Nanomaterials for Deep Tumor Treatment

Page: [677 - 688] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

According to statistics, cancer is the second leading cause of death in the world. Thus, it is important to solve this medical and social problem by developing new effective methods for cancer treatment. An alternative to more well-known approaches, such as radiotherapy and chemotherapy, is photodynamic therapy (PDT), which is limited to the shallow tissue penetration (< 1 cm) of visible light. Since the PDT process can be initiated in deep tissues by X-ray irradiation (X-ray induced PDT, or XPDT), it has a great potential to treat tumors in internal organs. The article discusses the principles of therapies. The main focus is on various nanoparticles used with or without photosensitizers, which allow the conversion of X-ray irradiation into UV-visible light. Much attention is given to the synthesis of nanoparticles and analysis of their characteristics, such as size and spectral features. The results of in vitro and in vivo experiments are also discussed.

Keywords: X-ray photodynamic therapy, photodynamic therapy, cancer treatment, photosensitizer, nanoparticle, scintillator, nanomaterials, reactive oxygen species.

Graphical Abstract

[2]
Malvezzi, M.; Carioli, G.; Bertuccio, P.; Boffetta, P.; Levi, F.; La Vecchia, C.; Negri, E. European cancer mortality predictions for the year 2019 with focus on breast cancer. Ann. Oncol., 2019, 30(5), 781-787.
[http://dx.doi.org/10.1093/annonc/mdz051] [PMID: 30887043]
[3]
Abrahamse, H.; Kruger, C.A.; Kadanyo, S.; Mishra, A. Nanoparticles for advanced photodynamic therapy of cancer. Photomed. Laser Surg., 2017, 35(11), 581-588.
[http://dx.doi.org/10.1089/pho.2017.4308] [PMID: 28937916]
[4]
Robertson, C.A.; Evans, D.H.; Abrahamse, H. Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B, 2009, 96(1), 1-8.
[http://dx.doi.org/10.1016/j.jphotobiol.2009.04.001] [PMID: 19406659]
[5]
Kamkaew, A.; Chen, F.; Zhan, Y.; Majewski, R.L.; Cai, W. Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy. ACS Nano, 2016, 10(4), 3918-3935.
[http://dx.doi.org/10.1021/acsnano.6b01401] [PMID: 27043181]
[6]
Larue, L.; Ben Mihoub, A.; Youssef, Z.; Colombeau, L.; Acherar, S.; André, J.C.; Arnoux, P.; Baros, F.; Vermandel, M.; Frochot, C. Using X-rays in photodynamic therapy: An overview. Photochem. Photobiol. Sci., 2018, 17(11), 1612-1650.
[http://dx.doi.org/10.1039/C8PP00112J] [PMID: 29938265]
[7]
Ren, X.D.; Hao, X.Y.; Li, H.C.; Ke, M.R.; Zheng, B.Y.; Huang, J.D. Progress in the development of nanosensitizers for X-ray-induced photodynamic therapy. Drug Discov. Today, 2018, 23(10), 1791-1800.
[http://dx.doi.org/10.1016/j.drudis.2018.05.029] [PMID: 29803933]
[8]
Fan, W.; Huang, P.; Chen, X. Overcoming the Achilles’ heel of photodynamic therapy. Chem. Soc. Rev., 2016, 45(23), 6488-6519.
[http://dx.doi.org/10.1039/C6CS00616G] [PMID: 27722560]
[9]
Huang, H-C.; Hasan, T. The “Nano” world in photodynamic therapy. Nanomed. Nanotechnol., 2014, 2(3), 1020.
[10]
Lim, C.K.; Heo, J.; Shin, S.; Jeong, K.; Seo, Y.H.; Jang, W.D.; Park, C.R.; Park, S.Y.; Kim, S.; Kwon, I.C. Nanophotosensitizers toward advanced photodynamic therapy of cancer. Cancer Lett., 2013, 334(2), 176-187.
[http://dx.doi.org/10.1016/j.canlet.2012.09.012] [PMID: 23017942]
[11]
Rancoule, C.; Magné, N.; Vallard, A.; Guy, J.B.; Rodriguez-Lafrasse, C.; Deutsch, E.; Chargari, C. Nanoparticles in radiation oncology: From bench-side to bedside. Cancer Lett., 2016, 375(2), 256-262.
