Multifunctional RNase MCPIP1 and its Role in Cardiovascular Diseases

Page: [3385 - 3405] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Monocyte chemoattractant protein-1 induced protein 1 (MCPIP1), one of the MCPIP family members, is characterized by the presence of both C-x8-C-x5-C-x3-H (CCCH)- type zinc finger and PilT-N-terminal domains. As a potent regulator of innate immunity, MCPIP1 exerts anti-inflammatory effects through its ribonuclease (RNase) and deubiquitinating enzyme activities to degrade cytokine mRNAs and inhibit nuclear factor- kappa B (NF-κB), respectively. MCPIP1 is expressed not only in immune cells but also in many other cell types, including cardiomyocytes, vascular endothelial cells (ECs) and smooth muscle cells (SMCs). Increasing evidence indicates that MCPIP1 plays a role in the regulation of cardiac functions and is involved in the processes of vascular diseases, such as ischemia-reperfusion (I/R) and atherosclerosis. To better understand the emerging roles of MCPIP1 in the cardiovascular system, we reviewed the current literature with respect to MCPIP1 functions and discussed its association with the pathogenesis of cardiovascular diseases and the implication as a therapeutic target.

Keywords: MCPIP1, Ribonuclease, miRNA, inflammation, atherosclerosis, cardiovascular diseases, NF-κB.

[1]
Li, Y.; Huang, X.; Huang, S.; He, H.; Lei, T.; Saaoud, F.; Yu, X.Q.; Melnick, A.; Kumar, A.; Papasian, C.J.; Fan, D.; Fu, M. Central role of myeloid MCPIP1 in protecting against LPS-induced inflammation and lung injury. Signal Transduct. Target. Ther., 2017, 2, 17066.
[http://dx.doi.org/10.1038/sigtrans.2017.66] [PMID: 29263935]
[2]
Zhou, L.; Azfer, A.; Niu, J.; Graham, S.; Choudhury, M.; Adamski, F.M.; Younce, C.; Binkley, P.F.; Kolattukudy, P.E. Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ. Res., 2006, 98(9), 1177-1185.
[http://dx.doi.org/10.1161/01.RES.0000220106.64661.71] [PMID: 16574901]
[3]
Blazusiak, E.; Florczyk, D.; Jura, J.; Potempa, J.; Koziel, J. Differential regulation by Toll-like receptor agonists reveals that MCPIP1 is the potent regulator of innate immunity in bacterial and viral infections. J. Innate Immun., 2013, 5(1), 15-23.
[http://dx.doi.org/10.1159/000339826] [PMID: 22777400]
[4]
Cifuentes, R.A.; Cruz-Tapias, P.; Rojas-Villarraga, A.; Anaya, J.M. ZC3H12A (MCPIP1): molecular characteristics and clinical implications. Clin. Chim. Acta, 2010, 411(23-24), 1862-1868.
[http://dx.doi.org/10.1016/j.cca.2010.08.033] [PMID: 20807520]
[5]
Niu, J.; Shi, Y.; Xue, J.; Miao, R.; Huang, S.; Wang, T.; Wu, J.; Fu, M.; Wu, Z.H. USP10 inhibits genotoxic NF-κB activation by MCPIP1-facilitated deubiquitination of NEMO. EMBO J., 2013, 32(24), 3206-3219.
[http://dx.doi.org/10.1038/emboj.2013.247] [PMID: 24270572]
[6]
Wang, W.; Huang, X.; Xin, H.B.; Fu, M.; Xue, A.; Wu, Z.H. TRAF family member-associated NF-κB activator (TANK) inhibits genotoxic nuclear factor κB activation by facilitating deubiquitinase USP10-dependent deubiquitination of TRAF6 ligase. J. Biol. Chem., 2015, 290(21), 13372-13385.
[http://dx.doi.org/10.1074/jbc.M115.643767] [PMID: 25861989]
[7]
Matsushita, K.; Takeuchi, O.; Standley, D.M.; Kumagai, Y.; Kawagoe, T.; Miyake, T.; Satoh, T.; Kato, H.; Tsujimura, T.; Nakamura, H.; Akira, S. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature, 2009, 458(7242), 1185-1190.
[http://dx.doi.org/10.1038/nature07924] [PMID: 19322177]
[8]
Liang, J.; Saad, Y.; Lei, T.; Wang, J.; Qi, D.; Yang, Q.; Kolattukudy, P.E.; Fu, M. MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappaB signaling. J. Exp. Med., 2010, 207(13), 2959-2973.
[http://dx.doi.org/10.1084/jem.20092641] [PMID: 21115689]
[9]
Miao, R.; Huang, S.; Zhou, Z.; Quinn, T.; Van Treeck, B.; Nayyar, T.; Dim, D.; Jiang, Z.; Papasian, C.J.; Eugene Chen, Y.; Liu, G.; Fu, M. Targeted disruption of MCPIP1/Zc3h12a results in fatal inflammatory disease. Immunol. Cell Biol., 2013, 91(5), 368-376.
[http://dx.doi.org/10.1038/icb.2013.11] [PMID: 23567898]
[10]
Zhou, Z.; Miao, R.; Huang, S.; Elder, B.; Quinn, T.; Papasian, C.J.; Zhang, J.; Fan, D.; Chen, Y.E.; Fu, M. MCPIP1 deficiency in mice results in severe anemia related to autoimmune mechanisms. PLoS One, 2013, 8(12), e82542.
[http://dx.doi.org/10.1371/journal.pone.0082542] [PMID: 24324805]
[11]
Iwasaki, H.; Takeuchi, O.; Teraguchi, S.; Matsushita, K.; Uehata, T.; Kuniyoshi, K.; Satoh, T.; Saitoh, T.; Matsushita, M.; Standley, D.M.; Akira, S. The IκB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR-IL-1R by controlling degradation of regnase-1. Nat. Immunol., 2011, 12(12), 1167-1175.
[http://dx.doi.org/10.1038/ni.2137] [PMID: 22037600]
[12]
Mizgalska, D.; Wegrzyn, P.; Murzyn, K.; Kasza, A.; Koj, A.; Jura, J.; Jarzab, B.; Jura, J. Interleukin-1-inducible MCPIP protein has structural and functional properties of RNase and participates in degradation of IL-1beta mRNA. FEBS J., 2009, 276(24), 7386-7399.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07452.x] [PMID: 19909337]
[13]
Zhang, W.; Zhu, T.; Chen, L.; Luo, W.; Chao, J. MCP-1 mediates ischemia-reperfusion-induced cardiomyocyte apoptosis via MCPIP1 and CaSR. Am. J. Physiol. Heart Circ. Physiol., 2020, 318(1), H59-H71.
[http://dx.doi.org/10.1152/ajpheart.00308.2019] [PMID: 31774703]
[14]
Yi, Q.; Tan, F.H.; Tan, J.A.; Chen, X.H.; Xiao, Q.; Liu, Y.H.; Zhang, G.P.; Luo, J.D. Minocycline protects against myocardial ischemia/reperfusion injury in rats by upregulating MCPIP1 to inhibit NF-κB activation. Acta Pharmacol. Sin., 2019, 40(8), 1019-1028.
