase by selected gold complexes. ChemMedChem 2013; 8(10): 1634-7.
[http://dx.doi.org/10.1002/cmdc.201300276] [PMID: 24039168]
[127]
Serratrice M, Cinellu MA, Maiore L, et al. Synthesis, structural characterization, solution behavior, and in vitro antiproliferative properties of a series of gold complexes with 2-(2′-pyridyl)benzimidazole as ligand: comparisons of gold(III) versus gold(I) and mononuclear versus binuclear derivatives. Inorg Chem 2012; 51(5): 3161-71.
[http://dx.doi.org/10.1021/ic202639t] [PMID: 22339487]
[128]
Chaves JDS, Tunes LG, de J Franco CH, et al. Novel gold(I) complexes with 5-phenyl-1,3,4-oxadiazole-2-thione and phosphine as potential anticancer and antileishmanial agents. Eur J Med Chem 2017; 127: 727-39.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.052] [PMID: 27823888]
[129]
Tunes LG, Morato RE, Garcia A, et al. Preclinical gold complexes as oral drug candidates to treat leishmaniasis are potent trypanothione reductase inhibitors. ACS Infect Dis 2020; 6(5): 1121-39.
[http://dx.doi.org/10.1021/acsinfecdis.9b00505] [PMID: 32283915]
[130]
Mota VZ, de Carvalho GSG, da Silva AD, et al. Gold complexes with benzimidazole derivatives: synthesis, characterization and biological studies. Biometals 2014; 27(1): 183-94.
[http://dx.doi.org/10.1007/s10534-014-9703-1] [PMID: 24442571]
[131]
Hemmert C, Fabié A, Fabre A, Benoit-Vical F, Gornitzka H. Synthesis, structures, and antimalarial activities of some silver(I), gold(I) and gold(III) complexes involving N-heterocyclic carbene ligands. Eur J Med Chem 2013; 60: 64-75.
[PMID: 23287052]
[132]
Paloque L, Hemmert C, Valentin A, Gornitzka H. Synthesis, characterization, and antileishmanial activities of gold(I) complexes involving quinoline functionalized N-heterocyclic carbenes. Eur J Med Chem 2015; 94: 22-9.
[PMID: 25747497]
[133]
Zhang C, Bourgeade Delmas S, Fernández Álvarez Á, Valentin A, Hemmert C, Gornitzka H. Synthesis, characterization, and antileishmanial activity of neutral N-heterocyclic carbenes gold(I) complexes. Eur J Med Chem 2018; 143: 1635-43.
[PMID: 29133045]
[134]
Ouji M, Delmas SB, Álvarez ÁF, et al. Design, synthesis and efficacy of hybrid triclosan-gold based molecules on Artemisinin-resistant Plasmodium falciparum and Leishmania infantum parasites. ChemistrySelect 2020; 5: 619-25.
[http://dx.doi.org/10.1002/slct.201904345]
[135]
Al-Majid AM, Yousuf S, Choudhary MI, Nahra F, Nolan SP. Gold-NHC complexes as potent bioactive compounds. ChemistrySelect 2016; 1: 76-80.
[http://dx.doi.org/10.1002/slct.201600009]
[136]
Al-Majid AM, Choudhary MI, Yousuf S, et al. In vitro Biological Activities of Gold(I) and Gold(III) Bis(N-Heterocyclic Carbene) Complexes. ChemistrySelect 2017; 2: 5316-20.
[http://dx.doi.org/10.1002/slct.201700795]
[137]
Koko WS, Jentzsch J, Kalie H, et al. Evaluation of the antiparasitic activities of imidazol-2-ylidene-gold(I) complexes. Arch Pharm (Weinheim) 2020; 353(5): e1900363.
[http://dx.doi.org/10.1002/ardp.201900363] [PMID: 32149417]
[138]
Winter I, Lockhauserbäumer J, Lallinger-Kube G, Schobert R, Ersfeld K, Biersack B. Anti-trypanosomal activity of cationic N-heterocyclic carbene gold(I) complexes. Mol Biochem Parasitol 2017; 214: 112-20.
[http://dx.doi.org/10.1016/j.molbiopara.2017.05.001] [PMID: 28522152]
[139]
Du X, Guo C, Hansell E, et al. Synthesis and structure-activity relationship study of potent trypanocidal thio semicarbazone inhibitors of the trypanosomal cysteine protease cruzain. J Med Chem 2002; 45(13): 2695-707.