[http://dx.doi.org/10.1016/j.canlet.2016.03.011] [PMID: 26987625]
[12]
Retif, P.; Pinel, S.; Toussaint, M.; Frochot, C.; Chouikrat, R.; Bastogne, T.; Barberi-Heyob, M. Nanoparticles for radiation therapy enhancement: The key parameters. Theranostics, 2015, 5(9), 1030-1044.
[http://dx.doi.org/10.7150/thno.11642] [PMID: 26155318]
[13]
Sivasubramanian, M.; Chuang, Y.C.; Chen, N.T.; Lo, L.W. Seeing better and going deeper in cancer nanotheranostics. Int. J. Mol. Sci., 2019, 20(14)E3490
[http://dx.doi.org/10.3390/ijms20143490] [PMID: 31315232]
[14]
Yurt, F.; Tunçel, A. Combined photodynamic and radiotherapy synergistic effect in cancer treatment. Novel Approaches Cancer Study, 2018, 1(2), 27-29.
[http://dx.doi.org/10.31031/NACS.2018.01.000506]
[15]
Hu, X.; Huang, Y.Y.; Wang, Y.; Wang, X.; Hamblin, M.R. Antimicrobial photodynamic therapy to control clinically relevant biofilm infections. Front. Microbiol., 2018, 9, 1299.
[http://dx.doi.org/10.3389/fmicb.2018.01299] [PMID: 29997579]
[16]
Yang, Y.; Karakhanova, S.; Werner, J.; Bazhin, A.V. Reactive oxygen species in cancer biology and anticancer therapy. Curr. Med. Chem., 2013, 20(30), 3677-3692.
[http://dx.doi.org/10.2174/0929867311320999165] [PMID: 23862622]
[17]
Bakhmetyev, V.V.; Minakova, T.S.; Mjakin, S.V.; Lebedev, L.A.; Vlasenko, A.B.; Nikandrova, A.A.; Ekimova, I.A.; Eremina, N.S.; Sychov, M.M.; Ringuede, A. Synthesis and surface characterization of nanosized Y2O3: Eu and YAG: Eu luminescent phosphors which are useful in photodynamic therapy of cancer. Eur. J. Nanomed., 2016, 8(4), 173-184.
[http://dx.doi.org/10.1515/ejnm-2016-0020]
[18]
Cheng, J.; Tan, G.; Li, W.; Li, J.; Wang, Z.; Jin, Y. Preparation, characterization and in vitro photodynamic therapy of a pyropheophorbide-a-conjugated Fe3O4 multifunctional magnetofluorescence photosensitizer. RSC Adv, 2016, 6(44), 37610-37620.
[http://dx.doi.org/10.1039/C6RA03128E]
[19]
Darafsheh, A.; Najmr, S.; Paik, T.; Tenuto, M.E.; Murray, C.B.; Finlay, J.C.; Friedberg, J.S. Characterization of rare-earth-doped nanophosphors for photodynamic therapy excited by clinical ionizing radiation beams., 2015.
[20]
Eshghi, H.; Sazgarnia, A.; Rahimizadeh, M.; Attaran, N.; Bakavoli, M.; Soudmand, S. Protoporphyrin IX-gold nanoparticle conjugates as an efficient photosensitizer in cervical cancer therapy. Photodiagn. Photodyn. Ther., 2013, 10(3), 304-312.
[http://dx.doi.org/10.1016/j.pdpdt.2013.02.003] [PMID: 23993857]
[21]
Hwang, J.W.; Jung, S.J.; Cheong, T.C.; Kim, Y.; Shin, E.P.; Heo, I.; Kim, G.; Cho, N.H.; Wang, K.K.; Kim, Y.R. Smart hybrid nanocomposite for photodynamic inactivation of cancer cells with selectivity. J. Phys. Chem. B, 2019, 123(31), 6776-6783.
[http://dx.doi.org/10.1021/acs.jpcb.9b04301] [PMID: 31310131]
[22]
Idris, N.M.; Gnanasammandhan, M.K.; Zhang, J.; Ho, P.C.; Mahendran, R.; Zhang, Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med., 2012, 18(10), 1580-1585.