[http://dx.doi.org/10.1038/s41401-019-0214-z] [PMID: 30792486]
[15]
Chao, J.; Wang, X.; Zhang, Y.; Zhu, T.; Zhang, W.; Zhou, Z.; Yang, J.; Han, B.; Cheng, Y.; Tu, X.; Yao, H. Role of MCPIP1 in the endothelial-mesenchymal transition induced by silica. Cell. Physiol. Biochem., 2016, 40(1-2), 309-325.
[http://dx.doi.org/10.1159/000452547] [PMID: 27866190]
[16]
Qi, Y.; Liang, J.; She, Z.G.; Cai, Y.; Wang, J.; Lei, T.; Stallcup, W.B.; Fu, M. MCP-induced protein 1 suppresses TNFalpha-induced VCAM-1 expression in human endothelial cells. FEBS Lett., 2010, 584(14), 3065-3072.
[http://dx.doi.org/10.1016/j.febslet.2010.05.040] [PMID: 20561987]
[17]
Zhu, T.; Yao, Q.; Hu, X.; Chen, C.; Yao, H.; Chao, J. The role of MCPIP1 in ischemia/reperfusion injury-induced HUVEC migration and apoptosis. Cell. Physiol. Biochem., 2015, 37(2), 577-591.
[http://dx.doi.org/10.1159/000430378] [PMID: 26329288]
[18]
Xie, X.; Zhu, T.; Chen, L.; Ding, S.; Chu, H.; Wang, J.; Yao, H.; Chao, J. MCPIP1-induced autophagy mediates ischemia/reperfusion injury in endothelial cells via HMGB1 and CaSR. Sci. Rep., 2018, 8(1), 1735.
[http://dx.doi.org/10.1038/s41598-018-20195-6] [PMID: 29379093]
[19]
Tan, X.; Gao, J.; Shi, Z.; Tai, S.; Chan, L.L.; Yang, Y.; Peng, D.Q.; Liao, D.F.; Jiang, Z.S.; Chang, Y.Z.; Gui, Y.; Zheng, X.L. MG132 induces expression of monocyte chemotactic protein-induced protein 1 in vascular smooth muscle cells. J. Cell. Physiol., 2017, 232(1), 122-128.
[http://dx.doi.org/10.1002/jcp.25396] [PMID: 27035356]
[20]
Xue, M.; Li, G.; Li, D.; Wang, Z.; Mi, L.; Da, J.; Jin, X. Up-regulated MCPIP1 in abdominal aortic aneurysm is associated with vascular smooth muscle cell apoptosis and MMPs production. Biosci. Rep., 2019, 39(11), BSR20191252.
[http://dx.doi.org/10.1042/BSR20191252] [PMID: 31651935]
[21]
Yang, L.; Chao, J.; Kook, Y.H.; Gao, Y.; Yao, H.; Buch, S.J. Involvement of miR-9/MCPIP1 axis in PDGF-BB-mediated neurogenesis in neuronal progenitor cells. Cell Death Dis., 2013, 4(12), e960.
[http://dx.doi.org/10.1038/cddis.2013.486] [PMID: 24336080]
[22]
Liang, J.; Wang, J.; Saad, Y.; Warble, L.; Becerra, E.; Kolattukudy, P.E. Participation of MCP-induced protein 1 in lipopolysaccharide preconditioning-induced ischemic stroke tolerance by regulating the expression of proinflammatory cytokines. J. Neuroinflammation, 2011, 8, 182.
[http://dx.doi.org/10.1186/1742-2094-8-182] [PMID: 22196138]
[23]
Jin, Z.; Liang, J.; Wang, J.; Kolattukudy, P.E. Delayed brain ischemia tolerance induced by electroacupuncture pretreatment is mediated via MCP-induced protein 1. J. Neuroinflammation, 2013, 10, 63.
[http://dx.doi.org/10.1186/1742-2094-10-63] [PMID: 23663236]
[24]
Jin, Z.; Liang, J.; Wang, J.; Kolattukudy, P.E. MCP-induced protein 1 mediates the minocycline-induced neuroprotection against cerebral ischemia/reperfusion injury in vitro and in vivo . J. Neuroinflammation, 2015, 12, 39.
[http://dx.doi.org/10.1186/s12974-015-0264-1] [PMID: 25888869]
[25]
Ligeza, J.; Marona, P.; Gach, N.; Lipert, B.; Miekus, K.; Wilk, W.; Jaszczynski, J.; Stelmach, A.; Loboda, A.; Dulak, J.; Branicki, W.; Rys, J.; Jura, J. MCPIP1 contributes to clear cell renal cell carcinomas development. Angiogenesis, 2017, 20(3), 325-340.
[http://dx.doi.org/10.1007/s10456-017-9540-2] [PMID: 28197812]
[26]
Marona, P.; Górka, J.; Mazurek, Z.; Wilk, W.; Rys, J.; Majka, M.; Jura, J.; Miekus, K. MCPIP1 downregulation in clear cell renal cell carcinoma promotes vascularization and metastatic progression. Cancer Res., 2017, 77(18), 4905-4920.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-3190] [PMID: 28716897]
[27]
Lin, R.J.; Chu, J.S.; Chien, H.L.; Tseng, C.H.; Ko, P.C.; Mei, Y.Y.; Tang, W.C.; Kao, Y.T.; Cheng, H.Y.; Liang, Y.C.; Lin, S.Y. MCPIP1 suppresses hepatitis C virus replication and negatively regulates virus-induced proinflammatory cytokine responses. J. Immunol., 2014, 193(8), 4159-4168.
[http://dx.doi.org/10.4049/jimmunol.1400337] [PMID: 25225661]
[28]
Li, M.; Yang, J.; Zhao, Y.; Song, Y.; Yin, S.; Guo, J.; Zhang, H.; Wang, K.; Wei, L.; Li, S.; Xu, W. MCPIP1 inhibits Hepatitis B virus replication by destabilizing viral RNA and negatively regulates the virus-induced innate inflammatory responses. Antiviral Res., 2020, 174, 104705.
[http://dx.doi.org/10.1016/j.antiviral.2020.104705] [PMID: 31926181]
[29]
Sun, P.; Lu, Y.X.; Cheng, D.; Zhang, K.; Zheng, J.; Liu, Y.; Wang, X.; Yuan, Y.F.; Tang, Y.D. Monocyte chemoattractant protein-induced protein 1 targets hypoxia-inducible factor 1α to protect against hepatic ischemia/reperfusion injury. Hepatology, 2018, 68(6), 2359-2375.
[http://dx.doi.org/10.1002/hep.30086] [PMID: 29742804]
[30]
Lu, W.; Ning, H.; Gu, L.; Peng, H.; Wang, Q.; Hou, R.; Fu, M.; Hoft, D.F.; Liu, J. MCPIP1 selectively destabilizes transcripts associated with an antiapoptotic gene expression program in breast cancer cells that can elicit complete tumor regression. Cancer Res., 2016, 76(6), 1429-1440.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1115] [PMID: 26833120]
[31]
Skalniak, L.; Koj, A.; Jura, J. Proteasome inhibitor MG-132 induces MCPIP1 expression. FEBS J., 2013, 280(11), 2665-2674.
[http://dx.doi.org/10.1111/febs.12264] [PMID: 23551903]
[32]
Skalniak, L.; Dziendziel, M.; Jura, J. MCPIP1 contributes to the toxicity of proteasome inhibitor MG-132 in HeLa cells by the inhibition of NF-κB. Mol. Cell. Biochem., 2014, 395(1-2), 253-263.
