Hot Melt Extrusion and its Application in 3D Printing of Pharmaceuticals

Page: [387 - 407] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Hot Melt Extrusion (HME) is a continuous pharmaceutical manufacturing process that has been extensively investigated for solubility improvement and taste masking of active pharmaceutical ingredients. Recently, it is being explored for its application in 3D printing. 3D printing of pharmaceuticals allows flexibility of dosage form design, customization of dosage form for personalized therapy and the possibility of complex designs with the inclusion of multiple actives in a single unit dosage form. Fused Deposition Modeling (FDM) is a 3D printing technique with a variety of applications in pharmaceutical dosage form development. FDM process requires a polymer filament as the starting material that can be obtained by hot melt extrusion. Recent reports suggest enormous applications of a combination of hot melt extrusion and FDM technology in 3D printing of pharmaceuticals and need to be investigated further. This review in detail describes the HME process, along with its application in 3D printing. The review also summarizes the published reports on the application of HME coupled with 3D printing technology in drug delivery.

Keywords: Hot melt extrusion, 3D printing, additive manufacturing, fused deposition modeling, rapid prototyping, FDM.

Graphical Abstract

[1]
Solanki, H.K.; Patil, K.B.; Gohel, S.N.; Prajapati, V.D.; Jani, G.K. Hot melt extrusion: an emerging technology in pharmaceuticals. World J. Pharm. Pharm. Sci., 2015, 4(04), 404-423.
[http://dx.doi.org/10.36347/sajp.2020.v09i06.002]
[2]
Patil, H.; Tiwari, R.V.; Repka, M.A. Hot-melt extrusion: from theory to application in pharmaceutical formulation. AAPS PharmSciTech., 2016, 17(1), 20-42.
[http://dx.doi.org/10.1208/s12249-015-0360-7] [PMID: 26159653]
[3]
Singhal, S.; Lohar, V.K.; Arora, V. Hot melt extrusion technique. Webmed Central. Pharm. Sci., 2011, 2(1), 1-20.
[http://dx.doi.org/10.9754/journal.wmc.2011.001459]
[4]
Simões, M.F.; Pinto, R.M.A.; Simões, S. Hot-melt extrusion in the pharmaceutical industry: toward filing a new drug application. Drug Discov. Today, 2019, 24(9), 1749-1768.
[http://dx.doi.org/10.1016/j.drudis.2019.05.013] [PMID: 31132415]
[5]
Patel, P.S.; Raval, J.P.; Patel, H.V. Review on the pharmaceutical applications of hot melt extruder. Asian J. Pharm. Clin. Res., 2010, 3(2), 80-83.
[6]
Maniruzzaman, M.; Douroumis, D.; Boateng, S.J.; Snowden, J.M. Hot-Melt Extrusion (HME): from process to pharmaceutical applications. Recent Adv. Nov. Drug Carr. Syst., 2018, pp. 1-16.
[7]
Agrawal, A.M.; Dudhedia, M.S.; Zimny, E. Hot melt extrusion: development of an amorphous solid dispersion for an insoluble drug from mini-scale to clinical scale. AAPS PharmSciTech., 2016, 17(1), 133-147.
[http://dx.doi.org/10.1208/s12249-015-0425-7] [PMID: 26729533]
[8]
Kolhe, S.R.; Chaudhari, P.D.; More, D.M. Recent advances in hot melt extrusion technology. Int. J. Pharm. Sci. Res., 2012, 3(12), 4658-4669.
[9]
Ridhurkar, D.; Vajdai, A.; Zsigmond, Z. Hot-Melt Extrusion (HME) and its application for pharmacokinetic improvement of poorly water soluble drugs. Pharmacol. Toxicol. Biomed. Reports, 2016, 2(3), 47-51.
[http://dx.doi.org/10.5530/PTB.2016.2.7]
[10]
Patil, H.; Tiwari, R.V.; Repka, M.A. Encapsulation via Hot-melt extrusion technique: a review. Iran. J. Pharm. Res., 2004, 3, 3-16.
[http://dx.doi.org/10.1201/b19038-14]
[11]
Chokshi, R.; Zia, H. Hot-melt extrusion technique: a review. Iran. J. Pharm. Res., 2004, 3, 3-16.
[http://dx.doi.org/10.22037/IJPR.2010.290]
[12]
Wilson, M.; Williams, M.A.; Jones, D.S.; Andrews, G.P. Hot-melt extrusion technology and pharmaceutical application. Ther. Deliv., 2012, 3(6), 787-797.
[http://dx.doi.org/10.4155/tde.12.26] [PMID: 22838073]
[13]
Breitenbach, J. Melt extrusion: from process to drug delivery technology. Eur. J. Pharm. Biopharm., 2002, 54(2), 107-117.
[http://dx.doi.org/10.1016/S0939-6411(02)00061-9] [PMID: 12191680]
[14]
Chung, C.I. Physical description of single-screw extrusion. Extrusion of Polymers, Theory and Practice, 2000, 13-57.
[15]
Richard, S.; Brian, H. Extruder design. Pharmaceut. Extrusion Technol., 2018, 37-50.
[16]
Williams, M.; Tian, Y.; Jones, D.S.; Andrews, G.P. Hot-melt extrusion technology: optimizing drug delivery. Eur. J. Parenter. Pharm. Sci., 2010, 15(2), 61.
[17]
Maniruzzaman, M. Hot melt extrusion. Particle sciences drug development services. Int. Scholarly Res. Notices, 2011, 1-2.
