Recent Innovations in Chemical Engineering

Author(s): Manoj Kumar Karnena and Vara Saritha*

DOI: 10.2174/2405520413999201110094015

Natural Coagulants for the Treatment of Water and Wastewater: A Futuristic Option for Sustainable Water Clarification

Page: [120 - 147] Pages: 28

  • * (Excluding Mailing and Handling)

Abstract

Many studies reported the application of natural coagulants in removing pollutants with the help of the coagulation process, and coagulants showed their efficiency in comparison to the literature available. Yet, the utilization or acceptance of these coagulants in treating industrial wastewater is very low. Thus, there is a need for a strategy for enhancing the potential usage of coagulants for water treatment, presenting prevailing options and efforts for the development of coagulants. The utilization of coagulants can be improved by showing their efficiency in comparison to the advanced treatment technologies available in the present scenario. The coagulation efficiency with natural coagulants can be enhanced by mongrelizing the coagulants with other coagulants, enhancingthe purity during extraction procedures, and coalescence of coagulants. However, the research on natural coagulants isquite encouraging. The perception of sustainable assessment studies revealed that commercialization/acceptance of coagulants for treatment options are hindered by their applicability and feasibility in real-time applications, and utilization of coagulants ignores the socio-economic, ecological, and technical aspects. The present review mainly focuses on the issues related to natural coagulants for clarifying the uncertainties and simultaneously making the water industries to be more sustainable.

Keywords: Sustainability, natural coagulants, water treatment, coagulation, wastewater, sustainable water.

Graphical Abstract

[1]
Faostat FA, Production AC, Production AC. Food and agriculture organization of the united nations. Roma, Italy 2016.
[2]
United Nations Development Programme. Goal 6: Clean water and sanitation https://www.undp.org/content/undp/en/home/sustainable-development goals/goal-6-clean-water-and-sanitation.html
[3]
Kumar K, Chowdhury A. Use of novel nanostructured photocatalysts for the environmental sustainability of wastewater treatments.InBook. Reference Module in Materials Science and Materials Engineering 2018; pp. 949-64.
[4]
Hamzah A, Manikan V. AZIZ N. Biodegradation of Tapis crude oil using consortium of bacteria and fungi: Optimization of crude oil concentration and duration of incubation by response surface methodology. Sains Malays 2017; 46(1): 43-50.
[http://dx.doi.org/10.17576/jsm-2017-4601-06]
[5]
Jiang JQ. The role of coagulation in water treatment. Curr Opin Chem Eng 2015; 8: 36-44.
[http://dx.doi.org/10.1016/j.coche.2015.01.008]
[6]
MarketsandMarkets Research Private Ltd. Growth opportunities and latent adjacency in flocculant and coagulant market 2017.
[7]
Wei H, Gao B, Ren J, Li A, Yang H. Coagulation/flocculation in dewatering of sludge: A review. Water Res 2018; 143: 608-31.
[http://dx.doi.org/10.1016/j.watres.2018.07.029] [PMID: 30031298]
[8]
Renault F, Sancey B, Badot PM, Crini G. Chitosan for coagulation/flocculation processes–An eco-friendly approach. Eur Polym J 2009; 45(5): 1337-48.
[http://dx.doi.org/10.1016/j.eurpolymj.2008.12.027]
[9]
Oladoja NA. Headway on natural polymeric coagulants in water and wastewater treatment operations. J Water Process Eng 2015; 6: 174-92.
[http://dx.doi.org/10.1016/j.jwpe.2015.04.004]
[10]
Saleem M, Bachmann RT. A contemporary review on plant-based coagulants for applications in water treatment. J Ind Eng Chem 2019; 72: 281-97.
[http://dx.doi.org/10.1016/j.jiec.2018.12.029]
[11]
Graham N, Gang F, Fowler G, Watts M. Characterisation and coagulation performance of a tannin-based cationic polymer: A preliminary assessment. Colloids Surf A Physicochem Eng Asp 2008; 327(1-3): 9-16.
[http://dx.doi.org/10.1016/j.colsurfa.2008.05.045]
[12]
Choy SY, Prasad KM, Wu TY, Ramanan RN. A review on common vegetables and legumes as promising plant-based natural coagulants in water clarification. Int J Environ Sci Technol 2015; 12(1): 367-90.
[http://dx.doi.org/10.1007/s13762-013-0446-2]
[13]
Villaseñor-Basulto DL, Astudillo-Sánchez PD, del Real-Olvera J, Bandala ER. Wastewater treatment using Moringa oleifera Lam seeds: A review. J Water Process Eng 2018; 23: 151-64.
[http://dx.doi.org/10.1016/j.jwpe.2018.03.017]
[14]
Yin CY. Emerging usage of plant-based coagulants for water and wastewater treatment. Process Biochem 2010; 45(9): 1437-44.