[http://dx.doi.org/10.1038/nm.2933] [PMID: 22983397]
[23]
Iqbal, S. Fakhar-E-Alam, M.; Atif, M.; Ahmed, N.; -Ul-Ahmad, A.; Amin, N.; Alghamdi, R.A.; Hanif, A.; Farooq, W.A. Empirical modeling of Zn/ZnO nanoparticles decorated/conjugated with fotolon (Chlorine e6) based photodynamic therapy towards liver cancer treatment. Micromachines (Basel), 2019, 10(1)E60
[http://dx.doi.org/10.3390/mi10010060] [PMID: 30658388]
[24]
Shimoyama, A.; Watase, H.; Liu, Y.; Ogura, S.; Hagiya, Y.; Takahashi, K.; Inoue, K.; Tanaka, T.; Murayama, Y.; Otsuji, E.; Ohkubo, A.; Yuasa, H. Access to a novel near-infrared photodynamic therapy through the combined use of 5-aminolevulinic acid and lanthanide nanoparticles. Photodiagn. Photodyn. Ther., 2013, 10(4), 607-614.
[http://dx.doi.org/10.1016/j.pdpdt.2013.07.005] [PMID: 24284118]
[25]
Wang, S.; Wang, H.; Song, C.; Li, Z.; Wang, Z.; Xu, H.; Yu, W.; Peng, C.; Li, M.; Chen, Z. Synthesis of Bi2WO6-x nanodots with oxygen vacancies as an all-in-one nanoagent for simultaneous CT/IR imaging and photothermal/photodynamic therapy of tumors. Nanoscale, 2019, 11(32), 15326-15338.
[http://dx.doi.org/10.1039/C9NR05236D] [PMID: 31386732]
[26]
Wang, W.; Wang, L.; Li, Z.; Xie, Z. BODIPY-containing nanoscale metal-organic frameworks for photodynamic therapy. Chem. Commun. (Camb.), 2016, 52(31), 5402-5405.
[http://dx.doi.org/10.1039/C6CC01048B] [PMID: 27009757]
[27]
Chen, P.; Huang, Y-F.; Xu, G-Y.; Xue, J-P.; Chen, J-J. Functionalized Eu(III)-based nanoscale metal-organic framework for enhanced targeted anticancer therapy. J. Porphyr. Phthalocyanines, 2019, 23(06), 619-627.
[http://dx.doi.org/10.1142/S1088424619500299]
[28]
Gao, S.; Zheng, P.; Li, Z.; Feng, X.; Yan, W.; Chen, S.; Guo, W.; Liu, D.; Yang, X.; Wang, S.; Liang, X.J.; Zhang, J. Biomimetic O2-Evolving metal-organic framework nanoplatform for highly efficient photodynamic therapy against hypoxic tumor. Biomaterials, 2018, 178, 83-94.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.007] [PMID: 29913389]
[29]
Liu, J.; Yang, Y.; Zhu, W.; Yi, X.; Dong, Z.; Xu, X.; Chen, M.; Yang, K.; Lu, G.; Jiang, L.; Liu, Z. Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials, 2016, 97, 1-9.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.034] [PMID: 27155362]
[30]
Song, M-R.; Li, D-Y.; Nian, F-Y.; Xue, J-P.; Chen, J-J. Zeolitic imidazolate metal organic framework-8 as an efficient pH-controlled delivery vehicle for zinc phthalocyanine in photodynamic therapy. J. Mater. Sci., 2017, 53(4), 2351-2361.
[http://dx.doi.org/10.1007/s10853-017-1716-z]
[31]
Mokoena, P.P.; Swart, H.C.; Ntwaeaborwa, O.M. Upconversion luminescence of Er3+/Yb3+ doped Sr5(PO4)3OH phosphor powders. Physica B, 2018, 535, 57-62.
[http://dx.doi.org/10.1016/j.physb.2017.06.040]
[32]
Tavakkoli, F.; Zahedifar, M.; Sadeghi, E. Effect of LaF3: Ag fluorescent nanoparticles on photodynamic efficiency and cytotoxicity of Protoporphyrin IX photosensitizer. Photodiagn. Photodyn. Ther., 2018, 21, 306-311.