[18]
Repka, M.A.; Shah, S.; Lu, J.; Maddineni, S.; Morott, J.; Patwardhan, K.; Mohammed, N.N. Melt extrusion: process to product. Expert Opin. Drug Deliv., 2012, 9(1), 105-125.
[http://dx.doi.org/10.1517/17425247.2012.642365] [PMID: 22145932]
[19]
Vynckier, A.K.; Dierickx, L.; Voorspoels, J.; Gonnissen, Y.; Remon, J.P.; Vervaet, C. Hot-melt co-extrusion: requirements, challenges and opportunities for pharmaceutical applications. J. Pharm. Pharmacol., 2014, 66(2), 167-179.
[http://dx.doi.org/10.1111/jphp.12091] [PMID: 24433421]
[20]
Maniruzzaman, M.; Boateng, J.S.; Snowden, M.J.; Douroumis, D. A review of hot-melt extrusion: process technology to pharmaceutical products. ISRN Pharm., 2012, 2012, 436763.
[http://dx.doi.org/10.5402/2012/436763] [PMID: 23326686]
[21]
Bhatjire, G.S.; Sahebrao, S.K. Hot melt extrusion technique for solid oral dosage form - a review. World J. Pharm. Res., 2017, 6(10), 249-263.
[http://dx.doi.org/10.20959/wjpr201710-9327]
[22]
Rauwendaal, C.; Gonzalez-Nunez, R.; Rodrigue, D. Polymer processing: extrusion. Encyclopedia Polymer Sci. Technol. John Wiley & Sons, 2017, pp. 1-67.
[23]
Thiry, J.; Krier, F.; Evrard, B. A review of pharmaceutical extrusion: critical process parameters and scaling-up. Int. J. Pharm., 2015, 479(1), 227-240.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.036] [PMID: 25541517]
[24]
Repka, M.A.; Bandari, S.; Kallakunta, V.R.; Vo, A.Q.; McFall, H.; Pimparade, M.B.; Bhagurkar, A.M. Melt extrusion with poorly soluble drugs - an integrated review. Int. J. Pharm., 2018, 535(1-2), 68-85.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.056] [PMID: 29102700]
[25]
Markl, D.; Wahl, P.R.; Menezes, J.C.; Koller, D.M.; Kavsek, B.; Francois, K.; Roblegg, E.; Khinast, J.G. Supervisory control system for monitoring a pharmaceutical hot melt extrusion process. AAPS PharmSciTech., 2013, 14(3), 1034-1044.
[http://dx.doi.org/10.1208/s12249-013-9992-7] [PMID: 23797304]
[26]
Li, Y.; Pang, H.; Guo, Z.; Lin, L.; Dong, Y.; Li, G.; Lu, M.; Wu, C. Interactions between drugs and polymers influencing hot melt extrusion. J. Pharm. Pharmacol., 2014, 66(2), 148-166.
[http://dx.doi.org/10.1111/jphp.12183] [PMID: 24325738]
[27]
Saerens, L.; Vervaet, C.; Remon, J.P.; De Beer, T. Process monitoring and visualization solutions for hot-melt extrusion: a review. J. Pharm. Pharmacol., 2014, 66(2), 180-203.
[http://dx.doi.org/10.1111/jphp.12123] [PMID: 24433422]
[28]
Tominaga, K.; Langevin, B.; Orton, E. Recent innovations in pharmaceutical hot melt extrusion. Am. Pharm. Rev., 2015, 18(6), 1-4.
[29]
Hitzer, P.; Bäuerle, T.; Drieschner, T.; Ostertag, E.; Paulsen, K.; van Lishaut, H.; Lorenz, G.; Rebner, K. Process analytical techniques for hot-melt extrusion and their application to amorphous solid dispersions. Anal. Bioanal. Chem., 2017, 409(18), 4321-4333.
[http://dx.doi.org/10.1007/s00216-017-0292-z] [PMID: 28343348]
[30]
Censi, R.; Gigliobianco, M.R.; Casadidio, C.; Di Martino, P. Hot melt extrusion: highlighting physicochemical factors to be investigated while designing and optimizing a hot melt extrusion process. Pharm., 2018, 10(3), 89.
[http://dx.doi.org/10.3390/pharmaceutics10030089] [PMID: 29997332]
[31]
Awad, A.; Trenfield, S.J.; Gaisford, S.; Basit, A.W. 3D printed medicines: a new branch of digital healthcare. Int. J. Pharm., 2018, 548(1), 586-596.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.024] [PMID: 30033380]
[32]
Kallakunta, V.R.; Sarabu, S.; Bandari, S.; Tiwari, R.; Patil, H.; Repka, M.A. An update on the contribution of hot-melt extrusion technology to novel drug delivery in the twenty-first century: part I. Expert Opin. Drug Deliv., 2019, 16(5), 539-550.
[http://dx.doi.org/10.1080/17425247.2019.1609448] [PMID: 31007090]
[33]
Repka, M.A.; Majumdar, S.; Kumar Battu, S.; Srirangam, R.; Upadhye, S.B. Applications of hot-melt extrusion for drug delivery. Expert Opin. Drug Deliv., 2008, 5(12), 1357-1376.
[http://dx.doi.org/10.1517/17425240802583421] [PMID: 19040397]
[34]
Kaushik, D. Pharmaceutical applications of hot melt extrusion technology: an overview. Pharma Innov., 2016, 5(8-A), 22-26.