[http://dx.doi.org/10.1007/s11010-014-2134-z] [PMID: 24992982]
[33]
Liu, H.; Dai, X.; Cheng, Y.; Fang, S.; Zhang, Y.; Wang, X.; Zhang, W.; Liao, H.; Yao, H.; Chao, J. MCPIP1 mediates silica-induced cell migration in human pulmonary fibroblasts. Am. J. Physiol. Lung Cell. Mol. Physiol., 2016, 310(2), L121-L132.
[http://dx.doi.org/10.1152/ajplung.00278.2015] [PMID: 26608530]
[34]
Lipert, B.; Wegrzyn, P.; Sell, H.; Eckel, J.; Winiarski, M.; Budzynski, A.; Matlok, M.; Kotlinowski, J.; Ramage, L.; Malecki, M.; Wilk, W.; Mitus, J.; Jura, J. Monocyte chemoattractant protein-induced protein 1 impairs adipogenesis in 3T3-L1 cells. Biochim. Biophys. Acta, 2014, 1843(4), 780-788.
[http://dx.doi.org/10.1016/j.bbamcr.2014.01.001] [PMID: 24418043]
[35]
Makki, M.S.; Haqqi, T.M. Histone deacetylase inhibitor vorinostat (SAHA, MK0683) perturb miR-9-MCPIP1 axis to block IL-1β-induced IL-6 expression in human OA chondrocytes. Connect. Tissue Res., 2017, 58(1), 64-75.
[http://dx.doi.org/10.1080/03008207.2016.1211113] [PMID: 27404795]
[36]
Ren, Z.; He, M.; Shen, T.; Wang, K.; Meng, Q.; Chen, X.; Zhou, L.; Han, Y.; Ji, C.; Liu, S.; Fu, Q. MiR-421 promotes the development of osteosarcoma by regulating MCPIP1 expression. Cancer Biol. Ther., 2020, 21(3), 231-240.
[http://dx.doi.org/10.1080/15384047.2019.1683331] [PMID: 31718519]
[37]
Ruiz-Romeu, E.; Ferran, M.; Giménez-Arnau, A.; Bugara, B.; Lipert, B.; Jura, J.; Florencia, E.F.; Prens, E.P.; Celada, A.; Pujol, R.M.; Santamaria-Babí, L.F. MCPIP1 RNase is aberrantly distributed in psoriatic epidermis and rapidly induced by IL-17A. J. Invest. Dermatol., 2016, 136(8), 1599-1607.
[http://dx.doi.org/10.1016/j.jid.2016.04.030] [PMID: 27180111]
[38]
Bugara, B.; Konieczny, P.; Wolnicka-Glubisz, A.; Eckhart, L.; Fischer, H.; Skalniak, L.; Borowczyk-Michalowska, J.; Drukala, J.; Jura, J. MCPIP1 contributes to the inflammatory response of UVB-treated keratinocytes. J. Dermatol. Sci., 2017, 87(1), 10-18.
[http://dx.doi.org/10.1016/j.jdermsci.2017.03.013] [PMID: 28377026]
[39]
Liang, J.; Wang, J.; Azfer, A.; Song, W.; Tromp, G.; Kolattukudy, P.E.; Fu, M. A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages. J. Biol. Chem., 2008, 283(10), 6337-6346.
[http://dx.doi.org/10.1074/jbc.M707861200] [PMID: 18178554]
[40]
Xu, J.; Fu, S.; Peng, W.; Rao, Z. MCP-1-induced protein-1, an immune regulator. Protein Cell, 2012, 3(12), 903-910.
[http://dx.doi.org/10.1007/s13238-012-2075-9] [PMID: 23132255]
[41]
Uehata, T.; Iwasaki, H.; Vandenbon, A.; Matsushita, K.; Hernandez-Cuellar, E.; Kuniyoshi, K.; Satoh, T.; Mino, T.; Suzuki, Y.; Standley, D.M.; Tsujimura, T.; Rakugi, H.; Isaka, Y.; Takeuchi, O.; Akira, S. Malt1-induced cleavage of regnase-1 in CD4(+) helper T cells regulates immune activation. Cell, 2013, 153(5), 1036-1049.
[http://dx.doi.org/10.1016/j.cell.2013.04.034] [PMID: 23706741]
[42]
Suzuki, H.I.; Arase, M.; Matsuyama, H.; Choi, Y.L.; Ueno, T.; Mano, H.; Sugimoto, K.; Miyazono, K. MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol. Cell, 2011, 44(3), 424-436.
[http://dx.doi.org/10.1016/j.molcel.2011.09.012] [PMID: 22055188]
[43]
Liang, J.; Song, W.; Tromp, G.; Kolattukudy, P.E.; Fu, M. Genome-wide survey and expression profiling of CCCH-zinc finger family reveals a functional module in macrophage activation. PLoS One, 2008, 3(8), e2880.
[http://dx.doi.org/10.1371/journal.pone.0002880] [PMID: 18682727]
[44]
Barabino, S.M.; Hübner, W.; Jenny, A.; Minvielle-Sebastia, L.; Keller, W. The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins. Genes Dev., 1997, 11(13), 1703-1716.
[http://dx.doi.org/10.1101/gad.11.13.1703
] [PMID: 9224719]
[45]
Lai, W.S.; Kennington, E.A.; Blackshear, P.J. Interactions of CCCH zinc finger proteins with mRNA: non-binding tristetraprolin mutants exert an inhibitory effect on degradation of AU-rich element-containing mRNAs. J. Biol. Chem., 2002, 277(11), 9606-9613.
[http://dx.doi.org/10.1074/jbc.M110395200] [PMID: 11782475]
[46]
Courtois, G.; Fauvarque, M.O. The many roles of ubiquitin in NF-κB signaling. Biomedicines, 2018, 6(2), 43.
[http://dx.doi.org/10.3390/biomedicines6020043] [PMID: 29642643]
[47]
Reyes-Turcu, F.E.; Ventii, K.H.; Wilkinson, K.D. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem., 2009, 78, 363-397.
[http://dx.doi.org/10.1146/annurev.biochem.78.082307.091526] [PMID: 19489724]
[48]
Jura, J.; Skalniak, L.; Koj, A. Monocyte chemotactic protein-1-induced protein-1 (MCPIP1) is a novel multifunctional modulator of inflammatory reactions. Biochim. Biophys. Acta, 2012, 1823(10), 1905-1913.
[http://dx.doi.org/10.1016/j.bbamcr.2012.06.029] [PMID: 22771441]
[49]
Takeuchi, O. Endonuclease Regnase-1/Monocyte chemotactic protein-1-induced protein-1 (MCPIP1) in controlling immune responses and beyond. Wiley Interdiscip. Rev. RNA, 2018, 9(1), e1449.
[http://dx.doi.org/10.1002/wrna.1449] [PMID: 28929622]
[50]
Huang, S.; Qi, D.; Liang, J.; Miao, R.; Minagawa, K.; Quinn, T.; Matsui, T.; Fan, D.; Liu, J.; Fu, M. The putative tumor suppressor Zc3h12d modulates toll-like receptor signaling in macrophages. Cell. Signal., 2012, 24(2), 569-576.