[http://dx.doi.org/10.1016/j.procbio.2010.05.030]
[15]
Katalo R, Okuda T, Nghiem LD, Fujioka T. Moringa oleifera coagulation as pretreatment prior to microfiltration for membrane fouling mitigation. Environ Sci Water Res Technol 2018; 4(10): 1604-11.
[http://dx.doi.org/10.1039/C8EW00186C]
[16]
Hoa NT, Hue CT. Enhanced water treatment by Moringa oleifera seeds extract as the bio-coagulant: Role of the extraction method. J Water Supply 2018; 67(7): 634-47.
[http://dx.doi.org/10.2166/aqua.2018.070]
[17]
Hameed YT, Idris A, Hussain SA, Abdullah N, Man HC, Suja F. A tannin–based agent for coagulation and flocculation of municipal wastewater as a pretreatment for biofilm process. J Clean Prod 2018; 182: 198-205.
[http://dx.doi.org/10.1016/j.jclepro.2018.02.044]
[18]
Ang WL, Mohammad AW, Teow YH, Benamor A, Hilal N. Hybrid chitosan/FeCl3 coagulation–membrane processes: Performance evaluation and membrane fouling study in removing natural organic matter. Separ Purif Tech 2015; 152: 23-31.
[http://dx.doi.org/10.1016/j.seppur.2015.07.053]
[19]
Ang WL, Mohammad AW. Integrated and hybrid process technology. Sustainable Water and Wastewater Processing 2019; pp. 279-328.
[http://dx.doi.org/10.1016/B978-0-12-816170-8.00009-0]
[20]
Barbosa AD, da Silva LF, de Paula HM, Romualdo LL, Sadoyama G, Andrade LS. Combined use of coagulation (M. oleifera) and electrochemical techniques in the treatment of industrial paint wastewater for reuse and/or disposal. Water Res 2018; 145: 153-61.
[http://dx.doi.org/10.1016/j.watres.2018.08.022] [PMID: 30142513]
[21]
Megersa M, Gach W, Beyene A, Ambelu A, Triest L. Effect of salt solutions on coagulation performance of Moringa stenopetala and Maerua subcordata for turbid water treatment. Separ Purif Tech 2019; 221: 319-24.
[http://dx.doi.org/10.1016/j.seppur.2019.04.013]
[22]
Adjeroud N, Elabbas S, Merzouk B, et al. Effect of Opuntia ficus indica mucilage on copper removal from water by electrocoagulation-electroflotation technique. J Electroanal Chem 2018; 811: 26-36.
[http://dx.doi.org/10.1016/j.jelechem.2017.12.081]
[23]
Sillanpää M, Ncibi MC, Matilainen A, Vepsäläinen M. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. Chemosphere 2018; 190: 54-71.
[http://dx.doi.org/10.1016/j.chemosphere.2017.09.113] [PMID: 28985537]
[24]
Choy SY, Prasad KM, Wu TY, Raghunandan ME, Ramanan RN. Utilization of plant-based natural coagulants as future alternatives towards sustainable water clarification. J Environ Sci (China) 2014; 26(11): 2178-89.
[http://dx.doi.org/10.1016/j.jes.2014.09.024] [PMID: 25458671]
[25]
Gidde MR, Bhalerao AR, Malusare CN. Comparative study of different forms of Moringa oleifera extracts for turbidity removal. Int J Engineer Res Develop 2012; 2(1): 14-21.
[26]
Ding S, Chu W, Bond T, Cao Z, Xu B, Gao N. Contribution of amide-based coagulant polyacrylamide as precursors of haloacetamides and other disinfection by-products. Chem Eng J 2018; 350: 356-63.
[http://dx.doi.org/10.1016/j.cej.2018.06.002]
[27]
Jung Y, Jung Y, Kwon M, Kye H, Abrha YW, Kang JW. Evaluation of Moringa oleifera seed extract by extraction time: Effect on coagulation efficiency and extract characteristic. J Water Health 2018; 16(6): 904-13.
[http://dx.doi.org/10.2166/wh.2018.078] [PMID: 30540264]
[28]
Megersaa M, Beyenea A, Ambelua A, Triestb L. Extraction of natural coagulants from Maerua subcordata and Moringa stenopetala for use in turbid water treatment. Desalination Water Treat 2017; 59: 127-34.
[http://dx.doi.org/10.5004/dwt.2017.1733]
[29]
Baptista AT, Silva MO, Gomes RG, Bergamasco R, Vieira MF, Vieira AM. Protein fractionation of seeds of Moringa oleifera lam and its application in superficial water treatment. Separ Purif Tech 2017; 180: 114-24.
[http://dx.doi.org/10.1016/j.seppur.2017.02.040]
[30]
Carvalho MS, Alves BR, Silva MF, Bergamasco R, Coral LA, Bassetti FJ. CaCl2 applied to the extraction of Moringa oleifera seeds and the use for Microcystis aeruginosa removal. Chem Eng J 2016; 304: 469-75.