[http://dx.doi.org/10.1016/j.pdpdt.2018.01.009] [PMID: 29331661]
[33]
Sengar, P.; Garcia-Tapia, K.; Chauhan, K.; Jain, A.; Juarez-Moreno, K.; Borbón-Nuñez, H.A.; Tiznado, H.; Contreras, O.E.; Hirata, G.A. Dual-photosensitizer coupled nanoscintillator capable of producing type I and type II ROS for next generation photodynamic therapy. J. Colloid Interface Sci., 2019, 536, 586-597.
[http://dx.doi.org/10.1016/j.jcis.2018.10.090] [PMID: 30390584]
[34]
Charron, G.; Stuchinskaya, T.; Edwards, D.R.; Russell, D.A.; Nann, T. Insights into the mechanism of quantum dot-sensitized singlet oxygen production for photodynamic therapy. J. Phys. Chem. C, 2012, 116(16), 9334-9342.
[http://dx.doi.org/10.1021/jp301103f]
[35]
Ge, J.; Lan, M.; Zhou, B.; Liu, W.; Guo, L.; Wang, H.; Jia, Q.; Niu, G.; Huang, X.; Zhou, H.; Meng, X.; Wang, P.; Lee, C.S.; Zhang, W.; Han, X. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun., 2014, 5, 4596.
[http://dx.doi.org/10.1038/ncomms5596] [PMID: 25105845]
[36]
Homayoni, H.; Jiang, K.; Zou, X.; Hossu, M.; Rashidi, L.H.; Chen, W. Enhancement of protoporphyrin IX performance in aqueous solutions for photodynamic therapy. Photodiagn. Photodyn. Ther., 2015, 12(2), 258-266.
[http://dx.doi.org/10.1016/j.pdpdt.2015.01.003] [PMID: 25636780]
[37]
Chen, W.; Zhang, J. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J. Nanosci. Nanotechnol., 2006, 6(4), 1159-1166.
[http://dx.doi.org/10.1166/jnn.2006.327] [PMID: 16736782]
[38]
Ostrowski, A.; Nordmeyer, D.; Boreham, A.; Holzhausen, C.; Mundhenk, L.; Graf, C.; Meinke, M.C.; Vogt, A.; Hadam, S.; Lademann, J.; Rühl, E.; Alexiev, U.; Gruber, A.D. Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques. Beilstein J. Nanotechnol., 2015, 6, 263-280.
[http://dx.doi.org/10.3762/bjnano.6.25] [PMID: 25671170]
[39]
Kaszewski, J.; Olszewski, J.; Rosowska, J.; Witkowski, B.; Wachnicki, Ł.; Wenelska, K.; Mijowska, E.; Gajewski, Z.; Godlewski, M.; Godlewski, M.M. HfO2: Eu nanoparticles excited by X-rays and UV-visible radiation used in biological imaging. J. Rare Earths, 2019, 37(11), 1176-1182.
[http://dx.doi.org/10.1016/j.jre.2019.04.003]
[40]
Sapre, A.A.; Novitskaya, E.; Vakharia, V.; Cota, A.; Wrasidlo, W.; Hanrahan, S.M.; Derenzo, S.; Makale, M.T.; Graeve, O.A.; Optimized Scintillator, Y.A.G. Optimized scintillator YAG: Pr nanoparticles for X-ray inducible photodynamic therapy. Mater. Lett., 2018, 228, 49-52.
[http://dx.doi.org/10.1016/j.matlet.2018.05.090] [PMID: 30505045]
[41]
Li, X.; Xue, Z.; Jiang, M.; Li, Y.; Zeng, S.; Liu, H. Soft X-ray activated NaYF4: Gd/Tb scintillating nanorods for in vivo dual-modal X-ray/X-ray-induced optical bioimaging. Nanoscale, 2017, 10(1), 342-350.
[http://dx.doi.org/10.1039/C7NR02926H] [PMID: 29215103]
[42]
Sadjadpour, S.; Safarian, S.; Zargar, S.J.; Sheibani, N. Antiproliferative effects of ZnO, ZnO-MTCP, and ZnO-CuMTCP nanoparticles with safe intensity UV and X-ray irradiation. Biotechnol. Appl. Biochem., 2016, 63(1), 113-124.