[35]
Crowley, M.M.; Zhang, F.; Repka, M.A.; Thumma, S.; Upadhye, S.B.; Battu, S.K.; McGinity, J.W.; Martin, C. Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev. Ind. Pharm., 2007, 33(9), 909-926.
[http://dx.doi.org/10.1080/03639040701498759] [PMID: 17891577]
[36]
Repka, M.A.; Battu, S.K.; Upadhye, S.B.; Thumma, S.; Crowley, M.M.; Zhang, F.; Martin, C.; McGinity, J.W. Pharmaceutical applications of hot-melt extrusion: part II. Drug Dev. Ind. Pharm., 2007, 33(10), 1043-1057.
[http://dx.doi.org/10.1080/03639040701525627] [PMID: 17963112]
[37]
Tiwari, R.V.; Patil, H.; Repka, M.A. Contribution of hot-melt extrusion technology to advance drug delivery in the 21st century. Expert Opin. Drug Deliv., 2016, 13(3), 451-464.
[http://dx.doi.org/10.1517/17425247.2016.1126246] [PMID: 26886062]
[38]
Sarabu, S.; Bandari, S.; Kallakunta, V.R.; Tiwari, R.; Patil, H.; Repka, M.A. An update on the contribution of hot-melt extrusion technology to novel drug delivery in the twenty-first century: part II. Expert Opin. Drug Deliv., 2019, 16(6), 567-582.
[http://dx.doi.org/10.1080/17425247.2019.1614912] [PMID: 31046479]
[39]
Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos., Part B Eng., 2018, 143, 172-196.
[http://dx.doi.org/10.1016/j.compositesb.2018.02.012]
[40]
Norman, J.; Madurawe, R.D.; Moore, C.M.V.; Khan, M.A.; Khairuzzaman, A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv. Drug Deliv. Rev., 2017, 108, 39-50.
[http://dx.doi.org/10.1016/j.addr.2016.03.001] [PMID: 27001902]
[41]
Jamróz, W.; Szafraniec, J.; Kurek, M.; Jachowicz, R. 3D printing in pharmaceutical and medical applications - recent achievements and challenges. Pharm. Res., 2018, 35(9), 176.
[http://dx.doi.org/10.1007/s11095-018-2454-x] [PMID: 29998405]
[42]
Srinivas, L.; Jaswitha, M.; Manikanta, V.; Bhavya, B.; Himavant, B.D. 3D Printing in pharmaceutical technology: a review. Int. Res. J. Pharm., 2019, 10(2), 8-17.
[http://dx.doi.org/10.7897/2230-8407.100234]
[43]
Marzuka, S.; Umme, K.J.; Asad, M.; Rafiq, M. 3D printing: a new avenue in pharmaceuticals. World J. Pharm. Res., 2016, 5(5), 1686-1701.
[http://dx.doi.org/10.20959/wjpr20165-6232]
[44]
Lamichhane, S.; Bashyal, S.; Keum, T.; Noh, G.; Seo, J.E.; Bastola, R.; Choi, J.; Sohn, D.H.; Lee, S. Complex formulations, simple techniques: can 3D printing technology be the Midas touch in pharmaceutical industry? Asian J. Pharm. Sci., 2019, 14(5), 465-479.
[http://dx.doi.org/10.1016/j.ajps.2018.11.008] [PMID: 32104475]
[45]
Lupuliasa, D.; Alexandru, G.T.; Dragomiroiu, B.; Rosca, A.C.; Hincu, L.; Cioaca, D. 3D printing pharmaceutical formulation of drug in personalized therapy. Farmacia, 2019, 67, 1-9.
[http://dx.doi.org/10.31925/farmacia.2019.1.1]
[46]
Horst, D.J. 3D printing of pharmaceutical drug delivery systems. Arch. Org. Inorg. Chem. Sci., 2018, 1(2), 3-8.
[http://dx.doi.org/10.32474/AOICS.2018.01.000109]
[47]
Palo, M.; Holländer, J.; Suominen, J.; Yliruusi, J.; Sandler, N. 3D printed drug delivery devices: perspectives and technical challenges. Expert Rev. Med. Devices, 2017, 14(9), 685-696.
[http://dx.doi.org/10.1080/17434440.2017.1363647] [PMID: 28774216]
[48]
Zhang, J.; Vo, A.Q.; Feng, X.; Bandari, S.; Repka, M.A. Pharmaceutical additive manufacturing: a novel tool for complex and personalized drug delivery systems. AAPS PharmSciTech., 2018, 19(8), 3388-3402.
[http://dx.doi.org/10.1208/s12249-018-1097-x] [PMID: 29943281]
[49]
Maulvi, F.A.; Shah, M.J.; Solanki, B.S.; Patel, A.S.; Soni, T.G.; Shah, D.O. Application of 3D printing technology in the development of novel drug delivery system. Int. J. Drug Dev. Res., 2017, 9(1), 44-49.
[http://dx.doi.org/10.1007/s11095-018-2454-x]
[50]
Afsana, ; Jain, V.; Haider, N.; Jain, K. 3D printing in personalized drug delivery. Curr. Pharm. Des., 2018, 24(42), 5062-5071.
[http://dx.doi.org/10.2174/1381612825666190215122208] [PMID: 30767736]
[51]
Pravin, S.; Sudhir, A. Integration of 3D printing with dosage forms: a new perspective for modern healthcare. Biomed. Pharmacother., 2018, 107, 146-154.