[http://dx.doi.org/10.1016/j.cellsig.2011.10.011] [PMID: 22036805]
[51]
Liu, L.; Zhou, Z.; Huang, S.; Guo, Y.; Fan, Y.; Zhang, J.; Zhang, J.; Fu, M.; Chen, Y.E. Zc3h12c inhibits vascular inflammation by repressing NF-κB activation and pro-inflammatory gene expression in endothelial cells. Biochem. J., 2013, 451(1), 55-60.
[http://dx.doi.org/10.1042/BJ20130019] [PMID: 23360436]
[52]
Wawro, M.; Wawro, K.; Kochan, J.; Solecka, A.; Sowinska, W.; Lichawska-Cieslar, A.; Jura, J.; Kasza, A. ZC3H12B/MCPIP2, a new active member of the ZC3H12 family. RNA, 2019, 25(7), 840-856.
[http://dx.doi.org/10.1261/rna.071381.119] [PMID: 30988100]
[53]
von Gamm, M.; Schaub, A.; Jones, A.N.; Wolf, C.; Behrens, G.; Lichti, J.; Essig, K.; Macht, A.; Pircher, J.; Ehrlich, A.; Davari, K.; Chauhan, D.; Busch, B.; Wurst, W.; Feederle, R.; Feuchtinger, A.; Tschöp, M.H.; Friedel, C.C.; Hauck, S.M.; Sattler, M.; Geerlof, A.; Hornung, V.; Heissmeyer, V.; Schulz, C.; Heikenwalder, M.; Glasmacher, E. Immune homeostasis and regulation of the interferon pathway require myeloid-derived Regnase-3. J. Exp. Med., 2019, 216(7), 1700-1723.
[http://dx.doi.org/10.1084/jem.20181762] [PMID: 31126966]
[54]
Suk, F.M.; Chang, C.C.; Lin, R.J.; Lin, S.Y.; Chen, Y.T.; Liang, Y.C. MCPIP3as a potential metastasis suppressor gene in human colorectal cancer. Int. J. Mol. Sci., 2018, 19(5), 1350.
[http://dx.doi.org/10.3390/ijms19051350] [PMID: 29751537]
[55]
Minagawa, K.; Katayama, Y.; Nishikawa, S.; Yamamoto, K.; Sada, A.; Okamura, A.; Shimoyama, M.; Matsui, T. Inhibition of G(1) to S phase progression by a novel zinc finger protein P58(TFL) at P-bodies. Mol. Cancer Res., 2009, 7(6), 880-889.
[http://dx.doi.org/10.1158/1541-7786.MCR-08-0511] [PMID: 19531561]
[56]
Wang, M.; Vikis, H.G.; Wang, Y.; Jia, D.; Wang, D.; Bierut, L.J.; Bailey-Wilson, J.E.; Amos, C.I.; Pinney, S.M.; Petersen, G.M.; de Andrade, M.; Yang, P.; Wiest, J.S.; Fain, P.R.; Schwartz, A.G.; Gazdar, A.; Minna, J.; Gaba, C.; Rothschild, H.; Mandal, D.; Kupert, E.; Seminara, D.; Liu, Y.; Viswanathan, A.; Govindan, R.; Anderson, M.W.; You, M. Identification of a novel tumor suppressor gene p34 on human chromosome 6q25.1. Cancer Res., 2007, 67(1), 93-99.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2723] [PMID: 17210687]
[57]
Huang, S.; Liu, S.; Fu, J.J.; Tony Wang, T.; Yao, X.; Kumar, A.; Liu, G.; Fu, M. Monocyte chemotactic protein-induced protein 1 and 4 form a complex but act independently in regulation of interleukin-6 mRNA degradation. J. Biol. Chem., 2015, 290(34), 20782-20792.
[http://dx.doi.org/10.1074/jbc.M114.635870] [PMID: 26134560]
[58]
Xu, J.; Peng, W.; Sun, Y.; Wang, X.; Xu, Y.; Li, X.; Gao, G.; Rao, Z. Structural study of MCPIP1 N-terminal conserved domain reveals a PIN-like RNase. Nucleic Acids Res., 2012, 40(14), 6957-6965.
[http://dx.doi.org/10.1093/nar/gks359] [PMID: 22561375]
[59]
Li, M.; Cao, W.; Liu, H.; Zhang, W.; Liu, X.; Cai, Z.; Guo, J.; Wang, X.; Hui, Z.; Zhang, H.; Wang, J.; Wang, L. MCPIP1 down-regulates IL-2 expression through an ARE-independent pathway. PLoS One, 2012, 7(11), e49841.
[http://dx.doi.org/10.1371/journal.pone.0049841] [PMID: 23185455]
[60]
Garg, A.V.; Amatya, N.; Chen, K.; Cruz, J.A.; Grover, P.; Whibley, N.; Conti, H.R.; Hernandez Mir, G.; Sirakova, T.; Childs, E.C.; Smithgall, T.E.; Biswas, P.S.; Kolls, J.K.; McGeachy, M.J.; Kolattukudy, P.E.; Gaffen, S.L. MCPIP1 Endoribonuclease activity negatively regulates interleukin-17-mediated signaling and inflammation. Immunity, 2015, 43(3), 475-487.
[http://dx.doi.org/10.1016/j.immuni.2015.07.021] [PMID: 26320658]
[61]
Kochan, J.; Wawro, M.; Kasza, A. IF-combined smRNA FISH reveals interaction of MCPIP1 protein with IER3 mRNA. Biol. Open, 2016, 5(7), 889-898.
[http://dx.doi.org/10.1242/bio.018010] [PMID: 27256408]
[62]
Boratyn, E.; Nowak, I.; Horwacik, I.; Durbas, M.; Mistarz, A.; Kukla, M.; Kaczówka, P.; Łastowska, M.; Jura, J.; Rokita, H. Monocyte chemoattractant protein-induced protein 1 overexpression modulates transcriptome, including MicroRNA, in human neuroblastoma cells. J. Cell. Biochem., 2016, 117(3), 694-707.
[http://dx.doi.org/10.1002/jcb.25354] [PMID: 26308737]
[63]
Roy, A.; Zhang, M.; Saad, Y.; Kolattukudy, P.E. Antidicer RNAse activity of monocyte chemotactic protein-induced protein-1 is critical for inducing angiogenesis. Am. J. Physiol. Cell Physiol., 2013, 305(10), C1021-C1032.
[http://dx.doi.org/10.1152/ajpcell.00203.2013] [PMID: 24048733]
[64]
Anderson, P. Post-transcriptional regulons coordinate the initiation and resolution of inflammation. Nat. Rev. Immunol., 2010, 10(1), 24-35.
[http://dx.doi.org/10.1038/nri2685] [PMID: 20029446]
[65]
Carpenter, S.; Ricci, E.P.; Mercier, B.C.; Moore, M.J.; Fitzgerald, K.A. Post-transcriptional regulation of gene expression in innate immunity. Nat. Rev. Immunol., 2014, 14(6), 361-376.
[http://dx.doi.org/10.1038/nri3682] [PMID: 24854588]
[66]
Oliveira, C.; Faoro, H.; Alves, L.R.; Goldenberg, S. RNA-binding proteins and their role in the regulation of gene expression in Trypanosoma cruzi and Saccharomyces cerevisiae . Genet. Mol. Biol., 2017, 40(1), 22-30.