[http://dx.doi.org/10.1002/bab.1344] [PMID: 25581219]
[43]
Generalov, R.; Kuan, W.B.; Chen, W.; Kristensen, S.; Juzenas, P. Radiosensitizing effect of zinc oxide and silica nanocomposites on cancer cells. Colloids Surf. B Biointerfaces, 2015, 129, 79-86.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.026] [PMID: 25829130]
[44]
Popovich, K.; Procházková, L.; Pelikánová, I.T.; Vlk, M.; Palkovský, M.; Jarý, V.; Nikl, M.; Múčka, V.; Mihóková, E.; Čuba, V. Preliminary study on singlet oxygen production using CeF3:Tb3+@SiO2-PpIX. Radiat. Meas., 2016, 90, 325-328.
[http://dx.doi.org/10.1016/j.radmeas.2016.01.033]
[45]
Ma, L.; Zou, X.; Bui, B.; Chen, W.; Song, K.H.; Solberg, T. X-ray excited ZnS:Cu, Co afterglow nanoparticles for photodynamic activation. Appl. Phys. Lett., 2014, 105(1)013702
[http://dx.doi.org/10.1063/1.4890105]
[46]
Ma, L.; Zou, X.; Chen, W. A new X-ray activated nanoparticle photosensitizer for cancer treatment. J. Biomed. Nanotechnol., 2014, 10(8), 1501-1508.
[http://dx.doi.org/10.1166/jbn.2014.1954] [PMID: 25016650]
[47]
Shrestha, S.; Wu, J.; Sah, B.; Vanasse, A.; Cooper, L.N.; Ma, L.; Li, G.; Zheng, H.; Chen, W.; Antosh, M.P. X-ray induced photodynamic therapy with copper-cysteamine nanoparticles in mice tumors. Proc. Natl. Acad. Sci. USA, 2019, 116(34), 16823-16828.
[http://dx.doi.org/10.1073/pnas.1900502116] [PMID: 31371494]
[48]
Abliz, E.; Collins, J.E.; Bell, H.; Tata, D.B. Novel applications of diagnostic X-rays in activating a clinical photodynamic drug: Photofrin II through X-ray induced visible luminescence from “rare-earth” formulated particles. J. XRay Sci. Technol., 2011, 19(4), 521-530.
[http://dx.doi.org/10.3233/XST-2011-0311] [PMID: 25214384]
[49]
Deng, W.; Chen, W.; Clement, S.; Guller, A.; Zhao, Z.; Engel, A.; Goldys, E.M. Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation. Nat. Commun., 2018, 9(1), 2713.
[http://dx.doi.org/10.1038/s41467-018-05118-3] [PMID: 30006596]
[50]
Chen, M.H.; Jenh, Y.J.; Wu, S.K.; Chen, Y.S.; Hanagata, N.; Lin, F.H. Non-invasive photodynamic therapy in brain cancer by use of Tb3+-Doped LaF3 nanoparticles in combination with photosensitizer through X-ray irradiation: A proof-of-concept study. Nanoscale Res. Lett., 2017, 12(1), 62.
[http://dx.doi.org/10.1186/s11671-017-1840-3] [PMID: 28110445]
[51]
Elmenoufy, A.H.; Tang, Y.; Hu, J.; Xu, H.; Yang, X. A novel deep photodynamic therapy modality combined with CT imaging established via X-ray stimulated silica-modified lanthanide scintillating nanoparticles. Chem. Commun. (Camb.), 2015, 51(61), 12247-12250.
[http://dx.doi.org/10.1039/C5CC04135J] [PMID: 26136105]
[52]
Clement, S.; Deng, W.; Camilleri, E.; Wilson, B.C.; Goldys, E.M. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: Determination of singlet oxygen quantum yield. Sci. Rep., 2016, 6, 19954.
[http://dx.doi.org/10.1038/srep19954] [PMID: 26818819]
[53]
Kaščáková, S.; Giuliani, A.; Lacerda, S.; Pallier, A.; Mercère, P.; Tóth, É.; Réfrégiers, M. X-ray-induced radiophotodynamic therapy (RPDT) using lanthanide micelles: Beyond depth limitations. Nano Res., 2015, 8(7), 2373-2379.