[http://dx.doi.org/10.1016/j.biopha.2018.07.167] [PMID: 30086461]
[52]
Hsiao, W.K.; Lorber, B.; Reitsamer, H.; Khinast, J. 3D printing of oral drugs: a new reality or hype? Expert Opin. Drug Deliv., 2018, 15(1), 1-4.
[http://dx.doi.org/10.1080/17425247.2017.1371698] [PMID: 28836459]
[53]
Khatri, P.; Shah, M.K.; Vora, N. Formulation strategies for solid oral dosage form using 3D printing technology: a mini-review. J. Drug Deliv. Sci. Technol., 2018, 46, 148-155.
[http://dx.doi.org/10.1016/j.jddst.2018.05.009]
[54]
Goole, J.; Amighi, K. 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int. J. Pharm., 2016, 499(1-2), 376-394.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.071] [PMID: 26757150]
[55]
Kjar, A.; Huang, Y. Application of micro-scale 3D printing in pharmaceutics. Pharm., 2019, 11(8), 390.
[http://dx.doi.org/10.3390/pharmaceutics11080390] [PMID: 31382565]
[56]
Prasad, L.K.; Smyth, H. 3D printing technologies for drug delivery: a review. Drug Dev. Ind. Pharm., 2016, 42(7), 1019-1031.
[http://dx.doi.org/10.3109/03639045.2015.1120743] [PMID: 26625986]
[57]
Tan, D.K.; Maniruzzaman, M.; Nokhodchi, A. Advanced pharmaceutical applications of hot-melt extrusion coupled with Fused Deposition Modelling (FDM) 3D printing for personalised drug delivery. Pharm., 2018, 10(4), 203.
[http://dx.doi.org/10.3390/pharmaceutics10040203] [PMID: 30356002]
[58]
Gaisford, S. 3D printed pharmaceutical products. 3D Print. Med., 2017, 155-166.
[http://dx.doi.org/10.1016/B978-0-08-100717-4.00007-7]
[59]
Moulton, S.E.; Wallace, G.G. 3-Dimensional (3D) fabricated polymer based drug delivery systems. J. Control. Release, 2014, 193, 27-34.
[http://dx.doi.org/10.1016/j.jconrel.2014.07.005] [PMID: 25020039]
[60]
Fuenmayor, E.; Forde, M.; Healy, A.V.; Devine, D.M.; Lyons, J.G.; McConville, C.; Major, I. Material considerations for fused-filament fabrication of solid dosage forms. Pharm., 2018, 10(2), 44.
[http://dx.doi.org/10.3390/pharmaceutics10020044] [PMID: 29614811]
[61]
Ren, Y.; Mei, L.; Zhou, L.; Guo, G. Recent perspectives in hot melt extrusion-based polymeric formulations for drug delivery: applications and innovations. AAPS PharmSciTech, 2019, 20(3), 92.
[http://dx.doi.org/10.1208/s12249-019-1300-8] [PMID: 30690659]
[62]
Melocchi, A.; Parietti, F.; Maroni, A.; Foppoli, A.; Gazzaniga, A.; Zema, L. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int. J. Pharm., 2016, 509(1-2), 255-263.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.036] [PMID: 27215535]
[63]
Cunha-Filho, M.; Araújo, M.R.; Gelfuso, G.M.; Gratieri, T. FDM 3D printing of modified drug-delivery systems using hot melt extrusion: a new approach for individualized therapy. Ther. Deliv., 2017, 8(11), 957-966.
[http://dx.doi.org/10.4155/tde-2017-0067] [PMID: 29061104]
[64]
Kachrimanis, K.; Nikolakakis, I. Polymers as formulation excipients for hot-melt extrusion processing of pharmaceuticals. Handbook Polym. Pharm. Technol., 2015, 2, 121-149.
[http://dx.doi.org/10.1002/9781119041412.ch5]
[65]
Lang, B.; McGinity, J.W.; Williams, R.O. 3rd. Hot-melt extrusion-basic principles and pharmaceutical applications. Drug Dev. Ind. Pharm., 2014, 40(9), 1133-1155.
[http://dx.doi.org/10.3109/03639045.2013.838577] [PMID: 24520867]
[66]
Lu, M.; Guo, Z.; Li, Y.; Pang, H.; Lin, L.; Liu, X.; Pan, X.; Wu, C. Application of hot melt extrusion for poorly water-soluble drugs: limitations, advances and future prospects. Curr. Pharm. Des., 2014, 20(3), 369-387.
[http://dx.doi.org/10.2174/13816128113199990402] [PMID: 23651401]
[67]
Huang, S.; O’Donnell, K.P.; Keen, J.M.; Rickard, M.A.; McGinity, J.W.; Williams, R.O. 3rd. A new extrudable form of hypromellose AFFINISOLTM HPMC HME. AAPS PharmSciTech, 2016, 17(1), 106-119.
[http://dx.doi.org/10.1208/s12249-015-0395-9] [PMID: 26335416]
[68]
A portfolio of versatile solutions to help address a variety of formulation and processing needs. ETHOCELTM Ethylcellulose - Tech. Bulletin, 2016, 1-12.
[69]
Almeida, A.; Brabant, L.; Siepmann, F.; De Beer, T.; Bouquet, W.; Van Hoorebeke, L.; Siepmann, J.; Remon, J.P.; Vervaet, C. Sustained release from hot-melt extruded matrices based on ethylene vinyl acetate and polyethylene oxide. Eur. J. Pharm. Biopharm., 2012, 82(3), 526-533.