[http://dx.doi.org/10.1016/j.cej.2016.06.101]
[31]
Megersa M, Beyene A, Ambelu A, Triest L. Coupling extracts of plant coagulants with solar disinfection showed a complete inactivation of faecal coliforms. CLEAN–Soil Air Water 2019; 47(1)1700450
[32]
Megersa M, Beyene A, Ambelu A, Triest L. Comparison of purified and crude extracted coagulants from plant species for turbidity removal. Int J Environ Sci Technol 2019; 16(5): 2333-42.
[http://dx.doi.org/10.1007/s13762-018-1844-2]
[33]
Noor MJ, Mohamed EH, Mohammad TA, Ghazali AH. Effectiveness of salt-extracted freeze-dried Moringa oleifera as a coagulant. Desalination Water Treat 2015; 55(13): 3621-7.
[http://dx.doi.org/10.1080/19443994.2014.946719]
[34]
Sánchez-Martín J, Ghebremichael K, Beltrán-Heredia J. Comparison of single-step and two-step purified coagulants from Moringa oleifera seed for turbidity and DOC removal. Bioresour Technol 2010; 101(15): 6259-61.
[http://dx.doi.org/10.1016/j.biortech.2010.02.072] [PMID: 20299212]
[35]
Jerri HA, Adolfsen KJ, McCullough LR, Velegol D, Velegol SB. Antimicrobial sand via adsorption of cationic Moringa oleifera protein. Langmuir 2012; 28(4): 2262-8.
[http://dx.doi.org/10.1021/la2038262 PMID: 22129164]
[36]
Kalibbala HM, Wahlberg O, Hawumba TJ. The impact of Moringa oleifera as a coagulant aid on the removal of trihalomethane (THM) precursors and iron from drinking water. Water Sci Technol Water Supply 2009; 9(6): 707-14.
[http://dx.doi.org/10.2166/ws.2009.671]
[37]
Choudhary M, Neogi S. A natural coagulant protein from Moringa oleifera: Isolation, characterization, and potential use for water treatment. Mater Res Express 2017; 4(10)105502
[http://dx.doi.org/10.1088/2053-1591/aa8b8c]
[38]
Dezfooli SM, Uversky VN, Saleem M, Baharudin FS, Hitam SM, Bachmann RT. A simplified method for the purification of an intrinsically disordered coagulant protein from defatted Moringa oleifera seeds. Process Biochem 2016; 51(8): 1085-91.
[http://dx.doi.org/10.1016/j.procbio.2016.04.021]
[39]
Baptista AT, Coldebella PF, Cardines PH, et al. Coagulation–flocculation process with ultrafiltered saline extract of Moringa oleifera for the treatment of surface water. Chem Eng J 2015; 276: 166-73.
[http://dx.doi.org/10.1016/j.cej.2015.04.045]
[40]
Nazir S, Wani IA, Masoodi FA. Extraction optimization of mucilage from Basil (Ocimum basilicum L.) seeds using response surface methodology. J Adv Res 2017; 8(3): 235-44.
[http://dx.doi.org/10.1016/j.jare.2017.01.003] [PMID: 28239494]
[41]
Colodel C, Bagatin RMDG, Tavares TM, Petkowicz CLO. Cell wall polysaccharides from pulp and peel of cubiu: A pectin-rich fruit. Carbohydr Polym 2017; 174: 226-34.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.052] [PMID: 28821062]
[42]
Lim BC, Lim JW, Ho YC. Garden cress mucilage as a potential emerging biopolymer for improving turbidity removal in water treatment. Process Saf Environ Prot 2018; 119: 233-41.
[http://dx.doi.org/10.1016/j.psep.2018.08.015]
[43]
Kilor V, Bramhe NN. Development of effective extraction method for Lepidium sativum seed mucilage with higher yield. J Adv Pharm Educ Res 2014; 4(3): 354-60.
[44]
Chaibakhsh N, Ahmadi N, Zanjanchi MA. Use of Plantago major L. as a natural coagulant for optimized decolorization of dye-containing wastewater. Ind Crops Prod 2014; 61: 169-75.
[http://dx.doi.org/10.1016/j.indcrop.2014.06.056]
[45]
Antov MG, Sćiban MB, Petrović NJ. Proteins from common bean (Phaseolus vulgaris) seed as a natural coagulant for potential application in water turbidity removal. Bioresour Technol 2010; 101(7): 2167-72.
[http://dx.doi.org/10.1016/j.biortech.2009.11.020] [PMID: 19948400]
[46]
Antov MG, Šćiban MB, Prodanović JM. Evaluation of the efficiency of natural coagulant obtained by ultrafiltration of common bean seed extract in water turbidity removal. Ecol Eng 2012; 49: 48-52.
[http://dx.doi.org/10.1016/j.ecoleng.2012.08.015]
[47]
Sćiban M, Klašnja M, Antov M, Skrbić B. Removal of water turbidity by natural coagulants obtained from chestnut and acorn. Bioresour Technol 2009; 100(24): 6639-43.