[http://dx.doi.org/10.1590/1678-4685-gmb-2016-0258] [PMID: 28463381]
[67]
Fu, M.; Blackshear, P.J. RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins. Nat. Rev. Immunol., 2017, 17(2), 130-143.
[http://dx.doi.org/10.1038/nri.2016.129] [PMID: 27990022]
[68]
Mino, T.; Murakawa, Y.; Fukao, A.; Vandenbon, A.; Wessels, H.H.; Ori, D.; Uehata, T.; Tartey, S.; Akira, S.; Suzuki, Y.; Vinuesa, C.G.; Ohler, U.; Standley, D.M.; Landthaler, M.; Fujiwara, T.; Takeuchi, O. Regnase-1 and roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell, 2015, 161(5), 1058-1073.
[http://dx.doi.org/10.1016/j.cell.2015.04.029] [PMID: 26000482]
[69]
Amatya, N.; Childs, E.E.; Cruz, J.A.; Aggor, F.E.Y.; Garg, A.V.; Berman, A.J.; Gudjonsson, J.E.; Atasoy, U.; Gaffen, S.L. IL-17 integrates multiple self-reinforcing, feed-forward mechanisms through the RNA binding protein Arid5a. Sci. Signal., 2018, 11(551), eaat4617.
[http://dx.doi.org/10.1126/scisignal.aat4617] [PMID: 30301788]
[70]
Dobosz, E.; Wilamowski, M.; Lech, M.; Bugara, B.; Jura, J.; Potempa, J.; Koziel, J. MCPIP-1, alias regnase-1, controls epithelial inflammation by posttranscriptional regulation of IL-8 production. J. Innate Immun., 2016, 8(6), 564-578.
[http://dx.doi.org/10.1159/000448038] [PMID: 27513529]
[71]
Monin, L.; Gudjonsson, J.E.; Childs, E.E.; Amatya, N.; Xing, X.; Verma, A.H.; Coleman, B.M.; Garg, A.V.; Killeen, M.; Mathers, A.; Ward, N.L.; Gaffen, S.L. MCPIP1/regnase-1 restricts IL-17A- and IL-17C-dependent skin inflammation. J. Immunol., 2017, 198(2), 767-775.
[http://dx.doi.org/10.4049/jimmunol.1601551] [PMID: 27920272]
[72]
Lim, L.P.; Lau, N.C.; Garrett-Engele, P.; Grimson, A.; Schelter, J.M.; Castle, J.; Bartel, D.P.; Linsley, P.S.; Johnson, J.M. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 2005, 433(7027), 769-773.
[http://dx.doi.org/10.1038/nature03315] [PMID: 15685193]
[73]
Niu, J.; Jin, Z.; Kim, H.; Kolattukudy, P.E. MCP-1-induced protein attenuates post-infarct cardiac remodeling and dysfunction through mitigating NF-κB activation and suppressing inflammation-associated microRNA expression. Basic Res. Cardiol., 2015, 110(3), 26.
[http://dx.doi.org/10.1007/s00395-015-0483-8] [PMID: 25840774]
[74]
Losko, M.; Lichawska-Cieslar, A.; Kulecka, M.; Paziewska, A.; Rumienczyk, I.; Mikula, M.; Jura, J. Ectopic overexpression of MCPIP1 impairs adipogenesis by modulating microRNAs. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(1), 186-195.
[http://dx.doi.org/10.1016/j.bbamcr.2017.09.010] [PMID: 28939056]
[75]
Zhao, X.; Lu, Y.; Wang, F.; Dou, L.; Wang, L.; Guo, J.; Li, J. High glucose reduces hepatic glycogenesis by suppression of microRNA-152. Mol. Med. Rep., 2014, 10(4), 2073-2078.
[http://dx.doi.org/10.3892/mmr.2014.2426] [PMID: 25070263]
[76]
Song, G.; Xu, G.; Ji, C.; Shi, C.; Shen, Y.; Chen, L.; Zhu, L.; Yang, L.; Zhao, Y.; Guo, X. The role of microRNA-26b in human adipocyte differentiation and proliferation. Gene, 2014, 533(2), 481-487.
[http://dx.doi.org/10.1016/j.gene.2013.10.011] [PMID: 24140453]
[77]
Chen, X.; Zhao, Q.; Xie, Q.; Xing, Y.; Chen, Z. MCPIP1 negatively regulate cellular antiviral innate immune responses through DUB and disruption of TRAF3-TBK1-IKKε complex. Biochem. Biophys. Res. Commun., 2018, 503(2), 830-836.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.083] [PMID: 29920243]
[78]
Mevissen, T.E.T.; Komander, D. Mechanisms of deubiquitinase specificity and regulation. Annu. Rev. Biochem., 2017, 86, 159-192.
[http://dx.doi.org/10.1146/annurev-biochem-061516-044916] [PMID: 28498721]
[79]
Shimizu, Y.; Taraborrelli, L.; Walczak, H. Linear ubiquitination in immunity. Immunol. Rev., 2015, 266(1), 190-207.
[http://dx.doi.org/10.1111/imr.12309] [PMID: 26085216]
[80]
Qian, Y.; Li, X.; Miao, R.; Liu, S.; Xin, H.B.; Huang, X.; Wang, T.T.; Fu, M. Selective degradation of plasmid-derived mRNAs by MCPIP1 RNase. Biochem. J., 2019, 476(19), 2927-2938.
[http://dx.doi.org/10.1042/BCJ20190646] [PMID: 31530713]
[81]
Kayagaki, N.; Phung, Q.; Chan, S.; Chaudhari, R.; Quan, C.; O’Rourke, K.M.; Eby, M.; Pietras, E.; Cheng, G.; Bazan, J.F.; Zhang, Z.; Arnott, D.; Dixit, V.M. DUBA: a deubiquitinase that regulates type I interferon production. Science, 2007, 318(5856), 1628-1632.
[http://dx.doi.org/10.1126/science.1145918] [PMID: 17991829]
[82]
Lyu, J.H.; Park, D.W.; Huang, B.; Kang, S.H.; Lee, S.J.; Lee, C.; Bae, Y.S.; Lee, J.G.; Baek, S.H. RGS2 suppresses breast cancer cell growth via a MCPIP1-dependent pathway. J. Cell. Biochem., 2015, 116(2), 260-267.
[http://dx.doi.org/10.1002/jcb.24964] [PMID: 25187114]
[83]
Qu, B.; Cao, J.; Zhang, F.; Cui, H.; Teng, J.; Li, J.; Liu, Z.; Morehouse, C.; Jallal, B.; Tang, Y.; Guo, Q.; Yao, Y.; Shen, N.; Type, I. Type I interferon inhibition of MicroRNA-146a maturation through up-regulation of monocyte chemotactic protein-induced protein 1 in systemic lupus erythematosus. Arthritis Rheumatol., 2015, 67(12), 3209-3218.
[http://dx.doi.org/10.1002/art.39398] [PMID: 26315540]
[84]
Li, Z.; Jia, Y.; Han, S.; Wang, X.; Han, F.; Zhang, J.; Zhang, W.; Guan, H.; Hu, D. Klf4 Alleviates lipopolysaccharide-induced inflammation by inducing expression of MCP-1 induced protein 1 to deubiquitinate TRAF6. Cell. Physiol. Biochem., 2018, 47(6), 2278-2290.