[http://dx.doi.org/10.1021/jm010459j] [PMID: 12061873]
[140]
Rettondin AR, Carneiro ZA, Gonçalves ACR, et al. Gold(III) complexes with ONS-Tridentate thiosemicarbazones: Toward selective trypanocidal drugs. Eur J Med Chem 2016; 120: 217-26.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.003] [PMID: 27191616]
[141]
Maia PI da S, Carneiro ZA, Lopes CD, et al. Organometallic gold(III) complexes with hybrid SNS-donating thiosemicarbazone ligands: cytotoxicity and anti-Trypanosoma cruzi activity. Dalton Trans 2017; 46(8): 2559-71.
[http://dx.doi.org/10.1039/C6DT04307K] [PMID: 28154849]
[142]
Lopes CD, Possato B, Gaspari APS, et al. Organometallic Gold(III) Complex [Au(Hdamp)(L14)]+ (L1 = SNS-Donating Thiosemicarbazone) as a Candidate to New Formulations against Chagas Disease. ACS Infect Dis 2019; 5(10): 1698-707.
[http://dx.doi.org/10.1021/acsinfecdis.8b00284] [PMID: 31419384]
[143]
Lo SF, Hayter M, Chang CJ, Hu WY, Lee LL. A systematic review of silver-releasing dressings in the management of infected chronic wounds. J Clin Nurs 2008; 17(15): 1973-85.
[http://dx.doi.org/10.1111/j.1365-2702.2007.02264.x] [PMID: 18705778]
[144]
Medici S, Peana M, Crisponi G, et al. Silver coordination compounds: A new horizon in medicine. Coord Chem Rev 2016; 327–328: 349-59.
[http://dx.doi.org/10.1016/j.ccr.2016.05.015]
[145]
Thurman RB, Gerba CP, Bitton G. Critical Reviews in Environmental Control The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Environ Control 1989; 184: 295-315.
[146]
Reinoso López D. Study of various metal complexes of the two geometric isomers of 1-p-methoxyphenyl-4-hydroximinomethylimidazole. J Inorg Biochem 1994; 54: 21-32.
[http://dx.doi.org/10.1016/0162-0134(94)85120-4]
[147]
Segura DF, Netto AVG, Frem RCG, et al. Synthesis and biological evaluation of ternary silver compounds bearing N,N-chelating ligands and thiourea: x-ray structure of [{Ag(Bpy)(μ-Tu)}2](NO3)2. Polyhedron 2014; 79: 197-206.
[http://dx.doi.org/10.1016/j.poly.2014.05.004]
[148]
Espuri PF, Dos Reis LL, de Figueiredo Peloso E, et al. Synthesis and evaluation of the antileishmanial activity of silver compounds containing imidazolidine-2-thione. J Biol Inorg Chem 2019; 24(3): 419-32.
[http://dx.doi.org/10.1007/s00775-019-01657-2] [PMID: 30949838]
[149]
Esteban-Parra GM, Méndez-Arriaga JM, Rodríguez-Diéguez A, Quirós M, Salas JM, Sánchez-Moreno M. High antiparasitic activity of silver complexes of 5,7-dimethyl-1,2,4-triazolo[1,5 a]pyrimidine. J Inorg Biochem 2019; 2011: 10810.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110810] [PMID: 31493678]
[150]
Thota S, Rodrigues DA, Crans DC, Barreiro EJ. Ru(II) Compounds: Next-Generation Anticancer Metallotherapeutics? J Med Chem 2018; 61(14): 5805-21.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01689] [PMID: 29446940]
[151]
Golbaghi G, Castonguay A. Rationally designed ruthenium complexes for breast cancer therapy. Molecules 2020; 25(2): 1-25.
[http://dx.doi.org/10.3390/molecules25020265] [PMID: 31936496]
[152]
Rosenberg B. Platinum complex-DNA interactions and anticancer activity. Biochimie 1978; 60: 859-67.
[http://dx.doi.org/10.1016/S0300-9084(78)80570-7]
[153]
Motswainyana WM, Ajibade PA. Anticancer activities of mononuclear Ruthenium(II) Coordination complexes. Adv Chem 2015; pp. 1-21.
[154]
Sánchez-Delgado RA, Lazardi K, Rincón L, Urbina JA. Toward a novel metal-based chemotherapy against tropical diseases. 1. Enhancement of the efficacy of clotrimazole against Trypanosoma cruzi by complexation to ruthenium in RuCl2(clotrimazole)2. J Med Chem 1993; 36(14): 2041-3.