[http://dx.doi.org/10.1016/j.biortech.2009.06.047] [PMID: 19604691]
[48]
Antov MG, Šćiban MB, Prodanović JM, et al. Common oak (Quercus robur) acorn as a source of natural coagulants for water turbidity removal. Ind Crops Prod 2018; 117: 340-6.
[http://dx.doi.org/10.1016/j.indcrop.2018.03.022]
[49]
Vishali S, Karthikeyan R. Cactus opuntia (ficus-indica): An eco-friendly alternative coagulant in the treatment of paint effluent. Desalination Water Treat 2015; 56(6): 1489-97.
[http://dx.doi.org/10.1080/19443994.2014.945487]
[50]
Kumari S, Kumar Annamareddy SH, Abanti S, Kumar Rath P. Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells. Int J Biol Macromol 2017; 104(Pt B): 1697-705.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.119] [PMID: 28472681]
[51]
Bakshi PS, Selvakumar D, Kadirvelu K, Kumar NS. Chitosan as an environment friendly biomaterial - A review on recent modifications and applications. Int J Biol Macromol 2020; 150: 1072-83.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.113] [PMID: 31739057]
[52]
Abdou ES, Nagy KS, Elsabee MZ. Extraction and characterization of chitin and chitosan from local sources. Bioresour Technol 2008; 99(5): 1359-67.
[http://dx.doi.org/10.1016/j.biortech.2007.01.051] [PMID: 17383869]
[53]
Rashid TU, Rahman MM, Kabir S, Shamsuddin SM, Khan MA. A new approach for the preparation of chitosan from γ‐irradiation of prawn shell: Effects of radiation on the characteristics of chitosan. Polym Int 2012; 61(8): 1302-8.
[http://dx.doi.org/10.1002/pi.4207]
[54]
Huang CY, Kuo CH, Wu CH, Ku MW, Chen PW. Extraction of crude chitosans from squid (Illex argentinus) pen by a compressional puffing-pretreatment process and evaluation of their antibacterial activity. Food Chem 2018; 254: 217-23.
[http://dx.doi.org/10.1016/j.foodchem.2018.02.018] [PMID: 29548445]
[55]
Soria AC, Villamiel M. Effect of ultrasound on the technological properties and bioactivity of food: A review. Trends Food Sci Technol 2010; 21(7): 323-31.
[http://dx.doi.org/10.1016/j.tifs.2010.04.003]
[56]
Nouri M, Khodaiyan F, Razavi SH, Mousavi M. Improvement of chitosan production from Persian Gulf shrimp waste by response surface methodology. Food Hydrocoll 2016; 59: 50-8.
[http://dx.doi.org/10.1016/j.foodhyd.2015.08.027]
[57]
Lee CS, Robinson J, Chong MF. A review on application of flocculants in wastewater treatment. Process Saf Environ Prot 2014; 92(6): 489-508.
[http://dx.doi.org/10.1016/j.psep.2014.04.010]
[58]
Salehizadeh H, Yan N, Farnood R. Recent advances in polysaccharide bio-based flocculants. Biotechnol Adv 2018; 36(1): 92-119.
[http://dx.doi.org/10.1016/j.biotechadv.2017.10.002] [PMID: 28993221]
[59]
Ghimici L, Nichifor M. Dextran derivatives application as flocculants. Carbohydr Polym 2018; 190: 162-74.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.075] [PMID: 29628234]
[60]
Yang R, Li H, Huang M, Yang H, Li A. A review on chitosan-based flocculants and their applications in water treatment. Water Res 2016; 95: 59-89.
[http://dx.doi.org/10.1016/j.watres.2016.02.068] [PMID: 26986497]
[61]
Dong C, Chen W, Liu C. Flocculation of algal cells by amphoteric chitosan-based flocculant. Bioresour Technol 2014; 170: 239-47.
[http://dx.doi.org/10.1016/j.biortech.2014.07.108] [PMID: 25146316]
[62]
Chung YC. Improvement of aquaculture wastewater using chitosan of different degrees of deacetylation. Environ Technol 2006; 27(11): 1199-208.
[http://dx.doi.org/10.1080/09593332708618734] [PMID: 17203601]
[63]
Li J, Song X, Pan J, Zhong L, Jiao S, Ma Q. Adsorption and flocculation of bentonite by chitosan with varying degree of deacetylation and molecular weight. Int J Biol Macromol 2013; 62: 4-12.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.08.009] [PMID: 23973479]
[64]
Huang M, Liu Z, Li A, Yang H. Dual functionality of a graft starch flocculant: Flocculation and antibacterial performance. J Environ Manage 2017; 196: 63-71.
[http://dx.doi.org/10.1016/j.jenvman.2017.02.078] [PMID: 28284139]
[65]
Li RH, Zhang HB, Hu XQ, Gan WW, Li QP. An efficiently sustainable dextran-based flocculant: Synthesis, characterization and flocculation. Chemosphere 2016; 159: 342-50.