[http://dx.doi.org/10.1007/s12274-015-0747-5]
[54]
Bulin, A-L.; Truillet, C.; Chouikrat, R.; Lux, F.; Frochot, C.; Amans, D.; Ledoux, G.; Tillement, O.; Perriat, P.; Barberi-Heyob, M.; Dujardin, C. X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyrins. J. Phys. Chem. C, 2013, 117(41), 21583-21589.
[http://dx.doi.org/10.1021/jp4077189]
[55]
Zhang, W.; Zhang, X.; Shen, Y.; Shi, F.; Song, C.; Liu, T.; Gao, P.; Lan, B.; Liu, M.; Wang, S.; Fan, L.; Lu, H. Ultra-high FRET efficiency NaGdF4: Tb3+-Rose Bengal biocompatible nanocomposite for X-ray excited photodynamic therapy application. Biomaterials, 2018, 184, 31-40.
[http://dx.doi.org/10.1016/j.biomaterials.2018.09.001] [PMID: 30195803]
[56]
Zhang, X.; Lan, B.; Wang, S.; Gao, P.; Liu, T.; Rong, J.; Xiao, F.; Wei, L.; Lu, H.; Pang, C.; Fan, L.; Zhang, W.; Lu, H. Low-dose X-ray excited photodynamic therapy based on NaLuF4: Tb3+-rose Bengal nanocomposite. Bioconjug. Chem., 2019, 30(8), 2191-2200.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00429] [PMID: 31344330]
[57]
Popovich, K.; Tomanová, K.; Čuba, V.; Procházková, L.; Pelikánová, I.T.; Jakubec, I.; Mihóková, E.; Nikl, M. LuAG:Pr3+-porphyrin based nanohybrid system for singlet oxygen production: Toward the next generation of PDTX drugs. J. Photochem. Photobiol. B, 2018, 179, 149-155.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.01.015] [PMID: 29413988]
[58]
Procházková, L.; Pelikánová, I.T.; Mihóková, E.; Dědic, R.; Čuba, V. Novel scintillating nanocomposite for X-ray induced photodynamic therapy. Radiat. Measure., 2019, 121, 13-17.
[http://dx.doi.org/10.1016/j.radmeas.2018.12.008]
[59]
Procházková, L.; Čuba, V.; Beitlerová, A.; Jarý, V.; Omelkov, S.; Nikl, M. Ultrafast Zn(Cd,Mg)O: Ga nanoscintillators with luminescence tunable by band gap modulation. Opt. Express, 2018, 26(22), 29482-29494.
[http://dx.doi.org/10.1364/OE.26.029482] [PMID: 30470111]
[60]
Wang, H.; Lv, B.; Tang, Z.; Zhang, M.; Ge, W.; Liu, Y.; He, X.; Zhao, K.; Zheng, X.; He, M.; Bu, W. Scintillator-based nanohybrids with sacrificial electron prodrug for enhanced X-ray-induced photodynamic therapy. Nano Lett., 2018, 18(9), 5768-5774.
[http://dx.doi.org/10.1021/acs.nanolett.8b02409] [PMID: 30052464]
[61]
Ahmad, F.; Wang, X.; Jiang, Z.; Yu, X.; Liu, X.; Mao, R.; Chen, X.; Li, W. Codoping enhanced radioluminescence of nanoscintillators for X-ray-activated synergistic cancer therapy and prognosis using mtabolomics. ACS Nano, 2019, 13(9), 10419-10433.
[http://dx.doi.org/10.1021/acsnano.9b04213] [PMID: 31430127]
[62]
Wang, G.D.; Nguyen, H.T.; Chen, H.; Cox, P.B.; Wang, L.; Nagata, K.; Hao, Z.; Wang, A.; Li, Z.; Xie, J. X-Ray induced photodynamic therapy: A combination of radiotherapy and photodynamic therapy. Theranostics, 2016, 6(13), 2295-2305.
[http://dx.doi.org/10.7150/thno.16141] [PMID: 27877235]
[63]
Chen, H.; Sun, X.; Wang, G.D.; Nagata, K.; Hao, Z.; Wang, A.; Li, Z.; Xie, J.; Shen, B. LiGa5O8: Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic therapy of deep-seated tumors. Mater. Horiz., 2017, 4(6), 1092-1101.
