Molecularly Imprinted Polymer Particles and Beads: A Survey of Modern Synthetic Techniques

Page: [380 - 392] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Molecular imprinting technology is based on incorporating template molecules in the polymer matrix, followed by their extraction to leave specific cavities similar in shape and size to the incorporated template molecules. The resultant molecularly imprinted polymers (MIPs) then show antibody-like and enzyme-like behavior. MIPs are used as selective adsorbents, stationary phases, sensors, drug delivery agents, ultrafiltration systems, catalysts, etc. To achieve a specific function, MIPs are synthesized in various forms like beads, particles, membranes, fibers and composites. MIP beads and particles have prime importance due to their use in multiple applications. In this article, we present a survey of various polymerization techniques used for the synthesis of MIP beads and particles, along with a special focus on the studies presenting their use in separation and purification.

Keywords: Molecular imprinting, MIP beads, MIP particles, polymerization techniques, applications, purification.

Graphical Abstract

[1]
Whitcombe, M.J.; Vulfson, E.N. Imprinted polymers. Adv. Mater., 2001, 13(7), 467-478.
[http://dx.doi.org/10.1002/1521-4095(200104)13:7<467:AID-ADMA467>3.0.CO;2-T]
[2]
Shah, N.; Ha, J.H.; Ul-Islam, M.; Park, J.K. Highly improved adsorption selectivity of L-phenylalanine imprinted polymeric submicron/nanoscale beads prepared by modified suspension polymerization. Korean J. Chem. Eng., 2011, 28(9), 1936-1944.
[http://dx.doi.org/10.1007/s11814-011-0043-3]
[3]
Shah, N.; Ul-Islam, M.; Haneef, M.; Park, J.K. A brief overview of molecularly imprinted polymers: From basics to applications. J. Pharm. Res., 2012, 5(6), 3309-3317.
[4]
Shah, N.; Ulislam, M.; Ha, J.; Park, J.K. Chiral separation of phenylalanine using D-phenylalanine imprinted membrane containing L-phenylalanine imprinted submicron/nanoscale beads. J. Pharm. Res., 2012, 5(8), 4425-4433.
[5]
Shah, N.; Rehan, T.; Park, J.K. Adsorptive molecularly imprinted composite membranes for chiral separation of phenylalanine. Pol. J. Chem. Technol., 2016, 18(3), 22-29.
[http://dx.doi.org/10.1515/pjct-2016-0044]
[6]
Gul, S.; Shah, N.; Arain, M.B.; Rahman, N.; Rehan, T.; Ul-Islam, M.; Ullah, M.W.; Yang, G. Fabrication of magnetic core shell particles coated with phenylalanine imprinted polymer. Polym. Test., 2019, 75, 262-269.
[http://dx.doi.org/10.1016/j.polymertesting.2019.02.023]
[7]
Shah, N.; Gul, S. Mazhar Ul-Islam, Core-shell molecularly imprinted polymer nanocomposites for biomedical and environmental applications. Curr. Pharm. Des., 2019, 25(34), 3633-3644.
[http://dx.doi.org/10.2174/1381612825666191009153259] [PMID: 31626581]
[8]
Pan, J.; Chen, W.; Ma, Y.; Pan, G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem. Soc. Rev., 2018, 47(15), 5574-5587.
[http://dx.doi.org/10.1039/C7CS00854F] [PMID: 29876564]
[9]
Piletsky, S.; Canfarotta, F.; Poma, A.; Bossi, A.M.; Piletsky, S. Molecularly imprinted polymers for cell recognition. Trends Biotechnol., 2020, 38(4), 368-387.
[http://dx.doi.org/10.1016/j.tibtech.2019.10.002] [PMID: 31677857]
[10]
Turiel, E.; Martín-Esteban, A. Molecularly imprinted polymers-based microextraction techniques. Trends Analyt. Chem., 2019, 118, 574-586.
[http://dx.doi.org/10.1016/j.trac.2019.06.016]
[11]
Rutkowska, M.; Płotka-Wasylka, J.; Morrison, C.; Wieczorek, P.P.; Namieśnik, J.; Marć, M. Application of molecularly imprinted polymers in analytical chiral separations and analysis. Trends Analyt. Chem., 2018, 102, 91-102.
[http://dx.doi.org/10.1016/j.trac.2018.01.011]
[12]