[http://dx.doi.org/10.1016/j.chemosphere.2016.06.010] [PMID: 27317940]
[66]
Ge S, Champagne P, Wang H, Jessop PG, Cunningham MF. Microalgae recovery from water for biofuel production using CO2-switchable crystalline nanocellulose. Environ Sci Technol 2016; 50(14): 7896-903.
[http://dx.doi.org/10.1021/acs.est.6b00732] [PMID: 27314988]
[67]
Yang Z, Yang H, Jiang Z, et al. Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan-graft-polyacrylamide. J Hazard Mater 2013; 254-255: 36-45.
[http://dx.doi.org/10.1016/j.jhazmat.2013.03.053] [PMID: 23583947]
[68]
Song Y, Gan W, Li Q, Guo Y, Zhou J, Zhang L. Alkaline hydrolysis and flocculation properties of acrylamide-modified cellulose polyelectrolytes. Carbohydr Polym 2011; 86(1): 171-6.
[http://dx.doi.org/10.1016/j.carbpol.2011.04.025]
[69]
Chaouf S, El Barkany S, Jilal I, et al. Anionic reverse microemulsion grafting of acrylamide (AM) on HydroxyEthylCellulose (HEC): Synthesis, characterization and application as new ecofriendly low-cost flocculant. J Water Process Eng 2019.31100807
[http://dx.doi.org/10.1016/j.jwpe.2019.100807]
[70]
Bharti S, Mishra S, Sen G. Ceric ion initiated synthesis of polyacrylamide grafted oatmeal: Its application as flocculant for wastewater treatment. Carbohydr Polym 2013; 93(2): 528-36.
[http://dx.doi.org/10.1016/j.carbpol.2012.11.072] [PMID: 23499093]
[71]
Rani P, Mishra S, Sen G. Microwave based synthesis of polymethyl methacrylate grafted sodium alginate: Its application as flocculant. Carbohydr Polym 2013; 91(2): 686-92.
[http://dx.doi.org/10.1016/j.carbpol.2012.08.023] [PMID: 23121965]
[72]
Sanghi R, Bhattacharya B, Singh V. Seed gum polysaccharides and their grafted co-polymers for the effective coagulation of textile dye solutions. React Funct Polym 2007; 67(6): 495-502.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2007.02.012]
[73]
Momeni MM, Kahforoushan D, Abbasi F, Ghanbarian S. Using chitosan/CHPATC as coagulant to remove color and turbidity of industrial wastewater: Optimization through RSM design. J Environ Manage 2018; 211: 347-55.
[http://dx.doi.org/10.1016/j.jenvman.2018.01.031] [PMID: 29427927]
[74]
Ma C, Hu W, Pei H, Xu H, Pei R. Enhancing integrated removal of Microcystis aeruginosa and adsorption of microcystins using chitosan-aluminum chloride combined coagulants: Effect of chemical dosing orders and coagulation mechanisms. Colloids Surf A Physicochem Eng Asp 2016; 490: 258-67.
[http://dx.doi.org/10.1016/j.colsurfa.2015.11.056]
[75]
Das P, Thaher MI, Abdul Hakim MA, Al-Jabri HM, Alghasal GS. Microalgae harvesting by pH adjusted coagulation-flocculation, recycling of the coagulant and the growth media. Bioresour Technol 2016; 216: 824-9.
[http://dx.doi.org/10.1016/j.biortech.2016.06.014] [PMID: 27318160]
[76]
Das R, Ghorai S, Pal S. Flocculation characteristics of polyacrylamide grafted hydroxypropyl methyl cellulose: An efficient biodegradable flocculant. Chem Eng J 2013; 229: 144-52.
[http://dx.doi.org/10.1016/j.cej.2013.05.104]
[77]
Pal P, Chakrabortty S, Linnanen L. A nanofiltration-coagulation integrated system for separation and stabilization of arsenic from groundwater. Sci Total Environ 2014; 476-477: 601-10.
[http://dx.doi.org/10.1016/j.scitotenv.2014.01.041] [PMID: 24496033]
[78]
Pal S, Ghorai S, Dash MK, Ghosh S, Udayabhanu G. Flocculation properties of polyacrylamide grafted carboxymethyl guar gum (CMG-g-PAM) synthesised by conventional and microwave assisted method. J Hazard Mater 2011; 192(3): 1580-8.
[http://dx.doi.org/10.1016/j.jhazmat.2011.06.083] [PMID: 21802849]
[79]
Li H, Cai T, Yuan B, Li R, Yang H, Li A. Flocculation of both kaolin and hematite suspensions using the starch-based flocculants and their floc properties. Ind Eng Chem Res 2015; 54(1): 59-67.