[http://dx.doi.org/10.1159/000491538] [PMID: 29975947]
[85]
Kapoor, N.; Niu, J.; Saad, Y.; Kumar, S.; Sirakova, T.; Becerra, E.; Li, X.; Kolattukudy, P.E. Transcription factors STAT6 and KLF4 implement macrophage polarization via the dual catalytic powers of MCPIP. J. Immunol., 2015, 194(12), 6011-6023.
[http://dx.doi.org/10.4049/jimmunol.1402797] [PMID: 25934862]
[86]
Li, Z.; Han, S.; Jia, Y.; Yang, Y.; Han, F.; Wu, G.; Li, X.; Zhang, W.; Jia, W.; He, X.; Han, J.; Hu, D. MCPIP1 regulates RORα expression to protect against liver injury induced by lipopolysaccharide via modulation of miR-155. J. Cell. Physiol., 2019. Epub ahead of print.
[http://dx.doi.org/10.1002/jcp.28327] [PMID: 30811042]
[87]
Xu, R.; Li, Y.; Yan, H.; Zhang, E.; Huang, X.; Chen, Q.; Chen, J.; Qu, J.; Liu, Y.; He, J.; Yi, Q.; Cai, Z. CCL2 promotes macrophages-associated chemoresistance via MCPIP1 dual catalytic activities in multiple myeloma. Cell Death Dis., 2019, 10(10), 781.
[http://dx.doi.org/10.1038/s41419-019-2012-4] [PMID: 31611552]
[88]
Liu, S.; Qiu, C.; Miao, R.; Zhou, J.; Lee, A.; Liu, B.; Lester, S.N.; Fu, W.; Zhu, L.; Zhang, L.; Xu, J.; Fan, D.; Li, K.; Fu, M.; Wang, T. MCPIP1 restricts HIV infection and is rapidly degraded in activated CD4+ T cells. Proc. Natl. Acad. Sci. USA, 2013, 110(47), 19083-19088.
[http://dx.doi.org/10.1073/pnas.1316208110] [PMID: 24191027]
[89]
Skalniak, A.; Boratyn, E.; Tyrkalska, S.D.; Horwacik, I.; Durbas, M.; Lastowska, M.; Jura, J.; Rokita, H. Expression of the monocyte chemotactic protein-1-induced protein 1 decreases human neuroblastoma cell survival. Oncol. Rep., 2014, 31(5), 2385-2392.
[http://dx.doi.org/10.3892/or.2014.3076] [PMID: 24626857]
[90]
Boratyn, E.; Nowak, I.; Durbas, M.; Horwacik, I.; Sawicka, A.; Rokita, H. MCPIP1 exogenous overexpression inhibits pathways regulating MYCN oncoprotein stability in neuroblastoma. J. Cell. Biochem., 2017, 118(7), 1741-1755.
[http://dx.doi.org/10.1002/jcb.25832] [PMID: 27935099]
[91]
Nowak, I.; Boratyn, E.; Durbas, M.; Horwacik, I.; Rokita, H. Exogenous expression of miRNA-3613-3p causes APAF1 downregulation and affects several proteins involved in apoptosis in BE(2)-C human neuroblastoma cells. Int. J. Oncol., 2018, 53(4), 1787-1799.
[http://dx.doi.org/10.3892/ijo.2018.4509] [PMID: 30066861]
[92]
Boratyn, E.; Nowak, I.; Karnas, E.; Ryszawy, D.; Wnuk, D.; Polus, A.; Durbas, M.; Horwacik, I.; Rokita, H. MCPIP1 overexpression in human neuroblastoma cell lines causes cell-cycle arrest by G1/S checkpoint block. J. Cell. Biochem., 2020, 121(5-6), 3406-3425.
[http://dx.doi.org/10.1002/jcb.29614] [PMID: 31919874]
[93]
Niu, J.; Azfer, A.; Zhelyabovska, O.; Fatma, S.; Kolattukudy, P.E. Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). J. Biol. Chem., 2008, 283(21), 14542-14551.
[http://dx.doi.org/10.1074/jbc.M802139200] [PMID: 18364357]
[94]
Gavrilin, M.A.; Gulina, I.V.; Kawano, T.; Dragan, S.; Chakravarti, L.; Kolattukudy, P.E. Site-directed mutagenesis of CCR2 identified amino acid residues in transmembrane helices 1, 2, and 7 important for MCP-1 binding and biological functions. Biochem. Biophys. Res. Commun., 2005, 327(2), 533-540.
[http://dx.doi.org/10.1016/j.bbrc.2004.12.037] [PMID: 15629146]
[95]
Younce, C.W.; Wang, K.; Kolattukudy, P.E. Hyperglycaemia-induced cardiomyocyte death is mediated via MCP-1 production and induction of a novel zinc-finger protein MCPIP. Cardiovasc. Res., 2010, 87(4), 665-674.
[http://dx.doi.org/10.1093/cvr/cvq102] [PMID: 20356868]
[96]
Liu, H.; Fang, S.; Wang, W.; Cheng, Y.; Zhang, Y.; Liao, H.; Yao, H.; Chao, J. Macrophage-derived MCPIP1 mediates silica-induced pulmonary fibrosis via autophagy. Part. Fibre Toxicol., 2016, 13(1), 55.
[http://dx.doi.org/10.1186/s12989-016-0167-z] [PMID: 27782836]
[97]
Da, J.; Zhuo, M.; Qian, M. MCPIP is induced by cholesterol and participated in cholesterol-caused DNA damage in HUVEC. Int. J. Clin. Exp. Pathol., 2015, 8(9), 10625-10634.
[PMID: 26617772]
[98]
Skalniak, L.; Mizgalska, D.; Zarebski, A.; Wyrzykowska, P.; Koj, A.; Jura, J. Regulatory feedback loop between NF-kappaB and MCP-1-induced protein 1 RNase. FEBS J., 2009, 276(20), 5892-5905.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07273.x] [PMID: 19747262]
[99]
Kasza, A.; Wyrzykowska, P.; Horwacik, I.; Tymoszuk, P.; Mizgalska, D.; Palmer, K.; Rokita, H.; Sharrocks, A.D.; Jura, J. Transcription factors Elk-1 and SRF are engaged in IL1-dependent regulation of ZC3H12A expression. BMC Mol. Biol., 2010, 11, 14.
[http://dx.doi.org/10.1186/1471-2199-11-14] [PMID: 20137095]
[100]
Jiang, Z.; Ninomiya-Tsuji, J.; Qian, Y.; Matsumoto, K.; Li, X. Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol. Cell. Biol., 2002, 22(20), 7158-7167.
[http://dx.doi.org/10.1128/MCB.22.20.7158-7167.2002] [PMID: 12242293]
[101]
Yao, H.; Ma, R.; Yang, L.; Hu, G.; Chen, X.; Duan, M.; Kook, Y.; Niu, F.; Liao, K.; Fu, M.; Hu, G.; Kolattukudy, P.; Buch, S. MiR-9 promotes microglial activation by targeting MCPIP1. Nat. Commun., 2014, 5, 4386.
[http://dx.doi.org/10.1038/ncomms5386] [PMID: 25019481]
[102]
Makki, M.S.; Haseeb, A.; Haqqi, T.M. MicroRNA-9 promotion of interleukin-6 expression by inhibiting monocyte chemoattractant protein-induced protein 1 expression in interleukin-1β-stimulated human chondrocytes. Arthritis Rheumatol., 2015, 67(8), 2117-2128.