[http://dx.doi.org/10.1021/jm00066a014] [PMID: 8336342]
[155]
Navarro M, Lehmann T, Cisnero-Fajardo EJ, Sánchez-Delgado RA, Silva P, Urbina JA. Toward a novel metal-based chemotherapy against tropical Part 5. Synthesis and characterization of new Ru(II) and Ru(III) clotrimazole and ketoconazole complexes and evaluation of their activity against Trypanosoma cruzi. Polyhedron 2000; 19: 2319-25.
[http://dx.doi.org/10.1016/S0277-5387(00)00495-2]
[156]
Martínez A, Carreon T, Iniguez E, et al. Searching for new chemotherapies for tropical diseases: ruthenium-clotrimazole complexes display high in vitro activity against Leishmania major and Trypanosoma cruzi and low toxicity toward normal mammalian cells. J Med Chem 2012; 55(8): 3867-77.
[http://dx.doi.org/10.1021/jm300070h] [PMID: 22448965]
[157]
Iniguez E, Varela-Ramirez A, Martínez A, Torres CL, Sánchez-Delgado RA, Maldonado RA. Ruthenium-Clotrimazole complex has significant efficacy in the murine model of cutaneous leishmaniasis. Acta Trop 2016; 164: 402-10.
[http://dx.doi.org/10.1016/j.actatropica.2016.09.029] [PMID: 27693373]
[158]
Colina-Vegas L, Lima Prado Godinho J, Coutinho T, et al. Antiparasitic activity and ultrastructural alterations provoked by organoruthenium complexes against: Leishmania amazonensis. New J Chem 2019; 43: 1431-9.
[http://dx.doi.org/10.1039/C8NJ04657C]
[159]
Rodríguez Arce E, Sarniguet C, Moraes TS, et al. A new ruthenium cyclopentadienyl azole compound with activity on tumor cell lines and trypanosomatid parasites. J Coord Chem 2015; 68: 2923-37.
[http://dx.doi.org/10.1080/00958972.2015.1062480]
[160]
Iniguez E, Sánchez A, Vasquez MA, et al. Metal-drug synergy: new ruthenium(II) complexes of ketoconazole are highly active against Leishmania major and Trypanosoma cruzi and nontoxic to human or murine normal cells. J Biol Inorg Chem 2013; 18(7): 779-90.
[PMID: 23881220]
[161]
Gambino D, Otero L. Perspectives on what ruthenium-based compounds could offer in the development of potential antiparasitic drugs. Inorg Chim Acta 2012; 393: 103-14.
[162]
Gambino D, Otero L. Design of prospective antiparasitic metal-based compounds including selected organometallic cores. Inorg Chim Acta 2018; 472: 58-75.
[http://dx.doi.org/10.1016/j.ica.2017.07.068]
[163]
Fandzloch M, Arriaga JMM, Sánchez-Moreno M, et al. Strategies for overcoming tropical disease by ruthenium complexes with purine analog: Application against Leishmania spp. and Trypanosoma cruzi. J Inorg Biochem 2017; 176: 144-55.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.08.018] [PMID: 28910663]
[164]
Vespa GNR, Cunha FQ, Silva JS. Nitric oxide is involved in control of Trypanosoma cruzi-induced parasitemia and directly kills the parasite in vitro. Infect Immun 1994; 62(11): 5177-82.
[http://dx.doi.org/10.1128/IAI.62.11.5177-5182.1994] [PMID: 7523307]
[165]
James SL. Role of nitric oxide in parasitic infections. Microbiol Rev 1995; 59(4): 533-47.
[http://dx.doi.org/10.1128/MMBR.59.4.533-547.1995] [PMID: 8531884]
[166]
Silva JJN, Osakabe AL, Pavanelli WR, Silva JS, Franco DW. In vitro and in vivo antiproliferative and trypanocidal activities of ruthenium NO donors. Br J Pharmacol 2007; 152(1): 112-21.
[http://dx.doi.org/10.1038/sj.bjp.0707363] [PMID: 17603548]
[167]
Tfouni E, Truzzi DR, Tavares A, Gomes AJ, Figueiredo LE, Franco DW. Biological activity of ruthenium nitrosyl complexes. Nitric Oxide 2012; 26(1): 38-53.
[http://dx.doi.org/10.1016/j.niox.2011.11.005] [PMID: 22178685]
[168]
Pereira JC, Carregaro V, Costa DL, da Silva JS, Cunha FQ, Franco DW. Antileishmanial activity of ruthenium(II)tetraammine nitrosyl complexes. Eur J Med Chem 2010; 45(9): 4180-7.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.010] [PMID: 20598778]
[169]
Sesti-Costa R, Carneiro ZA, Silva MC, et al. Ruthenium complex with benznidazole and nitric oxide as a new candidate for the treatment of chagas disease. PLoS Negl Trop Dis 2014; 8(10): e3207.