[http://dx.doi.org/10.1021/ie503606y]
[80]
Dharani M, Balasubramanian S. Synthesis and characterization of chitosan-g-N-methyl piperazinium chloride: A hybrid flocculant. Int J Biol Macromol 2015; 81: 778-84.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.09.019] [PMID: 26366532]
[81]
Das S, Patra P, Singha K, Biswas P, Sarkar S, Pal S. Graft copolymeric flocculant using functionalized starch towards treatment of blast furnace effluent. Int J Biol Macromol 2019; 125: 35-40.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.026] [PMID: 30521899]
[82]
Zhang C, Zhang M, Chang Q. Preparation of mercaptoacetyl chitosan and its removal performance of copper ion and turbidity. Desalinat Water Treat 2015; 53(7): 1909-16.
[http://dx.doi.org/10.1080/19443994.2013.870743]
[83]
Vuoti S, Narasimha K, Reinikainen K. Green wastewater treatment flocculants and fixatives prepared from cellulose using high-consistency processing and deep eutectic solvents. J Water Process Eng 2018; 26: 83-91.
[http://dx.doi.org/10.1016/j.jwpe.2018.09.003]
[84]
Gupta S, Variyar PS. Guar gum: A versatile polymer for the food industry. Biopolymers for Food Design 2018; pp. 383-407.
[http://dx.doi.org/10.1016/B978-0-12-811449-0.00012-8]
[85]
Hasan A, Fatehi P. Synthesis and characterization of lignin–poly (acrylamide)–poly (2‐methacryloyloxy-ethyl) trimethyl ammonium chloride copolymer. J Appl Polym Sci 2018; 135(23): 46338.
[http://dx.doi.org/10.1002/app.46338]
[86]
García OG, Oropeza-Guzmán MT, Monal WM, López-Maldonado EA. Design and mechanism of action of multifunctional BPE’s with high performance in the separation of hazardous metal ions from polluted water Part I: Chitosan-poly (N-vinylcaprolactam) and its derivatives. Chem Eng J 2019; 359: 840-51.
[http://dx.doi.org/10.1016/j.cej.2018.11.134]
[87]
Kolya H, Tripathy T. Hydroxyethyl starch-g-poly-(N, N-dimethylacrylamide-co-acrylic acid): An efficient dye removing agent. Eur Polym J 2013; 49(12): 4265-75.
[http://dx.doi.org/10.1016/j.eurpolymj.2013.10.012]
[88]
Tang X, Huang T, Zhang S, Wang W, Zheng H. The role of sulfonated chitosan-based flocculant in the treatment of hematite wastewater containing heavy metals. Colloids Surf A Physicochem Eng Asp 2020; •••585124070
[http://dx.doi.org/10.1016/j.colsurfa.2019.124070]
[89]
Rani GU, Mishra S, Pathak G, Jha U, Sen G. Synthesis and applications of poly(2-hydroxyethylmetha-crylate) grafted agar: A microwave based approach. Int J Biol Macromol 2013; 61: 276-84.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.07.003] [PMID: 23850679]
[90]
Li R, Gao B, Sun J, Yue Q, Wang Y, Xu X. Synthesis, characterization of a novel lignin-based polymer and its behavior as a coagulant aid in coagulation/ultrafiltration hybrid process. Int Biodeterior Biodegradation 2016; 113: 334-41.
[http://dx.doi.org/10.1016/j.ibiod.2016.02.002]
[91]
Saritha V, Karnena MK, Dwarapureddi BK. Surface water purification using blended coagulant’s –A sustainable approach. Recent Innov Chem Eng Epub ahead of print.
[http://dx.doi.org/10.2174/2405520413999200831140221]
[92]
Oladoja NA. Advances in the quest for substitute for synthetic organic polyelectrolytes as coagulant aid in water and wastewater treatment operations. Sustain Chem Pharm 2016; 3: 47-58.
[http://dx.doi.org/10.1016/j.scp.2016.04.001]
[93]
Mohd-Salleh SN, Mohd-Zin NS, Othman N. A review of wastewater treatment using natural material and its potential as aid and composite coagulant. Sains Malays 2019; 48(1): 155-64.
[http://dx.doi.org/10.17576/jsm-2019-4801-18]
[94]
Rasool MA, Tavakoli B, Chaibakhsh N, Pendashteh AR, Mirroshandel AS. Use of a plant-based coagulant in coagulation–ozonation combined treatment of leachate from a waste dumping site. Ecol Eng 2016; 90: 431-7.
[http://dx.doi.org/10.1016/j.ecoleng.2016.01.057]
[95]
Lee DJ, Chang YR. Bioflocculants from isolated stains: A research update. J Taiwan Inst Chem Engineer 2018; 87: 211-5.
[http://dx.doi.org/10.1016/j.jtice.2018.03.037]
[96]
Ma J, Fu K, Shi J, Sun Y, Zhang X, Ding L. Ultraviolet-assisted synthesis of polyacrylamide-grafted chitosan nanoparticles and flocculation performance. Carbohydr Polym 2016; 151: 565-75.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.002] [PMID: 27474601]
[97]
Wang W, Yue Q, Li R, Song W, Gao B, Shen X. Investigating coagulation behavior of chitosan with different Al species dual-coagulants in dye wastewater treatment. J Taiwan Inst Chem Engineer 2017; 78: 423-30.