[http://dx.doi.org/10.1002/art.39173] [PMID: 25917063]
[103]
Makki, M.S.; Haqqi, T.M. miR-139 modulates MCPIP1/IL-6 expression and induces apoptosis in human OA chondrocytes. Exp. Mol. Med., 2015, 47(10), e189.
[http://dx.doi.org/10.1038/emm.2015.66] [PMID: 26450708]
[104]
Cheng, Y.; Du, L.; Jiao, H.; Zhu, H.; Xu, K.; Guo, S.; Shi, Q.; Zhao, T.; Pang, F.; Jia, X.; Wang, F. Mmu-miR-27a-5p-dependent upregulation of MCPIP1 inhibits the inflammatory response in LPS-induced RAW264.7 macrophage cells. BioMed Res. Int., 2015, 2015, 607692.
[http://dx.doi.org/10.1155/2015/607692] [PMID: 26295043]
[105]
Jeltsch, K.M.; Hu, D.; Brenner, S.; Zöller, J.; Heinz, G.A.; Nagel, D.; Vogel, K.U.; Rehage, N.; Warth, S.C.; Edelmann, S.L.; Gloury, R.; Martin, N.; Lohs, C.; Lech, M.; Stehklein, J.E.; Geerlof, A.; Kremmer, E.; Weber, A.; Anders, H.J.; Schmitz, I.; Schmidt-Supprian, M.; Fu, M.; Holtmann, H.; Krappmann, D.; Ruland, J.; Kallies, A.; Heikenwalder, M.; Heissmeyer, V. Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote T(H)17 differentiation. Nat. Immunol., 2014, 15(11), 1079-1089.
[http://dx.doi.org/10.1038/ni.3008] [PMID: 25282160]
[106]
Staal, J.; Driege, Y.; Bekaert, T.; Demeyer, A.; Muyllaert, D.; Van Damme, P.; Gevaert, K.; Beyaert, R. T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO J., 2011, 30(9), 1742-1752.
[http://dx.doi.org/10.1038/emboj.2011.85] [PMID: 21448133]
[107]
Coornaert, B.; Baens, M.; Heyninck, K.; Bekaert, T.; Haegman, M.; Staal, J.; Sun, L.; Chen, Z.J.; Marynen, P.; Beyaert, R. T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-kappaB inhibitor A20. Nat. Immunol., 2008, 9(3), 263-271.
[http://dx.doi.org/10.1038/ni1561] [PMID: 18223652]
[108]
Li, Y.; Huang, S.; Huang, X.; Li, X.; Falcon, A.; Soutar, A.; Bornancin, F.; Jiang, Z.; Xin, H.B.; Fu, M. Pharmacological inhibition of MALT1 protease activity suppresses endothelial activation via enhancing MCPIP1 expression. Cell. Signal., 2018, 50, 1-8.
[http://dx.doi.org/10.1016/j.cellsig.2018.05.009] [PMID: 29913212]
[109]
Younce, C.W.; Kolattukudy, P.E. MCP-1 causes cardiomyoblast death via autophagy resulting from ER stress caused by oxidative stress generated by inducing a novel zinc-finger protein, MCPIP. Biochem. J., 2010, 426(1), 43-53.
[http://dx.doi.org/10.1042/BJ20090976] [PMID: 19925454]
[110]
Kolattukudy, P.E.; Niu, J. Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway. Circ. Res., 2012, 110(1), 174-189.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.243212] [PMID: 22223213]
[111]
Niu, J.; Wang, K.; Graham, S.; Azfer, A.; Kolattukudy, P.E. MCP-1-induced protein attenuates endotoxin-induced myocardial dysfunction by suppressing cardiac NF-small ka, CyrillicB activation via inhibition of Ismall ka, CyrillicB kinase activation. J. Mol. Cell. Cardiol., 2011, 51(2), 177-186.
[http://dx.doi.org/10.1016/j.yjmcc.2011.04.018] [PMID: 21616078]
[112]
Omiya, S.; Omori, Y.; Taneike, M.; Murakawa, T.; Ito, J.; Tanada, Y.; Nishida, K.; Yamaguchi, O.; Satoh, T.; Shah, A.M.; Akira, S.; Otsu, K. Cytokine mRNA degradation in cardiomyocytes restrains sterile inflammation in pressure-overloaded hearts. Circulation, 2020, 141(8), 667-677.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.044582] [PMID: 31931613]
[113]
Li, M.; Yan, K.; Wei, L.; Yang, Y.; Qian, Q.; Xu, W. MCPIP1 inhibits coxsackievirus B3 replication by targeting viral RNA and negatively regulates virus-induced inflammation. Med. Microbiol. Immunol. (Berl.), 2018, 207(1), 27-38.
[http://dx.doi.org/10.1007/s00430-017-0523-0] [PMID: 29043433]
[114]
Moreira, D.M.; da Silva, R.L.; Vieira, J.L.; Fattah, T.; Lueneberg, M.E.; Gottschall, C.A. Role of vascular inflammation in coronary artery disease: potential of anti-inflammatory drugs in the prevention of atherothrombosis. Inflammation and anti-inflammatory drugs in coronary artery disease. Am. J. Cardiovasc. Drugs, 2015, 15(1), 1-11.
[http://dx.doi.org/10.1007/s40256-014-0094-z] [PMID: 25369900]
[115]
Nakagami, H.; Kaneda, Y.; Ogihara, T.; Morishita, R. Endothelial dysfunction in hyperglycemia as a trigger of atherosclerosis. Curr. Diabetes Rev., 2005, 1(1), 59-63.
[http://dx.doi.org/10.2174/1573399052952550] [PMID: 18220582]
[116]
Namiki, M.; Kawashima, S.; Yamashita, T.; Ozaki, M.; Hirase, T.; Ishida, T.; Inoue, N.; Hirata, K.; Matsukawa, A.; Morishita, R.; Kaneda, Y.; Yokoyama, M. Local overexpression of monocyte chemoattractant protein-1 at vessel wall induces infiltration of macrophages and formation of atherosclerotic lesion: synergism with hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol., 2002, 22(1), 115-120.
[http://dx.doi.org/10.1161/hq0102.102278] [PMID: 11788470]
[117]
Boring, L.; Gosling, J.; Cleary, M.; Charo, I.F. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature, 1998, 394(6696), 894-897.
[http://dx.doi.org/10.1038/29788] [PMID: 9732872]
[118]
Yu, F.; Du, F.; Wang, Y.; Huang, S.; Miao, R.; Major, A.S.; Murphy, E.A.; Fu, M.; Fan, D. Bone marrow deficiency of MCPIP1 results in severe multi-organ inflammation but diminishes atherogenesis in hyperlipidemic mice. PLoS One, 2013, 8(11), e80089.
[http://dx.doi.org/10.1371/journal.pone.0080089] [PMID: 24223214]
[119]
Gordon, S.; Martinez, F.O. Alternative activation of macrophages: mechanism and functions. Immunity, 2010, 32(5), 593-604.