[http://dx.doi.org/10.1016/j.ejpb.2012.08.008] [PMID: 22986082]
[70]
Kadajji, V.G.; Betageri, G.V. Water soluble polymers for pharmaceutical applications. Polymers (Basel), 2011, 3(4), 1972-2009.
[http://dx.doi.org/10.3390/polym3041972]
[71]
Konta, A.A.; García-Piña, M.; Serrano, D.R. Personalised printed medicines: which techniques and polymers are more successful? Bioengineering, 2017, 4(4), 79.
[http://dx.doi.org/10.3390/bioengineering4040079] [PMID: 28952558]
[72]
Azad, M.A.; Olawuni, D.; Kimbell, G.; Badruddoza, A.Z.M.; Hossain, M.S.; Sultana, T. Polymers for extrusion-based 3D printing of pharmaceuticals: a holistic materials-process perspective. Pharm., 2020, 12(2), 124.
[http://dx.doi.org/10.3390/pharmaceutics12020124] [PMID: 32028732]
[73]
Jain, A.; Bansal, K.K.; Tiwari, A.; Rosling, A.; Rosenholm, J.M. Role of polymers in 3D printing technology for drug delivery - an overview. Curr. Pharm. Des., 2018, 24(42), 4979-4990.
[http://dx.doi.org/10.2174/1381612825666181226160040] [PMID: 30585543]
[74]
Kolter, K.; Karl, M.; Gryczke, A. Hot-melt extrusion with BASF pharma polymers: extrusion compendium. BASF The Chemical Soc., 2012, 1-189.
[75]
Stanković, M.; Frijlink, H.W.; Hinrichs, W.L.J. Polymeric formulations for drug release prepared by hot melt extrusion: application and characterization. Drug Discov. Today, 2015, 20(7), 812-823.
[http://dx.doi.org/10.1016/j.drudis.2015.01.012] [PMID: 25660507]
[76]
Lu, M. Novel excipients and materials used in FDM 3D printing of pharmaceutical dosage forms. 3D 4D Print. Biomed. Appl. Process Eingr. Addit. Manuf., 2019, 211-237.
[77]
Gupta, S.S.; Meena, A.; Parikh, T.; Serajuddin, A.T.M. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion - I: polyvinylpyrrolidone and related polymers. J. Excip. Food Chem., 2014, 5(1), 32-45.
[http://dx.doi.org/10.1208/s12249-015-0426-6] [PMID: 26511936]
[78]
Reintjes, T. Solubility enhancement with BASF pharma polymers: solubilizer compendium. BASF, 2011, 1-118.
[79]
Melocchi, A.; Loreti, G.; Del Curto, M.D.; Maroni, A.; Gazzaniga, A.; Zema, L. Evaluation of hot-melt extrusion and injection molding for continuous manufacturing of immediate-release tablets. J. Pharm. Sci., 2015, 104(6), 1971-1980.
[http://dx.doi.org/10.1002/jps.24419] [PMID: 25761921]
[80]
Patel, A.; Sahu, D.; Dashora, A.; Garg, R.; Agraval, P.; Patel, P.; Patel, P.; Patel, G. A review of hot melt extrusion technique. Int. J. Innov. Res. Sci. Eng. Technol., 2013, 2(6), 2194-2198.
[81]
Gryczke, A.; Schminke, S.; Maniruzzaman, M.; Beck, J.; Douroumis, D. Development and evaluation of Orally Disintegrating Tablets (ODTs) containing ibuprofen granules prepared by hot melt extrusion. Colloids Surf. B Biointerfaces, 2011, 86(2), 275-284.
[http://dx.doi.org/10.1016/j.colsurfb.2011.04.007] [PMID: 21592751]
[82]
Emara, L.H.; Abdelfattah, F.M.; Taha, N.F. Hot melt extrusion method for preparation of ibuprofen/sucroester WE15 solid dispersions: evaluation and stability assessment. J. Appl. Pharm. Sci., 2017, 7(8), 156-167.
[http://dx.doi.org/10.7324/JAPS.2017.70822]
[83]
Verreck, G.; Six, K.; Van den Mooter, G.; Baert, L.; Peeters, J.; Brewster, M.E. Characterization of solid dispersions of itraconazole and hydroxypropylmethylcellulose prepared by melt extrusion--part I. Int. J. Pharm., 2003, 251(1-2), 165-174.
[http://dx.doi.org/10.1016/S0378-5173(02)00591-4] [PMID: 12527186]
[84]
Aitken-Nichol, C.; Zhang, F.; McGinity, J.W. Hot melt extrusion of acrylic films. Pharm. Res., 1996, 13(5), 804-808.
[http://dx.doi.org/10.1023/A:1016076306279] [PMID: 8860442]
[85]
Lee, M.; Tzoganakis, C.; Park, C.B. Extrusion of PE/PS Blends with supercritical carbon dioxide. Polym. Eng. Sci., 1998, 38(7), 1112-1120.
[http://dx.doi.org/10.1002/pen.10278]
[86]
Verreck, G.; Decorte, A.; Heymans, K.; Adriaensen, J.; Cleeren, D.; Jacobs, A.; Liu, D.; Tomasko, D.; Arien, A.; Peeters, J.; Rombaut, P.; Van den Mooter, G.; Brewster, M.E. The effect of pressurized carbon dioxide as a temporary plasticizer and foaming agent on the hot stage extrusion process and extrudate properties of solid dispersions of itraconazole with PVP-VA 64. Eur. J. Pharm. Sci., 2005, 26(3-4), 349-358.
