Current Organic Synthesis

Author(s): Cheriya Mukkolakkal Abdulla Afsina, Thaipparambil Aneeja, Mohan Neetha and Gopinathan Anilkumar*

DOI: 10.2174/1570179417666201109151036

DownloadDownload PDF Flyer Cite As
Recent Advances in the Synthesis of Pyrazole Derivatives

Page: [197 - 213] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Pyrazole and its derivatives have gained wide attention in pharmaceutical, agrochemical and biological fields as well as in industry. They exhibit various biological activities such as anti-pyretic, anti-microbial, anti- inflammatory, anti-tumor, anti-viral, anti-histaminic, anti-convulsant, fungicidal, insecticidal, etc. In this review, we summarise the recent advances in the synthesis of pyrazole derivatives using various methodologies and covers literature from 2017-2020.

Keywords: Pyrazole, heterocycle, hydrazine, phenylhydrazine, tosylhydrazine, hydrazone.

Graphical Abstract

[1]
Rajendra Prasad, Y.; Lakshmana Rao, A.; Prasoona, L.; Murali, K.; Ravi Kumar, P. Synthesis and antidepressant activity of some 1,3,5-triphenyl-2-pyrazolines and 3-(2′'-hydroxy naphthalen-1′'-yl)-1,5-diphenyl-2-pyrazolines. Bioorg. Med. Chem. Lett., 2005, 15(22), 5030-5034.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.040] [PMID: 16168645]
[2]
El-Moghazy, S.M.; Barsoum, F.F.; Rahman, H.M.A.; Marzouk, A.A. Synthesis and anti-inflammatory activity of some pyrazolederivatives. Med. Chem. Res., 2012, 21, 1722-1733.
[http://dx.doi.org/10.1007/s00044-011-9691-4]
[3]
Theobald, R.S. Rodd’s Chemistry of Carbon Compounds; Amsterdam: Elsevier Science Publishers B. V., 1998, p. 59.
[4]
Walsh, C.T. Nature loves nitrogen heterocycles. Tetrahedron Lett., 2015, 56, 3075-3081.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.046]
[5]
Bekhit, A.A.; Ashour, H.M.A.; Guemei, A.A. Novel pyrazole derivatives as potential promising anti-inflammatory antimicrobial agents. Arch. Pharm. (Weinheim), 2005, 338(4), 167-174.
[http://dx.doi.org/10.1002/ardp.200400940] [PMID: 15864786]
[6]
Tewari, A.K.; Mishra, A. Synthesis and anti-inflammatory activities of N4,N5-disubstituted-3-methyl- H-pyrazolo[3,4-c]pyridazines. Bioorg. Med. Chem., 2001, 9(3), 715-718.
[http://dx.doi.org/10.1016/S0968-0896(00)00285-6] [PMID: 11310606]
[7]
Rovnyak, G.C.; Millonig, R.C.; Schwartz, J.; Shu, V. Synthesis and antiinflammatory activity of hexahydrothiopyrano[4,3-c]pyrazoles and related analogues. J. Med. Chem., 1982, 25(12), 1482-1488.
[http://dx.doi.org/10.1021/jm00354a018] [PMID: 6218302]
[8]
Maggio, B.; Daidone, G.; Raffa, D.; Plescia, S.; Mantione, L.; Catena Cutuli, V.M.; Mangano, N.G.; Caruso, A. Synthesis and pharmacological study of ethyl 1-methyl-5-(substituted 3,4-dihydro-4-oxoquinazolin-3-yl)-1H-pyrazole-4-acetates. Eur. J. Med. Chem., 2001, 36(9), 737-742.
[http://dx.doi.org/10.1016/S0223-5234(01)01259-4] [PMID: 11672883]
[9]
Stauffer, S.R.; Katzenellenbogen, J.A. Solid-phase synthesis of tetrasubstituted pyrazoles, novel ligands for the estrogen receptor. J. Comb. Chem., 2000, 2(4), 318-329.
[http://dx.doi.org/10.1021/cc0000040] [PMID: 10891098]
[10]
Jordan, B.C.; Kumar, B.; Thilagavathi, R.; Yadhav, A.; Kumar, P.; Selvam, C. Synthesis, evaluation of cytotoxic properties of promising curcumin analogues and investigation of possible molecular mechanisms. Chem. Biol. Drug Des., 2018, 91(1), 332-337.
[http://dx.doi.org/10.1111/cbdd.13061] [PMID: 28649799]
[11]
Dube, P.N.; Bule, S.S.; Yogesh, V.; Manoj, R.U.; Pravin, K.R. Synthesis of novel 5-methyl pyrazol-3-one derivatives and their in vitro cytotoxic evaluation. Med. Chem. Res., 2015, 24, 1070-1076.
[http://dx.doi.org/10.1007/s00044-014-1201-z]
[12]
Shamsuzzaman, M.A.; Anis, A.; Dar, M.A.; Khanam, H.; Danishuddin, M.; Khan, A.U. Synthesis, evaluation and docking studies on steroidal pyrazolones as anticancer and antimicrobial agents. Med. Chem. Res., 2014, 23, 348-362.