[http://dx.doi.org/10.1016/j.immuni.2010.05.007] [PMID: 20510870]
[120]
Wynn, T.A.; Chawla, A.; Pollard, J.W. Macrophage biology in development, homeostasis and disease. Nature, 2013, 496(7446), 445-455.
[http://dx.doi.org/10.1038/nature12034] [PMID: 23619691]
[121]
Zhang, Y.; Huang, T.; Jiang, L.; Gao, J.; Yu, D.; Ge, Y.; Lin, S. MCP-induced protein 1 attenuates sepsis-induced acute lung injury by modulating macrophage polarization via the JNK/c-Myc pathway. Int. Immunopharmacol., 2019, 75, 105741.
[http://dx.doi.org/10.1016/j.intimp.2019.105741] [PMID: 31323531]
[122]
Shu, S.; Zhang, Y.; Li, W.; Wang, L.; Wu, Y.; Yuan, Z.; Zhou, J. The role of monocyte chemotactic protein-induced protein 1 (MCPIP1) in angiotensin II-induced macrophage apoptosis and vulnerable plaque formation. Biochem. Biophys. Res. Commun., 2019, 515(2), 378-385.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.145] [PMID: 31155290]
[123]
Hansson, G.K.; Libby, P. The immune response in atherosclerosis: a double-edged sword. Nat. Rev. Immunol., 2006, 6(7), 508-519.
[http://dx.doi.org/10.1038/nri1882] [PMID: 16778830]
[124]
Quan, Y.; Yang, Y.; Wang, H.; Shu, B.; Gong, Q.H.; Qian, M. Gypenosides attenuate cholesterol-induced DNA damage by inhibiting the production of reactive oxygen species in human umbilical vein endothelial cells. Mol. Med. Rep., 2015, 11(4), 2845-2851.
[http://dx.doi.org/10.3892/mmr.2014.3095] [PMID: 25515035]
[125]
Mercer, J.R.; Cheng, K.K.; Figg, N.; Gorenne, I.; Mahmoudi, M.; Griffin, J.; Vidal-Puig, A.; Logan, A.; Murphy, M.P.; Bennett, M. DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. Circ. Res., 2010, 107(8), 1021-1031.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.218966] [PMID: 20705925]
[126]
Banáth, J.P.; Klokov, D.; MacPhail, S.H.; Banuelos, C.A.; Olive, P.L. Residual gammaH2AX foci as an indication of lethal DNA lesions. BMC Cancer, 2010, 10, 4.
[http://dx.doi.org/10.1186/1471-2407-10-4] [PMID: 20051134]
[127]
Camaré, C.; Pucelle, M.; Nègre-Salvayre, A.; Salvayre, R. Angiogenesis in the atherosclerotic plaque. Redox Biol., 2017, 12, 18-34.
[http://dx.doi.org/10.1016/j.redox.2017.01.007] [PMID: 28212521]
[128]
Cochain, C.; Channon, K.M.; Silvestre, J.S. Angiogenesis in the infarcted myocardium. Antioxid. Redox Signal., 2013, 18(9), 1100-1113.
[http://dx.doi.org/10.1089/ars.2012.4849] [PMID: 22870932]
[129]
Roy, A.; Kolattukudy, P.E. Monocyte chemotactic protein-induced protein (MCPIP) promotes inflammatory angiogenesis via sequential induction of oxidative stress, endoplasmic reticulum stress and autophagy. Cell. Signal., 2012, 24(11), 2123-2131.
[http://dx.doi.org/10.1016/j.cellsig.2012.07.014] [PMID: 22820500]
[130]
Labedz-Maslowska, A.; Lipert, B.; Berdecka, D.; Kedracka-Krok, S.; Jankowska, U.; Kamycka, E.; Sekula, M.; Madeja, Z.; Dawn, B.; Jura, J.; Zuba-Surma, E.K. Monocyte chemoattractant protein-induced protein 1 (MCPIP1) enhances angiogenic and cardiomyogenic potential of murine bone marrow-derived mesenchymal stem cells. PLoS One, 2015, 10(7), e0133746.
[http://dx.doi.org/10.1371/journal.pone.0133746] [PMID: 26214508]
[131]
Johnson, J.L. Emerging regulators of vascular smooth muscle cell function in the development and progression of atherosclerosis. Cardiovasc. Res., 2014, 103(4), 452-460.
[http://dx.doi.org/10.1093/cvr/cvu171] [PMID: 25053639]
[132]
Yu, X.H.; Zheng, X.L.; Tang, C.K. Nuclear Factor-κB activation as a pathological mechanism of lipid metabolism and atherosclerosis. Adv. Clin. Chem., 2015, 70, 1-30.
[http://dx.doi.org/10.1016/bs.acc.2015.03.004] [PMID: 26231484]
[133]
Badimon, L.; Storey, R.F.; Vilahur, G. Update on lipids, inflammation and atherothrombosis. Thromb. Haemost., 2011, 105(Suppl. 1), S34-S42.
[http://dx.doi.org/10.1160/THS10-11-0717] [PMID: 21479344]
[134]
Pydyn, N.; Kadluczka, J.; Kus, E.; Pospiech, E.; Losko, M.; Fu, M.; Jura, J.; Kotlinowski, J. RNase MCPIP1 regulates hepatic peroxisome proliferator-activated receptor gamma via TXNIP/PGC-1alpha pathway. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2019, 1864(10), 1458-1471.
[http://dx.doi.org/10.1016/j.bbalip.2019.06.006] [PMID: 31185306]
[135]
Matsuda, M.; Shimomura, I. Roles of adiponectin and oxidative stress in obesity-associated metabolic and cardiovascular diseases. Rev. Endocr. Metab. Disord., 2014, 15(1), 1-10.
[http://dx.doi.org/10.1007/s11154-013-9271-7] [PMID: 24026768]
[136]
Losko, M.; Dolicka, D.; Pydyn, N.; Jankowska, U.; Kedracka-Krok, S.; Kulecka, M.; Paziewska, A.; Mikula, M.; Major, P.; Winiarski, M.; Budzynski, A.; Jura, J. Integrative genomics reveal a role for MCPIP1 in adipogenesis and adipocyte metabolism. Cell. Mol. Life Sci., 2020, 77(23), 4899-4919.
[http://dx.doi.org/10.1007/s00018-019-03434-5] [PMID: 31893310]
[137]
Younce, C.W.; Azfer, A.; Kolattukudy, P.E. MCP-1 (monocyte chemotactic protein-1)-induced protein, a recently identified zinc finger protein, induces adipogenesis in 3T3-L1 pre-adipocytes without peroxisome proliferator-activated receptor gamma. J. Biol. Chem., 2009, 284(40), 27620-27628.
[http://dx.doi.org/10.1074/jbc.M109.025320] [PMID: 19666473]
[138]
Younce, C.; Kolattukudy, P. MCP-1 induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy. Cell. Physiol. Biochem., 2012, 30(2), 307-320.
[http://dx.doi.org/10.1159/000339066] [PMID: 22739135]
[139]
Habacher, C.; Guo, Y.; Venz, R.; Kumari, P.; Neagu, A.; Gaidatzis, D.; Harvald, E.B.; Færgeman, N.J.; Gut, H.; Ciosk, R. Ribonuclease-mediated control of body fat. Dev. Cell, 2016, 39(3), 359-369.
[http://dx.doi.org/10.1016/j.devcel.2016.09.018] [PMID: 27746047]