[http://dx.doi.org/10.1016/j.ejps.2005.07.006] [PMID: 16137869]
[87]
Verreck, G.; Decorte, A.; Heymans, K.; Adriaensen, J.; Liu, D.; Tomasko, D.; Arien, A.; Peeters, J.; Van den Mooter, G.; Brewster, M.E. Hot stage extrusion of p-amino salicylic acid with EC using CO2 as a temporary plasticizer. Int. J. Pharm., 2006, 327(1-2), 45-50.
[http://dx.doi.org/10.1016/j.ijpharm.2006.07.024] [PMID: 16930886]
[88]
A Ashour, E.; Kulkarni, V.; Almutairy, B.; Park, J.B.; Shah, S.P.; Majumdar, S.; Lian, Z.; Pinto, E.; Bi, V.; Durig, T.; Martin, S.T.; Repka, M.A. Influence of pressurized carbon dioxide on ketoprofen-incorporated hot-melt extruded low molecular weight hydroxypropylcellulose. Drug Dev. Ind. Pharm., 2016, 42(1), 123-130.
[http://dx.doi.org/10.3109/03639045.2015.1035282] [PMID: 25997363]
[89]
Araújo, M.R.P.; Sa-Barreto, L.L.; Gratieri, T.; Gelfuso, G.M.; Cunha-Filho, M. The digital pharmacies era: how 3D printing technology using fused deposition modeling can become a reality. Pharm., 2019, 11(3), 128.
[http://dx.doi.org/10.3390/pharmaceutics11030128] [PMID: 30893842]
[90]
Kushwaha, S. Application of Hot melt extrusion in pharmaceutical 3D printing. J. Bioequival. Bioavailab, 2018, 10(3), 54-57.
[http://dx.doi.org/10.4172/0975-0851.1000379]
[91]
Maniruzzaman, M. Emerging 3D printing technologies to develop novel pharmaceutical formulations. 3D 4D Print. Biomed. Appl. Process Eingr. Addit. Manuf., 2019, 153-184.
[92]
Joo, Y.; Shin, I.; Ham, G.; Abuzar, S.M.; Hyun, S.M.; Hwang, S.J. The advent of a novel manufacturing technology in pharmaceutics: superiority of fused deposition modeling 3D printer. J. Pharm. Investig, 2019, 50, 1-15.
[http://dx.doi.org/10.1007/s40005-019-00451-1]
[93]
Saydam, M.; Takka, S. Improving the dissolution of a water-insoluble orphan drug through a fused deposition modelling 3-dimensional printing technology approach. Eur. J. Pharm. Sci., 2020, 152, 105426.
[http://dx.doi.org/10.1016/j.ejps.2020.105426]
[94]
Alhijjaj, M.; Belton, P.; Qi, S. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via Fused Deposition Modeling(FDM) 3D printing. Eur. J. Pharm. Biopharm., 2016, 108, 111-125.
[http://dx.doi.org/10.1016/j.ejpb.2016.08.016] [PMID: 27594210]
[95]
Kempin, W.; Domsta, V.; Grathoff, G.; Brecht, I.; Semmling, B.; Tillmann, S.; Weitschies, W.; Seidlitz, A. Immediate release 3D-printed tablets produced via fused deposition modeling of a thermo-sensitive drug. Pharm. Res., 2018, 35(6), 124.
[http://dx.doi.org/10.1007/s11095-018-2405-6] [PMID: 29679157]
[96]
Okwuosa, T.C.; Stefaniak, D.; Arafat, B.; Isreb, A.; Wan, K.W.; Alhnan, M.A. A lower temperature FDM 3D printing for the manufacture of patient-specific immediate release tablets. Pharm. Res., 2016, 33(11), 2704-2712.
[http://dx.doi.org/10.1007/s11095-016-1995-0] [PMID: 27506424]
[97]
Sadia, M.; Sośnicka, A.; Arafat, B.; Isreb, A.; Ahmed, W.; Kelarakis, A.; Alhnan, M.A. Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. Int. J. Pharm., 2016, 513(1-2), 659-668.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.050] [PMID: 27640246]
[98]
Ibrahim, M.; Barnes, M.; McMillin, R.; Cook, D.W.; Smith, S.; Halquist, M.; Wijesinghe, D.; Roper, T.D. 3D printing of metformin HCl PVA tablets by fused deposition modeling: drug loading, tablet design, and dissolution studies. AAPS PharmSciTech, 2019, 20(5), 195.
[http://dx.doi.org/10.1208/s12249-019-1400-5] [PMID: 31119403]
[99]
Solanki, N.G.; Tahsin, M.; Shah, A.V.; Serajuddin, A.T.M. Formulation of 3D printed tablet for rapid drug release by fused deposition modeling: screening polymers for drug release, drug-polymer miscibility and printability. J. Pharm. Sci., 2018, 107(1), 390-401.
[http://dx.doi.org/10.1016/j.xphs.2017.10.021] [PMID: 29066279]
[100]
Jamróz, W.; Kurek, M.; Czech, A.; Szafraniec, J.; Gawlak, K.; Jachowicz, R. 3D printing of tablets containing amorphous aripiprazole by filaments co-extrusion. Eur. J. Pharm. Biopharm., 2018, 131, 44-47.