[http://dx.doi.org/10.1007/s00044-013-0636-y]
[13]
Alam, R.; Wahi, D.; Singh, R.; Sinha, D.; Tandon, V.; Grover, A. Rahisuddin, Design, synthesis, cytotoxicity, HuTopoIIα inhibitory activity and molecular docking studies of pyrazole derivatives as potential anticancer agents. Bioorg. Chem., 2016, 69, 77-90.
[http://dx.doi.org/10.1016/j.bioorg.2016.10.001] [PMID: 27744115]
[14]
Daidone, G.; Maggio, B.; Plescia, S.; Raffa, D.; Musiu, C.; Milia, C.; Perra, G.; Marongiu, M.E. Antimicrobial and antineoplastic activities of new 4-diazopyrazole derivatives. Eur. J. Med. Chem., 1998, 33, 375-382.
[http://dx.doi.org/10.1016/S0223-5234(98)80004-4]
[15]
Shekarchi, M.; Hamedani, M.P.; Navidpour, L.; Adib, N.; Shafiee, A.J. Synthesis antibacterial and antifungal activities of 3-aryl-5- (pyridin-3-yl)-4,5-dihydropyrazole-1-carbothioamide derivatives. Iran Chem. Soc., 2008, 5, 150-158.
[http://dx.doi.org/10.1007/BF03245828]
[16]
Alegaon, S.G.; Hirpara, M.B.; Alagawadi, K.R.; Jalalpure, S.S.; Rasa, V.P.; Salve, P.S.; Kumbar, V.M. Synthesis and biological evaluation of 1,3,4-trisubstituted pyrazole analogues as antimycobacterial agents. Med. Chem. Res., 2017, 26, 1127-1138.
[http://dx.doi.org/10.1007/s00044-017-1821-1]
[17]
Liu, X.H.; Cui, P.; Song, B.A.; Bhadury, P.S.; Zhu, H.L.; Wang, S.F. Synthesis, structure and antibacterial activity of novel 1-(5-substituted-3-substituted-4,5-dihydropyrazol-1-yl)ethanone oxime ester derivatives. Bioorg. Med. Chem., 2008, 16(7), 4075-4082.
[http://dx.doi.org/10.1016/j.bmc.2008.01.035] [PMID: 18262793]
[18]
Akbas, E.; Berber, I. Antibacterial and antifungal activities of new pyrazolo[3,4-d]pyridazin derivatives. Eur. J. Med. Chem., 2005, 40(4), 401-405.
[http://dx.doi.org/10.1016/j.ejmech.2004.12.001] [PMID: 15804539]
[19]
Manojkumar, P.; Ravi, T.K.; Gopalakrishnan, S. Antioxidant and antibacterial studies of arylazopyrazoles and arylhydrazonopyrazolones containing coumarin moiety. Eur. J. Med. Chem., 2009, 44(11), 4690-4694.
[http://dx.doi.org/10.1016/j.ejmech.2009.07.004] [PMID: 19646797]
[20]
Chougala, B.M.; Samundeeswari, S.; Holiyachi, M.; Shastri, L.A.; Dodamani, S.; Jalalpure, S.; Dixit, S.R.; Joshi, S.D.; Sunagar, V.A. Synthesis, characterization and molecular docking studies of substituted 4-coumarinylpyrano [2,3-c]pyrazole derivatives as potent antibacterial and anti-inflammatory agents. Eur. J. Med. Chem., 2017, 125, 101-116.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.021] [PMID: 27657808]
[21]
Szabó, G.; Varga, B.; Páyer-Lengyel, D.; Szemzo, A.; Erdélyi, P.; Vukics, K.; Szikra, J.; Hegyi, E.; Vastag, M.; Kiss, B.; Laszy, J.; Gyertyán, I.; Fischer, J. Chemical and biological investigation of cyclopropyl containing diaryl-pyrazole-3-carboxamides as novel and potent cannabinoid type 1 receptor antagonists. J. Med. Chem., 2009, 52(14), 4329-4337.
[http://dx.doi.org/10.1021/jm900179y] [PMID: 19527048]
[22]
Pimerova, E.V.; Voronina, E.V. Antimicrobial activity of pyrazoles and pyridazines obtained by interaction of 4-aryl-3-arylhydrazono 2,4-dioxobutanoic acids and their esters with hydrazines. Pharm. Chem. J., 2001, 35, 602-604.
[23]
Pathak, R.B.; Chovatia, P.T.; Parekh, H.H. Synthesis, antitubercular and antimicrobial evaluation of 3-(4-chlorophenyl)-4-substituted pyrazole derivatives. Bioorg. Med. Chem. Lett., 2012, 22(15), 5129-5133.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.063] [PMID: 22695129]
[24]
Karthikeyan, M.S.; Holla, B.S.; Kumari, N.S. Synthesis and antimicrobial studies on novel chloro-fluorine containing hydroxy pyrazolines. Eur. J. Med. Chem., 2007, 42(1), 30-36.