[http://dx.doi.org/10.1016/j.jtice.2017.06.052]
[98]
Shak KP, Wu TY. Optimized use of alum together with unmodified Cassia obtusifolia seed gum as a coagulant aid in treatment of palm oil mill effluent under natural pH of wastewater. Ind Crops Prod 2015; 76: 1169-78.
[http://dx.doi.org/10.1016/j.indcrop.2015.07.072]
[99]
Wu C, Wang Y, Gao B, Zhao Y, Yue Q. Coagulation performance and floc characteristics of aluminum sulfate using sodium alginate as coagulant aid for synthetic dying wastewater treatment. Separ Purif Tech 2012; 95: 180-7.
[http://dx.doi.org/10.1016/j.seppur.2012.05.009]
[100]
Ghebremichael K, Abaliwano J, Amy G. Combined natural organic and synthetic inorganic coagulants for surface water treatment. J Water Supply 2009; 58(4): 267-76.
[http://dx.doi.org/10.2166/aqua.2009.060]
[101]
de Paula HM, de Oliveira Ilha MS, Andrade LS. Concrete plant wastewater treatment process by coagulation combining aluminum sulfate and Moringa oleifera powder. J Clean Prod 2014; 76: 125-30.
[http://dx.doi.org/10.1016/j.jclepro.2014.04.031]
[102]
Freitas JHES, de Santana KV, do Nascimento ACC, et al. Evaluation of using aluminum sulfate and water-soluble Moringa oleifera seed lectin to reduce turbidity and toxicity of polluted stream water. Chemosphere 2016; 163: 133-41.
[http://dx.doi.org/10.1016/j.chemosphere.2016.08.019] [PMID: 27526060]
[103]
Adjeroud N, Dahmoune F, Merzouk B, Leclerc JP, Madani K. Improvement of electrocoagulation–electroflotation treatment of effluent by addition of Opuntia ficus indica pad juice. Separ Purif Tech 2015; 144: 168-76.
[http://dx.doi.org/10.1016/j.seppur.2015.02.018]
[104]
Zhu D, Zhou Q. Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: A review. Environ Nanotechnol Monit Manag 2019; 121: 00255.
[http://dx.doi.org/10.1016/j.enmm.2019.100255]
[105]
Guo K, Gao B, Yue Q, Xu X, Li R, Shen X. Characterization and performance of a novel lignin-based flocculant for the treatment of dye wastewater. Int Biodeterior Biodegradat 2018; 133: 99-107.
[http://dx.doi.org/10.1016/j.ibiod.2018.06.015]
[106]
Luo Y, Gao B, Yue Q, Li R. Application of enteromorpha polysaccharides as coagulant aid in the simultaneous removal of CuO nanoparticles and Cu2+: Effect of humic acid concentration. Chemosphere 2018; 204: 492-500.
[http://dx.doi.org/10.1016/j.chemosphere.2018.03.168] [PMID: 29679870]
[107]
Sophia AC, Lima EC. Removal of emerging contaminants from the environment by adsorption. Ecotoxicol Environ Saf 2018; 150: 1-17.
[http://dx.doi.org/10.1016/j.ecoenv.2017.12.026] [PMID: 29253687]
[108]
Xue Y, Liu Z, Li A, Yang H. Application of a green coagulant with PACl in efficient purification of turbid water and its mechanism study. J Environ Sci (China) 2019; 81: 168-80.
[http://dx.doi.org/10.1016/j.jes.2019.01.015] [PMID: 30975319]
[109]
Teh CY, Budiman PM, Shak KP, Wu TY. Recent advancement of coagulation–flocculation and its application in wastewater treatment. Ind Eng Chem Res 2016; 55(16): 4363-89.
[http://dx.doi.org/10.1021/acs.iecr.5b04703]
[110]
Pintilie L, Torres CM, Teodosiu C, Castells F. Urban wastewater reclamation for industrial reuse: An LCA case study. J Clean Prod 2016; 139: 1-4.
[http://dx.doi.org/10.1016/j.jclepro.2016.07.209]
[111]
Tayalia Y, Vijaysai P. Process intensification in water and wastewater treatment systems. Comput-Aided Chem Eng 2012; 31: 32-40.
[http://dx.doi.org/10.1016/B978-0-444-59507-2.50005-6]
[112]
Sun Y, Shah KJ, Sun W, Zheng H. Performance evaluation of chitosan-based flocculants with good pH resistance and high heavy metals removal capacity. Separ Purif Tech 2019; 215: 208-16.
[http://dx.doi.org/10.1016/j.seppur.2019.01.017]
[113]
Zhu Y, Fan W, Zhou T, Li X. Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms. Sci Total Environ 2019; 678: 253-66.