[http://dx.doi.org/10.1371/journal.pntd.0003207] [PMID: 25275456]
[170]
Bastos TM, Barbosa MIF, da Silva MM, et al. Nitro/nitrosyl-ruthenium complexes are potent and selective anti-Trypanosoma cruzi agents causing autophagy and necrotic parasite death. Antimicrob Agents Chemother 2014; 58(10): 6044-55.
[http://dx.doi.org/10.1128/AAC.02765-14] [PMID: 25092707]
[171]
Silva JJN, Guedes PMM, Zottis A, et al. Novel ruthenium complexes as potential drugs for Chagas’s disease: enzyme inhibition and in vitro/in vivo trypanocidal activity. Br J Pharmacol 2010; 160(2): 260-9.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00524.x] [PMID: 20105182]
[172]
Guido RVC, Oliva G, Montanari CA, Andricopulo AD. Structural basis for selective inhibition of trypanosomatid glyceraldehyde-3-phosphate dehydrogenase: molecular docking and 3D QSAR studies. J Chem Inf Model 2008; 48(4): 918-29.
[http://dx.doi.org/10.1021/ci700453j] [PMID: 18303835]
[173]
Marcusso Orsini T, Kawakami NY, Panis C, et al. Antileishmanial Activity and Inducible Nitric Oxide Synthase Activation by RuNO Complex. Mediators Inflamm 2016; 2016: 2631625.
[PMID: 27795620]
[174]
Nascimento NRFD, Aguiar FLN, Santos CF, et al. In vitro and in vivo leishmanicidal activity of a ruthenium nitrosyl complex against Leishmania (Viannia) braziliensis. Acta Trop 2019; 192: 61-5.
[PMID: 30689977]
[175]
Nogueira Silva JJ, Pavanelli WR, Gutierrez FR, et al. Complexation of the anti-Trypanosoma cruzi drug benznidazole improves solubility and efficacy. J Med Chem 2008; 51(14): 4104-14.
[PMID: 18570370]
[176]
Costa MS, Gonçalves YG, Nunes DCO, et al. Anti-Leishmania activity of new ruthenium(II) complexes: Effect on parasite-host interaction. J Inorg Biochem 2017; 175: 225-31.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.07.023] [PMID: 28783554]
[177]
Costa MS, Gonçalves YG, Teixeira SC, et al. Increased ROS generation causes apoptosis-like death: Mechanistic insights into the anti-Leishmania activity of a potent ruthenium(II) complex. J Inorg Biochem 2019; 195: 1-12.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.03.005] [PMID: 30861423]
[178]
Barbosa MIF, Corrêa RS, de Oliveira KM, et al. Antiparasitic activities of novel ruthenium/lapachol complexes. J Inorg Biochem 2014; 136: 33-9.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.03.009] [PMID: 24727183]
[179]
Miranda VM, Costa MS, Guilardi S, et al. In vitro leishmanicidal activity and theoretical insights into biological action of ruthenium(II) organometallic complexes containing anti-inflammatories. Biometals 2018; 31(6): 1003-17.
[http://dx.doi.org/10.1007/s10534-018-0145-z] [PMID: 30284643]
[180]
Navarro M, Betancourt A, Hernández C, Marchán E. Palladium polypyridyl complexes: Synthesis, characterization, DNA interaction and biological activity on Leishmania (L) mexicana. J Braz Chem Soc 2008; 19: 1355-60.
[http://dx.doi.org/10.1590/S0103-50532008000700018]
[181]
De Souza CM, Silva RC, Fernandes PO, et al. Cyclometalated ruthenium complexes from naturally occurring quinones: studies on their photophysical features, computational details and trypanocidal activity. New J Chem 2017; 41: 3723-31.
[http://dx.doi.org/10.1039/C7NJ00379J]
[182]
Possato B, Carneiro ZA, de Albuquerque S, Nikolaou S. New uses for old complexes: The very first report on the trypanocidal activity of symmetric trinuclear ruthenium complexes. J Inorg Biochem 2017; 176: 156-8.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.08.021] [PMID: 28915432]
[183]
Jelk J, Balmer V, Stibal D, et al. Anti-parasitic dinuclear thiolato-bridged arene ruthenium complexes alter the mitochondrial ultrastructure and membrane potential in Trypanosoma brucei bloodstream forms. Exp Parasitol 2019; 205: 107753.
[http://dx.doi.org/10.1016/j.exppara.2019.107753] [PMID: 31469986]