[http://dx.doi.org/10.1016/j.ejmech.2006.07.011] [PMID: 17007964]
[25]
Abdel-Wahab, B.F.; Abdel-Latif, E.; Mohamed, H.A.; Awad, G.E. Design and synthesis of new 4-pyrazolin-3-yl-1,2,3-triazoles and 1,2,3-triazol-4-yl-pyrazolin-1-ylthiazoles as potential antimicrobial agents. Eur. J. Med. Chem., 2012, 52, 263-268.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.023] [PMID: 22480494]
[26]
Moore, K.W.; Bonner, K.; Jones, E.A.; Emms, F.; Leeson, P.D.; Marwood, R.; Patel, S.; Patel, S.; Rowley, M.; Thomas, S.; Carling, R.W. 4-N-linked-heterocyclic piperidine derivatives with high affinity and selectivity for human dopamine D4 receptors. Bioorg. Med. Chem. Lett., 1999, 9(9), 1285-1290.
[http://dx.doi.org/10.1016/S0960-894X(99)00169-9] [PMID: 10340615]
[27]
Cristodoulou, S.A.; Kasiotis, K.M.; Fokialakis, N.; Tillitu, I.; Haroutounian, M.S. PIFA-mediated synthesis of novel pyrazoloquinolin-4-ones as potential ligands for the estrogen receptor. Tetrahedron Lett., 2008, 49, 7100-7102.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.098]
[28]
Palaska, E.; Aytemir, M.; Uzbay, I.T.; Erol, D. Synthesis and antidepressant activities of some 3,5-diphenyl-2-pyrazolines. Eur. J. Med. Chem., 2001, 36(6), 539-543.
[http://dx.doi.org/10.1016/S0223-5234(01)01243-0] [PMID: 11525844]
[29]
Ouyang, G.; Cai, X.J.; Chen, Z.; Song, B.A.; Bhadury, P.S.; Yang, S.; Jin, L.H.; Xue, W.; Hu, D.Y.; Zeng, S. Synthesis and antiviral activities of pyrazole derivatives containing an oxime moiety. J. Agric. Food Chem., 2008, 56(21), 10160-10167.
[http://dx.doi.org/10.1021/jf802489e] [PMID: 18939848]
[30]
Janus, S.L.; Magdif, A.Z.; Erik, B.P.; Claus, N. Synthesis of triazenopyrazole derivatives as potential inhibitors of HIV-1. Monatsh. Chem., 1999, 130, 1167-1174.
[http://dx.doi.org/10.1007/PL00010295]
[31]
Li, Y.; Zhang, H.Q.; Liu, J.; Yang, X.P.; Liu, Z.J. Stereoselective synthesis and antifungal activities of (E)-α-(methoxyimino)benzeneacetate derivatives containing 1,3,5-substituted pyrazole ring. J. Agric. Food Chem., 2006, 54(10), 3636-3640.
[http://dx.doi.org/10.1021/jf060074f] [PMID: 19127737]
[32]
Menozzi, G.; Schenone, P.; Mosti, L.; Mattioli, F. Synthesis of 5- substituted 1-aryl-1H-pyrazole-4-acetonitriles, 4-methyl-1-phenyl-1Hpyrazole-3-carbonitriles and pharmacologically active 1-aryl-1H-pyrazole-4- acetic acids. J. Heterocycl. Chem., 1993, 30, 997-1002.
[http://dx.doi.org/10.1002/jhet.5570300427]
[33]
Almansa, C.; Gómez, L.A.; Cavalcanti, F.L.; de Arriba, A.F.; García-Rafanell, J.; Forn, J. Synthesis and structure-activity relationship of a new series of potent AT1 selective angiotensin II receptor antagonists: 5-(biphenyl-4-ylmethyl)pyrazoles. J. Med. Chem., 1997, 40(4), 547-558.
[http://dx.doi.org/10.1021/jm9604383] [PMID: 9046346]
[34]
Sliskovic, D.R.; Roth, B.D.; Wilson, M.W.; Hoefle, M.L.; Newton, R.S. Inhibitors of cholesterol biosynthesis. 2. 1,3,5-trisubstituted [2-(tetrahydro-4-hydroxy-2-oxopyran-6-yl)ethyl]pyrazoles. J. Med. Chem., 1990, 33(1), 31-38.
[http://dx.doi.org/10.1021/jm00163a006] [PMID: 2296027]
[35]
Kees, K.L.; Fitzgerald, J.J., Jr; Steiner, K.E.; Mattes, J.F.; Mihan, B.; Tosi, T.; Mondoro, D.; McCaleb, M.L. New potent antihyperglycemic agents in db/db mice: synthesis and structure-activity relationship studies of (4-substituted benzyl) (trifluoromethyl)pyrazoles and -pyrazolones. J. Med. Chem., 1996, 39(20), 3920-3928.
[http://dx.doi.org/10.1021/jm960444z] [PMID: 8831758]
[36]
Cottineau, B.; Toto, P.; Marot, C.; Pipaud, A.; Chenault, J. Synthesis and hypoglycemic evaluation of substituted pyrazole-4-carboxylic acids. Bioorg. Med. Chem. Lett., 2002, 12(16), 2105-2108.