[http://dx.doi.org/10.1016/j.scitotenv.2019.04.416] [PMID: 31075592]
[114]
Tan YH, Chin SX, Ang WL, Mahmoudi E, Zainoodin AM, Mohammad AW. Effect of H3PO4 and KOH as the activating agents on the synthesis of low-cost activated carbon from duckweeds plants. Jurnal Kejuruteraan 2018; 1(4): 37-43.
[115]
Zhang T, Wang M, Yang W, Yang Z, Wang Y, Gu Z. Synergistic removal of copper (II) and tetracycline from water using an environmentally friendly chitosan-based flocculant. Ind Eng Chem Res 2014; 53(39): 14913-20.
[http://dx.doi.org/10.1021/ie502765w]
[116]
Jia S, Yang Z, Yang W, et al. Removal of Cu (II) and tetracycline using an aromatic rings-functionalized chitosan-based flocculant: Enhanced interaction between the flocculant and the antibiotic. Chem Eng J 2016; 283: 495-503.
[http://dx.doi.org/10.1016/j.cej.2015.08.003]
[117]
Yang Z, Degorce-Dumas JR, Yang H, Guibal E, Li A, Cheng R. Flocculation of Escherichia coli using a quaternary ammonium salt grafted carboxymethyl chitosan flocculant. Environ Sci Technol 2014; 48(12): 6867-73.
[http://dx.doi.org/10.1021/es500415v] [PMID: 24871697]
[118]
Shebek K, Schantz AB, Sines I, Lauser K, Velegol S, Kumar M. The flocculating cationic polypetide from Moringa oleifera seeds damages bacterial cell membranes by causing membrane fusion. Langmuir 2015; 31(15): 4496-502.
[http://dx.doi.org/10.1021/acs.langmuir.5b00015] [PMID: 25845029]
[119]
Liu Z, Huang M, Li A, Yang H. Flocculation and antimicrobial properties of a cationized starch. Water Res 2017; 119: 57-66.
[http://dx.doi.org/10.1016/j.watres.2017.04.043] [PMID: 28436823]
[120]
Du Q, Wang Y, Li A, Yang H. Scale-inhibition and flocculation dual-functionality of poly(acrylic acid) grafted starch. J Environ Manage 2018; 210: 273-9.
[http://dx.doi.org/10.1016/j.jenvman.2018.01.016] [PMID: 29353116]
[121]
Liu J, Cheng S, Cao N, et al. Actinia-like multifunctional nanocoagulant for single-step removal of water contaminants. Nat Nanotechnol 2019; 14(1): 64-71.
[http://dx.doi.org/10.1038/s41565-018-0307-8] [PMID: 30478276]
[122]
Brundtland GH. Our common future, report of the World Commission on environment and development, World commission on environment and development, 1987. Published as Annex to General Assembly document A/42/427, development and international Co-operation. Environment 1987.
[123]
Kamali M, Suhas DP, Costa ME, Capela I, Aminabhavi TM. Sustainability considerations in membrane-based technologies for industrial effluents treatment. Chem Eng J 2019; 368: 474-94.
[http://dx.doi.org/10.1016/j.cej.2019.02.075]
[124]
Kanmani P, Aravind J, Kamaraj M, Sureshbabu P, Karthikeyan S. Environmental applications of chitosan and cellulosic biopolymers: A comprehensive outlook. Bioresour Technol 2017; 242: 295-303.
[http://dx.doi.org/10.1016/j.biortech.2017.03.119] [PMID: 28366689]
[125]
Ho YC, Norli I, Alkarkhi AF, Morad N. New vegetal biopolymeric flocculant: A degradation and flocculation study. Iran J Energy Environ 2014; 5(1): 2-3.
[http://dx.doi.org/10.5829/idosi.ijee.2014.05.01.05]
[126]
Abidin ZZ, Madehi N, Yunus R, Derahman A. Effect of storage conditions on Jatropha curcas performance as biocoagulant for treating palm oil mill effluent. J Environ Sci Technol 2019; 12(2): 92-101.
[http://dx.doi.org/10.3923/jest.2019.92.101]
[127]
dos Santos JD, Veit MT, Juchen PT, da Cunha Gonçalves G, Palácio SM, Fagundes-Klen M. Use of different coagulants for cassava processing wastewater treatment. J Environ Chem Eng 2018; 6(2): 1821-7.
[http://dx.doi.org/10.1016/j.jece.2018.02.039]
[128]
Ahmad T, Ahmad K, Alam M. Sustainable management of water treatment sludge through 3 ‘R’concept. J Clean Prod 2016; 124: 1-3.
[http://dx.doi.org/10.1016/j.jclepro.2016.02.073]
[129]
Saritha V, Karnena MK, Dwarapureddi BK. “Exploring natural coagulants as impending alternatives towards sustainable water clarification”–A comparative studies of natural coagulants with alum. J Water Process Eng 2019; 321: 00982.
[http://dx.doi.org/10.1016/j.jwpe.2019.100982]