[http://dx.doi.org/10.1016/j.ejpb.2018.07.017] [PMID: 30048746]
[101]
Goyanes, A.; Chang, H.; Sedough, D.; Hatton, G.B.; Wang, J.; Buanz, A.; Gaisford, S.; Basit, A.W. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int. J. Pharm., 2015, 496(2), 414-420.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.039] [PMID: 26481468]
[102]
Zhang, J.; Yang, W.; Vo, A.Q.; Feng, X.; Ye, X.; Kim, D.W.; Repka, M.A. Hydroxypropyl methylcellulose-based controlled release dosage by melt extrusion and 3D printing: structure and drug release correlation. Carbohydr. Polym., 2017, 177, 49-57.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.058] [PMID: 28962795]
[103]
Gioumouxouzis, C.I.; Katsamenis, O.L.; Bouropoulos, N.; Fatouros, D.G. 3D printed oral solid dosage forms containing hydrochlorothiazide for controlled drug delivery. J. Drug Deliv. Sci. Technol., 2017, 40, 164-171.
[http://dx.doi.org/10.1016/j.jddst.2017.06.008]
[104]
Zhang, J.; Feng, X.; Patil, H.; Tiwari, R.V.; Repka, M.A. Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int. J. Pharm., 2017, 519(1-2), 186-197.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.049] [PMID: 28017768]
[105]
Gioumouxouzis, C.I.; Chatzitaki, A.T.; Karavasili, C.; Katsamenis, O.L.; Tzetzis, D.; Mystiridou, E.; Bouropoulos, N.; Fatouros, D.G. Controlled release of 5-fluorouracil from alginate beads encapsulated in 3D printed pH-responsive solid dosage forms. AAPS PharmSciTech, 2018, 19(8), 3362-3375.
[http://dx.doi.org/10.1208/s12249-018-1084-2] [PMID: 29948989]
[106]
Korte, C.; Quodbach, J. Formulation development and process analysis of drug-loaded filaments manufactured via hot-melt extrusion for 3D-printing of medicines. Pharm. Dev. Technol., 2018, 23(10), 1117-1127.
[http://dx.doi.org/10.1080/10837450.2018.1433208] [PMID: 29368974]
[107]
Yang, Y.; Wang, H.; Li, H.; Ou, Z.; Yang, G. 3D printed tablets with internal scaffold structure using ethyl cellulose to achieve sustained ibuprofen release. Eur. J. Pharm. Sci., 2018, 115, 11-18.
[http://dx.doi.org/10.1016/j.ejps.2018.01.005] [PMID: 29305984]
[108]
Wen, H.; He, B.; Wang, H.; Chen, F.; Li, P.; Cui, M.; Li, Q.; Pan, W.; Yang, X. Structure-based gastro-retentive and controlled-release drug delivery with novel 3D printing. AAPS PharmSciTech, 2019, 20(2), 68.
[http://dx.doi.org/10.1208/s12249-018-1237-3] [PMID: 30627938]
[109]
Trivedi, M.; Jee, J.; Silva, S.; Blomgren, C.; Pontinha, V.M.; Dixon, D.L.; Van Tassel, B.; Bortner, M.J.; Williams, C.; Gilmer, E.; Haring, A.P. Additive manufacturing of pharmaceuticals for precision medicine applications: a review of the promises and perils in implementation. Addit. Manuf., 2018, 23, 319-328.
[http://dx.doi.org/10.1016/j.addma.2018.07.004]
[110]
Shin, S.; Kim, T.H.; Jeong, S.W.; Chung, S.E.; Lee, D.Y.; Kim, D.H.; Shin, B.S. Development of a gastroretentive delivery system for acyclovir by 3D printing technology and its in vivo pharmacokinetic evaluation in Beagle dogs. PLoS One, 2019, 14(5), e0216875.
[http://dx.doi.org/10.1371/journal.pone.0216875] [PMID: 31091273]
[111]
Goyanes, A.; Fernández-Ferreiro, A.; Majeed, A.; Gomez-Lado, N.; Awad, A.; Luaces-Rodríguez, A.; Gaisford, S.; Aguiar, P.; Basit, A.W. PET/CT imaging of 3D printed devices in the gastrointestinal tract of rodents. Int. J. Pharm., 2018, 536(1), 158-164.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.055] [PMID: 29183855]
[112]
Qi, S.; Nasereddin, J.; Alqahtani, F. Personalized polypills produced by fused deposition modeling 3D printing. 3D 4D Print. Biomed. Appl. Process Engr. Addit. Manuf., 2018, 273-295.
[113]
Gioumouxouzis, C.I.; Baklavaridis, A.; Katsamenis, O.L.; Markopoulou, C.K.; Bouropoulos, N.; Tzetzis, D.; Fatouros, D.G. A 3D printed bilayer oral solid dosage form combining metformin for prolonged and glimepiride for immediate drug delivery. Eur. J. Pharm. Sci., 2018, 120, 40-52.
[http://dx.doi.org/10.1016/j.ejps.2018.04.020] [PMID: 29678613]
[114]
Goyanes, A.; Kobayashi, M.; Martínez-Pacheco, R.; Gaisford, S.; Basit, A.W. Fused-filament 3D printing of drug products: microstructure analysis and drug release characteristics of PVA-based caplets. Int. J. Pharm., 2016, 514(1), 290-295.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.021] [PMID: 27863674]
[115]
Maroni, A.; Melocchi, A.; Parietti, F.; Foppoli, A.; Zema, L.; Gazzaniga, A. 3D printed multi-compartment capsular devices for two-pulse oral drug delivery. J. Control. Release, 2017, 268, 10-18.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.008] [PMID: 29030223]
[116]
Melocchi, A.; Parietti, F.; Maccagnan, S.; Ortenzi, M.A.; Antenucci, S.; Briatico-Vangosa, F.; Maroni, A.; Gazzaniga, A.; Zema, L. Industrial development of a 3D-printed nutraceutical delivery platform in the form of a multicompartment HPC capsule. AAPS PharmSciTech, 2018, 19(8), 3343-3354.