[http://dx.doi.org/10.1016/S0960-894X(02)00380-3] [PMID: 12127514]
[37]
Silvestri, R.; Ligresti, A.; La Regina, G.; Piscitelli, F.; Gatti, V.; Brizzi, A.; Pasquini, S.; Lavecchia, A.; Allarà, M.; Fantini, N.; Carai, M.A.M.; Novellino, E.; Colombo, G.; Di Marzo, V.; Corelli, F. Synthesis, cannabinoid receptor affinity, molecular modeling studies and in vivo pharmacological evaluation of new substituted 1-aryl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides. 2. Effect of the 3-carboxamide substituent on the affinity and selectivity profile. Bioorg. Med. Chem., 2009, 17(15), 5549-5564.
[http://dx.doi.org/10.1016/j.bmc.2009.06.027] [PMID: 19595596]
[38]
Park, H.J.; Lee, K.; Park, S.J.; Ahn, B.; Lee, J.C.; Cho, H.; Lee, K.I. Identification of antitumor activity of pyrazole oxime ethers. Bioorg. Med. Chem. Lett., 2005, 15(13), 3307-3312.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.082] [PMID: 15922597]
[39]
Anzaldi, M.; Macciò, C.; Mazzei, M.; Bertolotto, M.; Ottonello, L.; Dallegri, F.; Balbi, A. Antiproliferative and proapoptotic activities of a new class of pyrazole derivatives in HL-60 cells. Chem. Biodivers., 2009, 6(10), 1674-1687.
[http://dx.doi.org/10.1002/cbdv.200800354] [PMID: 19842131]
[40]
Wiley, R.H.; Wiley, P. Pyrazolones, Pyrazolidones and Derivatives; Wiley Interscience: New York, 1964.
[http://dx.doi.org/10.1002/9780470186817]
[41]
Michon, V.; Du Penhoat, C.H.; Tombret, F.; Gillardin, J.M.; Lepagez, F.; Berthon, L. Preparation, structural analysis and anticonvulsant activity of 3- and 5-aminopyrazole N-benzoyl derivatives. Eur. J. Med. Chem., 1995, 30, 147-155.
[http://dx.doi.org/10.1016/0223-5234(96)88220-1]
[42]
Rahaman, S.A.; Prasad, Y.R.; Bhuvaneswari, K.; Kumar, P. Synthesis and antihistaminic activity of novel pyrazoline derivatives. Int. J. Chemtech Res., 2010, 2, 16-20.
[43]
Bouabdallah, I.; M’Barek, L.A.; Zyad, A.; Ramdani, A.; Zidane, I.; Melhaoui, A. Anticancer effect of three pyrazole derivatives. Nat. Prod. Res., 2006, 20(11), 1024-1030.
[http://dx.doi.org/10.1080/14786410600921441] [PMID: 17050185]
[44]
Aragade, P.; Kolhe, S.; Kamble, H.; Baheti, D.; Maddi, V. Synthesis and preliminary evaluation of some substituted pyrazoles as anticonvulsant agents. Int. J. Drug Discovery., 2012, 3, 688-693.
[45]
Dominquez, J.N.; Charris, J.E.; Caparelli, M.; Riggione, F. Synthesis and antimalarial activity of substituted pyrazole derivatives. Arzneim.-. Forsch. Drug Res., 2002, 52, 482-488.
[http://dx.doi.org/10.1055/s-0031-1299918]
[46]
Bandgar, B.P.; Gawande, S.S.; Bodade, R.G.; Gawande, N.M.; Khobragade, C.N. Synthesis and biological evaluation of a novel series of pyrazole chalcones as anti-inflammatory, antioxidant and antimicrobial agents. Bioorg. Med. Chem., 2009, 17(24), 8168-8173.
[http://dx.doi.org/10.1016/j.bmc.2009.10.035] [PMID: 19896853]
[47]
Chu, C.K.; Cutler, J.J. Chemistry and antiviral activities of acyclonucleosides. Heterocyclic. Chem., 1986, 23, 289-319.
[http://dx.doi.org/10.1002/jhet.5570230201]
[48]
Bailey, D.M.; Hansen, P.E.; Hlavac, A.G.; Baizman, E.R.; Pearl, J.; DeFelice, A.F.; Feigenson, M.E. 3,4-Diphenyl-1H-pyrazole-1-propanamine antidepressants. J. Med. Chem., 1985, 28(2), 256-260.
[http://dx.doi.org/10.1021/jm00380a020] [PMID: 3968690]
[49]
Silver, K.S.; Soderlund, D.M. Action of pyrazoline-type insecticides at neuronal target sites. Pestic. Biochem. Physiol., 2005, 81, 136-143.
[http://dx.doi.org/10.1016/j.pestbp.2004.09.003]
[50]
Dong, W.; Xu, J.; Xıong, L.; Liu, X.; Li, Z. Synthesis, Structure and Biological Activities of Some Novel Anthranilic Acid Esters Containing N ‐Pyridylpyrazole. Chin. J. Chem., 2009, 27, 579-586.