[http://dx.doi.org/10.1039/C7MH00442G] [PMID: 31528350]
[64]
Song, L.; Li, P-P.; Yang, W.; Lin, X-H.; Liang, H.; Chen, X-F.; Liu, G.; Li, J.; Yang, H-H. Low-dose X-ray activation of W(VI)-doped persistent luminescence nanoparticles for deep-tissue photodynamic therapy. Adv. Funct. Mater., 2018, 28(18)1707496
[http://dx.doi.org/10.1002/adfm.201707496]
[65]
Bhattarai, S.R.; Derry, P.J.; Aziz, K.; Singh, P.K.; Khoo, A.M.; Chadha, A.S.; Liopo, A.; Zubarev, E.R.; Krishnan, S. Gold nanotriangles: Scale up and X-ray radiosensitization effects in mice. Nanoscale, 2017, 9(16), 5085-5093.
[http://dx.doi.org/10.1039/C6NR08172J] [PMID: 28134383]
[66]
Mohammadi, Z.; Sazgarnia, A.; Rajabi, O.; Seilanian Toosi, M. Comparative study of X-ray treatment and photodynamic therapy by using 5-aminolevulinic acid conjugated gold nanoparticles in a melanoma cell line. Artif. Cells Nanomed. Biotechnol., 2017, 45(3), 467-473.
[http://dx.doi.org/10.3109/21691401.2016.1167697] [PMID: 27052440]
[67]
Bekah, D.; Cooper, D.; Kudinov, K.; Hill, C.; Seuntjens, J.; Bradforth, S.; Nadeau, J. Synthesis and characterization of biologically stable, doped LaF3 nanoparticles co-conjugated to PEG and photosensitizers. J. Photochem. Photobiol. Chem., 2016, 329, 26-34.
[http://dx.doi.org/10.1016/j.jphotochem.2016.06.008]
[68]
Zou, X.; Yao, M.; Ma, L.; Hossu, M.; Han, X.; Juzenas, P.; Chen, W. X-ray-induced nanoparticle-based photodynamic therapy of cancer. Nanomed (Lond.), 2014, 9(15), 2339-2351.
[http://dx.doi.org/10.2217/nnm.13.198] [PMID: 24471504]
[69]
Kirakci, K.; Kubát, P.; Fejfarová, K.; Martinčík, J.; Nikl, M.; Lang, K. X-ray inducible luminescence and singlet oxygen sensitization by an octahedral Molybdenum cluster compound: A new class of nanoscintillators. Inorg. Chem., 2016, 55(2), 803-809.
[http://dx.doi.org/10.1021/acs.inorgchem.5b02282] [PMID: 26702498]
[70]
Kirakci, K.; Zelenka, J.; Rumlová, M.; Martinčík, J.; Nikl, M.; Ruml, T.; Lang, K. Octahedral molybdenum clusters as radiosensitizers for X-ray induced photodynamic therapy. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(26), 4301-4307.
[http://dx.doi.org/10.1039/C8TB00893K] [PMID: 32254506]
[71]
Hsu, C.C.; Lin, S.L.; Chang, C.A. Lanthanide-doped core-shell-shell nanocomposite for dual photodynamic therapy and luminescence imaging by a single X-ray excitation source. ACS Appl. Mater. Interfaces, 2018, 10(9), 7859-7870.
[http://dx.doi.org/10.1021/acsami.8b00015] [PMID: 29405703]
[72]
Liu, T.I.; Yang, Y.C.; Chiang, W.H.; Hung, C.K.; Tsai, Y.C.; Chiang, C.S.; Lo, C.L.; Chiu, H.C. Radiotherapy-controllable chemotherapy from reactive oxygen species-responsive polymeric nanoparticles for effective local dual modality treatment of malignant tumors. Biomacromolecules, 2018, 19(9), 3825-3839.
[http://dx.doi.org/10.1021/acs.biomac.8b00942] [PMID: 30044907]
[73]
Clement, S.; Chen, W.; Deng, W.; Goldys, E.M. X-ray radiation-induced and targeted photodynamic therapy with folic acid-conjugated biodegradable nanoconstructs. Int. J. Nanomed, 2018, 13, 3553-3570.
[http://dx.doi.org/10.2147/IJN.S164967] [PMID: 29950835]