[http://dx.doi.org/10.1208/s12249-018-1029-9] [PMID: 29872975]
[117]
Jani, R.; Patel, D. Hot melt extrusion: an industrially feasible approach for casting orodispersible film. Asian J. Pharm. Sci., 2014, 10(4), 292-305.
[http://dx.doi.org/10.1016/j.ajps.2015.03.002]
[118]
Jamróz, W.; Kurek, M.; Łyszczarz, E.; Szafraniec, J.; Knapik-Kowalczuk, J.; Syrek, K.; Paluch, M.; Jachowicz, R. 3D printed orodispersible films with aripiprazole. Int. J. Pharm., 2017, 533(2), 413-420.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.052] [PMID: 28552800]
[119]
Musazzi, U.M.; Selmin, F.; Ortenzi, M.A.; Mohammed, G.K.; Franzé, S.; Minghetti, P.; Cilurzo, F. Personalized orodispersible films by hot melt ram extrusion 3D printing. Int. J. Pharm., 2018, 551(1-2), 52-59.
[http://dx.doi.org/10.1016/j.ijpharm.2018.09.013] [PMID: 30205128]
[120]
Ehtezazi, T.; Algellay, M.; Islam, Y.; Roberts, M.; Dempster, N.M.; Sarker, S.D. The application of 3D printing in the formulation of multilayered fast dissolving oral films. J. Pharm. Sci., 2018, 107(4), 1076-1085.
[http://dx.doi.org/10.1016/j.xphs.2017.11.019] [PMID: 29208374]
[121]
Economidou, S.N.; Lamprou, D.A.; Douroumis, D. 3D printing applications for transdermal drug delivery. Int. J. Pharm., 2018, 544(2), 415-424.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.031] [PMID: 29355656]
[122]
Goyanes, A.; Det-Amornrat, U.; Wang, J.; Basit, A.W.; Gaisford, S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J. Control. Release, 2016, 234, 41-48.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.034] [PMID: 27189134]
[123]
Luzuriaga, M.A.; Berry, D.R.; Reagan, J.C.; Smaldone, R.A.; Gassensmith, J.J. Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab Chip, 2018, 18(8), 1223-1230.
[http://dx.doi.org/10.1039/C8LC00098K] [PMID: 29536070]
[124]
Beck, R.C.R.; Chaves, P.S.; Goyanes, A.; Vukosavljevic, B.; Buanz, A.; Windbergs, M.; Basit, A.W.; Gaisford, S. 3D printed tablets loaded with polymeric nanocapsules: an innovative approach to produce customized drug delivery systems. Int. J. Pharm., 2017, 528(1-2), 268-279.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.074] [PMID: 28583328]
[125]
Healy, A.; Waldron, C.; Geever, L.; Devine, D.; Lyons, J. Degradable nanocomposites for fused filament fabrication applications. J. Manuf. Mater. Process., 2018, 2(2), 29.
[http://dx.doi.org/10.3390/jmmp2020029]
[126]
Scoutaris, N.; Ross, S.A.; Douroumis, D. 3D printed “starmix” drug loaded dosage forms for paediatric applications. Pharm. Res., 2018, 35(2), 34.
[http://dx.doi.org/10.1007/s11095-017-2284-2] [PMID: 29368113]
[127]
Goyanes, A.; Robles Martinez, P.; Buanz, A.; Basit, A.W.; Gaisford, S. Effect of geometry on drug release from 3D printed tablets. Int. J. Pharm., 2015, 494(2), 657-663.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.069] [PMID: 25934428]
[128]
Holländer, J.; Genina, N.; Jukarainen, H.; Khajeheian, M.; Rosling, A.; Mäkilä, E.; Sandler, N. Three-dimensional printed PCL-based implantable prototypes of medical devices for controlled drug delivery. J. Pharm. Sci., 2016, 105(9), 2665-2676.
[http://dx.doi.org/10.1016/j.xphs.2015.12.012] [PMID: 26906174]
[129]
Genina, N.; Holländer, J.; Jukarainen, H.; Mäkilä, E.; Salonen, J.; Sandler, N. Ethylene Vinyl Acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. Eur. J. Pharm. Sci., 2016, 90, 53-63.
[http://dx.doi.org/10.1016/j.ejps.2015.11.005] [PMID: 26545484]
[130]
Kempin, W.; Franz, C.; Koster, L.C.; Schneider, F.; Bogdahn, M.; Weitschies, W.; Seidlitz, A. Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants. Eur. J. Pharm. Biopharm., 2017, 115, 84-93.
[http://dx.doi.org/10.1016/j.ejpb.2017.02.014] [PMID: 28232106]
[131]
Muwaffak, Z.; Goyanes, A.; Clark, V.; Basit, A.W.; Hilton, S.T.; Gaisford, S. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int. J. Pharm., 2017, 527(1-2), 161-170.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.077] [PMID: 28461267]
[132]
Fu, J.; Yu, X.; Jin, Y. 3D printing of vaginal rings with personalized shapes for controlled release of progesterone. Int. J. Pharm., 2018, 539(1-2), 75-82.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.036] [PMID: 29366944]