[http://dx.doi.org/10.1002/cjoc.200990095]
[51]
Morley, A.D.; King, S.; Roberts, B.; Lever, S.; Teobald, B.; Fisher, A.; Cook, T.; Parker, B.; Wenlock, M.; Phillips, C.; Grime, K. Lead optimisation of pyrazoles as novel FPR1 antagonists. Bioorg. Med. Chem. Lett., 2012, 22(1), 532-536.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.090] [PMID: 22094028]
[52]
George, R.F.; Fouad, M.A.; Gomaa, I.E.O. Synthesis and cytotoxic activities of some pyrazoline derivatives bearing phenyl pyridazine core as new apoptosis inducers. Eur. J. Med. Chem., 2016, 112, 48-59.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.048] [PMID: 26874744]
[53]
Magedov, I.V.; Manpadi, M.; Slambrouck, S.V.; Steelant, W.F.; Rozhkova, E.; Przheval’skii, N.M.; Rogelj, S.; Kornienko, A. Discovery and investigation of antiproliferative and apoptosis-inducing properties of new heterocyclic podophyllotoxin analogues accessible by a one-step multicomponent synthesis. J. Med. Chem., 2007, 50(21), 5183-5192.
[http://dx.doi.org/10.1021/jm070528f] [PMID: 17894480]
[54]
Kasımoğulları, R.; Bülbül, M.; Arslan, B.S.; Gökçe, B. Synthesis, characterization and antiglaucoma activity of some novel pyrazole derivatives of 5-amino-1,3,4-thiadiazole-2-sulfonamide. Eur. J. Med. Chem., 2010, 45(11), 4769-4773.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.041] [PMID: 20724038]
[55]
Verma, C.; Saji, V.S.; Quraishi, M.A.; Ebenso, E.E. Pyrazole Derivatives as environmental benign acid corrosion inhibitors for mild steel: Experimental and Computational Studies. J. Mol. Liq., 2020, 298111943
[http://dx.doi.org/10.1016/j.molliq.2019.111943]
[56]
Yadav, M.; Sinha, R.R.; Sarkar, T.K.; Tiwari, N. Corrosion inhibition effect of pyrazole derivatives on mild steel in hydrochloric acid solution. J. Adhes. Sci. Technol., 2015, 29, 1690-1713.
[http://dx.doi.org/10.1080/01694243.2015.1040979]
[57]
Elayyachy, M.; El Kodadi, M.; Hammouti, B.; Ramdani, A.; Elidrissi, A. Characterisation of a new tripyrazole derivative as inhibitor for the steel corrosion in acid solution. Pigm. Resin Technol., 2004, 33, 375-379.
[http://dx.doi.org/10.1108/03699420410568409]
[58]
El Arrouji, S.; Karrouchi, K.; Berisha, A.; Alaoui, K.I.; Warad, I.; Rais, Z.; Radi, S.; Taleb, M.; Ansar, M.; Zarrouk, A. New pyrazole derivatives as effective corrosion inhibitors on steel-electrolyte interface in 1 M HCl: Electrochemical, surface morphological (SEM) and computational analysis. Colloids Surf. A Physicochem. Eng. Asp., 2020, 604125325
[http://dx.doi.org/10.1016/j.colsurfa.2020.125325]
[59]
McCormack, P.L. Celecoxib: a review of its use for symptomatic relief in the treatment of osteoarthritis, rheumatoid arthritis and ankylosing spondylitis. Drugs, 2011, 71(18), 2457-2489.
[http://dx.doi.org/10.2165/11208240-000000000-00000] [PMID: 22141388]
[60]
Penning, T.D.; Talley, J.J.; Bertenshaw, S.R.; Carter, J.S.; Collins, P.W.; Docter, S.; Graneto, M.J.; Lee, L.F.; Malecha, J.W.; Miyashiro, J.M.; Rogers, R.S.; Rogier, D.J.; Yu, S.S.; Anderson, G.D. Burton, E.G.; Cogburn, J.N.; Gregory, S.A.; Koboldt, C.M.; Perkins, W.E.; Seibert, K.; Veenhuizen, A.W.; Zhang, Y.Y.; Isakson, P.C. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benze nesulfonamide (SC-58635, celecoxib). J. Med. Chem., 1997, 40(9), 1347-1365.
[http://dx.doi.org/10.1021/jm960803q] [PMID: 9135032]
[61]
Kling, J. From hypertension to angina to viagra. Mod. Drug Discovery, 1998, 1, 31-38.
[62]
Barth, F.; Rinaldi-Carmona, M. The development of cannabinoid antagonists. Curr. Med. Chem., 1999, 6(8), 745-755.
[PMID: 10469889]
[63]
Platten, M.; Fätkenheuer, G. Lersivirine - a new drug for HIV infection therapy. Expert Opin. Investig. Drugs, 2013, 22(12), 1687-1694.
[http://dx.doi.org/10.1517/13543784.2013.846325] [PMID: 24128277]
[64]
DeWald, H.A.; Lobbestael, S.; Poschel, B.P.H. Pyrazolodiazepines. 3. 4-Aryl-1,6,7,8-tetrahydro-1,3-dialkylpyrazolo[3,4-e][1,4]diazepines as antidepressant agents. J. Med. Chem., 1981, 24(8), 982-987.
[http://dx.doi.org/10.1021/jm00140a013] [PMID: 7328600]
[65]
(a)Murakami, H.; Masuzawa, S.; Takii, S.; Ito, T. Existence of a novel enzyme converting maltose into trehalose., Patent 2,012,802,003, 2003.
(b)Murakami, H.; Masuzawa, S.; Takii, S.; Ito, T. Acrylonitrile compound., Patent 2003201280 A, 2003.
[66]
Kim, M.; Sim, C.; Shin, D.; Suh, E.; Cho, K. Residual and sublethal effects of fenpyroximate and pyridaben on the instantaneous rate of increase of Tetranychus urticae. Crop Prot., 2006, 25, 542-548.
[http://dx.doi.org/10.1016/j.cropro.2005.08.010]
[67]
Marcic, D. Sublethal effects of tebufenpyrad on the eggs and immatures of two-spotted spider mite, Tetranychus urticae. Exp. Appl. Acarol., 2005, 36(3), 177-185.
[http://dx.doi.org/10.1007/s10493-005-3579-2] [PMID: 16132732]
[68]
Huang, Y.R.; Katzenellenbogen, J.A. Regioselective synthesis of 1,3,5-triaryl-4-alkylpyrazoles: Novel ligands for the estrogen receptor. Org. Lett., 2000, 2(18), 2833-2836.
[http://dx.doi.org/10.1021/ol0062650] [PMID: 10964377]
[69]
Garcia, H.; Iborra, S.; Miranda, M.A. Pyrazoles and isoxazoles derived from 2-hydroxyaryl phenylethynyl ketones: Synthesis and spectrophotometric evaluation of their potential applicability as sunscreens. Heterocycles, 1991, 32, 1745-1755.
[http://dx.doi.org/10.3987/COM-91-5773]
[70]
Deng, X.; Mani, N.S. Regioselective synthesis of 1,3,5-tri- and 1,3,4,5-tetrasubstituted pyrazoles from N-arylhydrazones and nitroolefins. J. Org. Chem., 2008, 73(6), 2412-2415.
[http://dx.doi.org/10.1021/jo7026195] [PMID: 18278943]
[71]
Despotopoulou, C.; Klier, L.; Knochel, P. Synthesis of fully substituted pyrazoles via regio- and chemoselective metalations. Org. Lett., 2009, 11(15), 3326-3329.
[http://dx.doi.org/10.1021/ol901208d] [PMID: 19580307]
[72]
Sorabad, G.S.; Maddani, M.R. Metal free, facile sulfenylation of ketene dithioacetals catalyzed by an HBr–DMSO system. New J. Chem., 2019, 43, 5996-6000.
[http://dx.doi.org/10.1039/C9NJ00925F]
[73]
Stasevych, M. V.; Zvarych, V. I.; Lunin, V. V.; Khomyak, S. V.; Vovk, M. V.; Novikov, V. P. Synthesis of pyrazole and tetrazole derivatives of 9,10-anthraquinonylhydrazones. Chem. Heterocycl. Compd. (N Y,)., 2017, 53, 927-929.
[74]
Sanam, B.K.; al-Rashida, M.; Alharthy, R.D.; Moin, S.T.; Hameed, A. Morpholinium and piperidinium based deep eutectic solvents for synthesis of pyrazole-5-carbonitriles, indoles and tetrazoles: bulk properties via molecular dynamics simulations. ChemistrySelect, 2018, 3, 12907-12917.
[http://dx.doi.org/10.1002/slct.201803265]
[75]
Lellek, V. Chen, C-yi.; Yang, W.; Liu, J.; Ji, X.; Faessler, R. An efficient synthesis of substituted pyrazoles from one-pot reaction of ketones, aldehydes, and hydrazine monohydrochloride. Synlett, 2018, 29, 1071-1075.
[http://dx.doi.org/10.1055/s-0036-1591941]
[76]
Rather, R.A.; Khan, M.U.; Siddiqui, Z.N. Sulphated alumina tungstic acid (SATA): A highly efficient and novel heterogeneous mesostructured catalyst for the synthesis of pyrazole carbonitrile derivatives and evaluation of green metrics. RSC Advances, 2020, 10, 818-827.
[http://dx.doi.org/10.1039/C9RA09013D]
[77]
Sarkar, D.; Sahoo, S.R. Monohydrochloride assisted synthesis of functionalised isoxazoles and pyrazoles from allenic ketones – first synthesis of (Z)-2-methyl - 7H benzo[b]pyrazolo[5,1-d][1,5]oxazocines. Eur. J. Org. Chem., 2019, 2019, 2035-2049.
[http://dx.doi.org/10.1002/ejoc.201900008]
[78]
Arora, P.; Rajput, J.K. One-pot multicomponent click synthesis of pyrazole derivatives using cyclodextrin-supported capsaicin nanoparticles as catalyst. J. Mater. Sci., 2017, 52, 11413-11427.
[http://dx.doi.org/10.1007/s10853-017-1304-2]
[79]
Konwar, M.; Elnagdy, H.M.F.; Gehlot, P.S.; Khupse, N.D.; Kumar, A.; Sarma, D. Transition metal containing ionic liquid-assisted one-pot synthesis of pyrazoles at room temperature. J. Chem. Sci., 2019, 131, 1-9.
[http://dx.doi.org/10.1007/s12039-019-1659-9]
[80]
Konwar, M.; Phukan, P.; Chaliha, A.K.; Buragohain, A.K.; Damarla, K.; Gogoi, D.; Kumar, A.; Sarma, D. An Unexplored lewis acidic catalytic system for synthesis of pyrazole and its biaryls derivatives with antimicrobial activities through cycloaddition-iodination-suzuki reaction. ChemistrySelect, 2019, 4, 10236-10245.
[http://dx.doi.org/10.1002/slct.201902266]
[81]
Toche, R.B.; Patil, V.M. Chaudhari (Patil), S. A.; Chavan, S. M.; Sabnis, R. W. Green synthesis of pyrazole and oxazole derivatives. J. Heterocycl. Chem., 2018, 56, 38-43.
[http://dx.doi.org/10.1002/jhet.3360]
[82]
Sagir, H.; Rai, P.; Ibad, A.; Ibad, F.; Siddiqui, I.R. Visible-light-photoredox catalytic C-C, C-N bond formation: synthesis of pyrazole derivatives via radical ions. Catal. Commun., 2017, 100, 153-156.
[http://dx.doi.org/10.1016/j.catcom.2017.06.051]
[83]
Kakhki, R.M.; Karimian, A. Hasan nejad, H.; Ahsani, F. Zinc Oxide–nanoclinoptilolite as a superior catalyst for visible photooxidation of dyes and green synthesis of pyrazole derivatives. J. Inorg. Organomet. Polym., 2019, 29, 1358-1367.
[http://dx.doi.org/10.1007/s10904-019-01100-8]
[84]
Abu-Zaied, M.A.; Elgemeie, G.H. Novel synthesis of new pyrazole thioglycosides as pyrazomycin analogues. Nucleosides Nucleotides Nucleic Acids, 2019, 38(5), 374-389.
[http://dx.doi.org/10.1080/15257770.2018.1554220] [PMID: 30689496]
[85]
Kumari, P.; Sood, S.; Kumar, A.; Singh, K. Microwave‐assisted Vilsmeier‐Haack synthesis of Pyrazole‐ 4‐carbaldehydes. J. Heterocycl. Chem., 2019, 57, 796-804.
[http://dx.doi.org/10.1002/jhet.3824]
[86]
Verma, G.; Chashoo, G.; Ali, A.; Khan, M.F.; Akhtar, W.; Ali, I.; Akhtar, M.; Alam, M.M.; Shaquiquzzaman, M. Synthesis of pyrazole acrylic acid based oxadiazole and amide derivatives as antimalarial and anticancer agents. Bioorg. Chem., 2018, 77, 106-124.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.007] [PMID: 29353728]
[87]
Reddy, V.N.; Yamini, L.; Rao, Y.J.; Rao, C.P. Synthesis of pyrazole-4-carbaldehyde derivatives for their antifungal activity. Med. Chem. Res., 2017, 26, 1664-1674.
[http://dx.doi.org/10.1007/s00044-017-1883-0]
[88]
de Rosa, G.S.; Souto, B.A.; Pereira, C.N.; Teixeira, B.C.; Santos, M.S. dos A convenient synthesis of pyrazole-imidazoline derivatives by microwave irradiation. J. Heterocycl. Chem., 2019, 56, 1825-1830.
[http://dx.doi.org/10.1002/jhet.3557]
[89]
Murahari, M.; Mahajan, V.; Neeladri, S.; Kumar, M.S.; Mayur, Y.C. Ligand based design and synthesis of pyrazole based derivatives as selective COX-2 inhibitors. Bioorg. Chem., 2019, 86, 583-597.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.031] [PMID: 30782576]
[90]
Sarmah, B.; Srivastava, R. Octahedral MnO2 molecular sieve decorated Meso-ZSM-5 catalyst for eco-friendly synthesis of pyrazoles and carbamates. Ind. Eng. Chem. Res., 2017, 56, 15017-15029.
[http://dx.doi.org/10.1021/acs.iecr.7b03993]
[91]
Mohareb, R.M.; Gamaan, M.S. The uses of ethyl 2-(1H-benzo[d]imidazole-2-yl)acetate tosynthesis pyrazole, thiophene, pyridine and coumarin derivatives with antitumor activities. Bull. Chem. Soc. Ethiop., 2018, 32, 541-557.
[http://dx.doi.org/10.4314/bcse.v32i3.13]
[92]
Jaiswal, D.; Tiwari, J.; Singh, S.; Sharma, A.K.; Singh, J.; Singh, J. Sarcosine as a novel and recyclable organocatalyst: A greener approach towards the synthesis of multisubstituted pyrazole derivatives. Curr. Organocatal., 2018, 5, 229-238.
[http://dx.doi.org/10.2174/2213337205666180810123412]
[93]
Zhang, Q.; Tang, M. Regioselective synthesis of highly functionalized pyrazoles from n-tosylhydrazones. Org. Lett., 2019, 21(6), 1917-1920.
[http://dx.doi.org/10.1021/acs.orglett.9b00561] [PMID: 30829036]
[94]
Hajlaoui, K.; Guesmi, A.E.; Hamadi, N.B.; Msaddek, M. Synthesis of novel pyrazole–sucrose derivatives by 1,3-dipolar cycloaddition. J. Heterocycl. Chem., 2018, 55, 2069-2074.
[http://dx.doi.org/10.1002/jhet.3246]
[95]
Muthusamy, S.; Gangadurai, C. “On water” cascade synthesis of benzopyranopyrazoles and their macrocycles. Tetrahedron Lett., 2018, 59, 1501-1505.
[http://dx.doi.org/10.1016/j.tetlet.2018.03.013]
[96]
Khairnar, P.V.; Lung, T-H.; Lin, Y.J.; Wu, C.Y.; Koppolu, S.R.; Edukondalu, A.; Karanam, P.; Lin, W. An intramolecular wittig approach toward heteroarenes: Synthesis of pyrazoles, isoxazoles, and chromenone-oximes. Org. Lett., 2019, 21(11), 4219-4223.
[http://dx.doi.org/10.1021/acs.orglett.9b01395] [PMID: 31117709]
[97]
Yadav, V.B.; Rai, P.; Sagir, H.; Kumar, A.; Siddiqui, I.R. Catalyst-free synthesis for pyrazole-fused isocoumarins in recyclable and biodegradable reaction medium. ChemistrySelect, 2017, 2, 8320-8325.
[http://dx.doi.org/10.1002/slct.201700976]
[98]
Cheng, J.; Li, W.; Duan, Y.; Cheng, Y.; Yu, S.; Zhu, C. Relay Visible-Light Photoredox catalysis: Synthesis of pyrazole derivatives via formal [4 + 1] annulation and aromatization. Org. Lett., 2017, 19(1), 214-217.
[http://dx.doi.org/10.1021/acs.orglett.6b03497] [PMID: 27996274]
[99]
Raj, J.P.; Gangaprasad, D.; Karthikeyan, K.; Rengasamy, R.; Kesavan, M.; Venkateswarulu, M.; Vajjiravel, M.; Elangovan, J. A new route to synthesis of substituted pyrazoles through oxidative [3+2] cycloaddition of electron deficient alkenes and diazocarbonyl compounds. Tetrahedron Lett., 2018, 59, 4462-4465.
[http://dx.doi.org/10.1016/j.tetlet.2018.11.007]
[100]
Remy, R.; Bochet, C.G. Application of photoclick chemistry for the synthesis of pyrazoles via 1,3-dipolar cycloaddition between alkynes and nitrilimines generated in situ. Eur. J. Org. Chem., 2018, 2018, 316-328.
[http://dx.doi.org/10.1002/ejoc.201701225]
[101]
Soltanzadeh, Z.; Imanzadeh, G.; Pesyan, N.N.; Şahin, E. Green synthesis of pyrazole systems under solvent-free conditions. Green Chem. Lett. Rev., 2017, 10, 148-153.
[http://dx.doi.org/10.1080/17518253.2017.1330428]
[102]
Fu, Y.; Wang, M-X.; Zhang, D.; Hou, Yu-W.; Gao, S. Zhao, Li-X.; Ye, F. Design, synthesis, and herbicidal activity of pyrazole benzophenone derivatives. RSC Advances, 2017, 7, 46858-46865.
[http://dx.doi.org/10.1039/C7RA09858H]
[103]
[[1]]Kotouge, R.; Nishiyama, T.; Yamauchi, A.; Ono, K.; Hatae, N.; Oikawa, T.; Hibino, S.; Choshi, T. Synthesis of 4-aroyl-5-arylpyrazoles and 4-aroyl-3-arylpyrazoles via the reaction of enaminodiketones with substituted hydrazines. Heterocycles, 2020, 100, 25-45.
[http://dx.doi.org/10.3987/COM-19-14096]
[104]
Aqlan, F.M.; Alam, M.M.; Saleha, T.S.; Asirie, A.M.; Udding, J.; Rahman, M.M. Synthesis of novel. pyrazole incorporating coumarin moiety (PC) for the selective and sensitive Co2+ detection. New J. Chem., 2019, 43, 12331-12339.
[http://dx.doi.org/10.1039/C9NJ02176K]
[105]
Madhu, G.; Sudhakar, M.; Kumar, K.S.; Reddy, G.R.; Sravani, A.; Ramakrishna, K.C.; Rao, P. Synthesis of pyrazole-substituted chromene analogues with selective anti-leukemic activity. Russ. J. Gen. Chem., 2017, 87, 2421-2428.
[http://dx.doi.org/10.1134/S1070363217100243]
[106]
Das, P.; Gondo, S.; Tokunaga, E.; Sumii, Y.; Shibata, N. Anionic triflyldiazomethane: Generation and its application for synthesis of pyrazole-3-triflones via [3 + 2] cycloaddition reaction. Org. Lett., 2018, 20(3), 558-561.
[http://dx.doi.org/10.1021/acs.orglett.7b03664] [PMID: 29320193]
[107]
Aggarwal, S.; Paliwal, D.; Kaushik, D.; Gupta, G.K.; Kumar, A. Pyrazole schiff base hybrids as anti-malarial agents: Synthesis, in vitro screening and computational study. Comb. Chem. High Throughput Screen., 2018, 21(3), 194-203.
[http://dx.doi.org/10.2174/1386207321666180213092911] [PMID: 29436997]