Canfarotta, F.; Poma, A.; Guerreiro, A.; Piletsky, S. Solid-phase synthesis of molecularly imprinted nanoparticles. Nat. Protoc., 2016, 11(3), 443-455.
[http://dx.doi.org/10.1038/nprot.2016.030] [PMID: 26866789]
[13]
Abdollahi, E.; Abdouss, M.; Salami-Kalajahi, M.; Mohammadi, A. Molecular recognition ability of molecularly imprinted polymer nano-and micro-particles by reversible addition-fragmentation chain transfer polymerization. Polym. Rev. (Phila. Pa.), 2016, 56(4), 557-583.
[http://dx.doi.org/10.1080/15583724.2015.1119162]
[14]
Andersson, L.I. Molecular imprinting: developments and applications in the analytical chemistry field. J. Chromatogr. B Biomed. Sci. Appl., 2000, 745(1), 3-13.
[http://dx.doi.org/10.1016/S0378-4347(00)00135-3] [PMID: 10997701]
[15]
Demeestere, K.; Petrović, M.; Gros, M.; Dewulf, J.; Van Langenhove, H.; Barceló, D. Trace analysis of antidepressants in environmental waters by molecularly imprinted polymer-based solid-phase extraction followed by ultra-performance liquid chromatography coupled to triple quadrupole mass spectrometry. Anal. Bioanal. Chem., 2010, 396(2), 825-837.
[http://dx.doi.org/10.1007/s00216-009-3270-2] [PMID: 19924405]
[16]
Masqué, N.; Marcé, R.M.; Borrull, F.; Cormack, P.A.; Sherrington, D.C. Synthesis and evaluation of a molecularly imprinted polymer for selective on-line solid-phase extraction of 4-nitrophenol from environmental water. Anal. Chem., 2000, 72(17), 4122-4126.
[http://dx.doi.org/10.1021/ac0000628] [PMID: 10994973]
[17]
Duan, Y-P.; Dai, C-M.; Zhang, Y-L. Ling-Chen, Selective trace enrichment of acidic pharmaceuticals in real water and sediment samples based on solid-phase extraction using multi-templates molecularly imprinted polymers. Anal. Chim. Acta, 2013, 758, 93-100.
[http://dx.doi.org/10.1016/j.aca.2012.11.010] [PMID: 23245900]
[18]
Baggiani, C.; Giovannoli, C.; Anfossi, L.; Tozzi, C. Molecularly imprinted solid-phase extraction sorbent for the clean-up of chlorinated phenoxyacids from aqueous samples. J. Chromatogr. A, 2001, 938(1-2), 35-44.
[http://dx.doi.org/10.1016/S0021-9673(01)01126-8] [PMID: 11771845]
[19]
Piletsky, S.A.; Alcock, S.; Turner, A.P. Molecular imprinting: at the edge of the third millennium. Trends Biotechnol., 2001, 19(1), 9-12.
[http://dx.doi.org/10.1016/S0167-7799(00)01523-7] [PMID: 11146096]
[20]
Olsen, J.; Martin, P.; Wilson, I.D. Molecular imprints as sorbents for solid phase extraction: potential and applications. Anal. Commun., 1998, 35(10), 13H-14H.
[http://dx.doi.org/10.1039/a806379f]
[21]
Vallano, P.T.; Remcho, V.T. Highly selective separations by capillary electrochromatography: molecular imprint polymer sorbents. J. Chromatogr. A, 2000, 887(1-2), 125-135.
[http://dx.doi.org/10.1016/S0021-9673(99)01199-1] [PMID: 10961308]
[22]
Zheng, X.; Wang, J. A novel metal-organic framework composite, MIL-101 (Cr)@ MIP, as an efficient sorbent in solid-phase extraction coupling with HPLC for tribenuron-methyl determination. Int. J. Anal. Chem., 2019, 2019, 2547280.
[http://dx.doi.org/10.1155/2019/2547280] [PMID: 31275388]
[23]
Panjan, P.; Monasterio, R.P.; Carrasco-Pancorbo, A.; Fernandez-Gutierrez, A.; Sesay, A.M.; Fernandez-Sanchez, J.F. Development of a folic acid molecularly imprinted polymer and its evaluation as a sorbent for dispersive solid-phase extraction by liquid chromatography coupled to mass spectrometry. J. Chromatogr. A, 2018, 1576, 26-33.
[http://dx.doi.org/10.1016/j.chroma.2018.09.037] [PMID: 30253912]
[24]
Zheng, Y.; Gu, L.; Shi, J.; Zhang, M.; Kong, G.; Li, Z.; Han, Y.; Peng, J. [Determination of sulfonylurea herbicide residues in tobacco leaves by molecularly imprinted-solid phase extraction-high performance liquid chromatography. Se Pu, 2018, 36(7), 659-664.
[http://dx.doi.org/10.3724/SP.J.1123.2018.01010] [PMID: 30136538]
[25]
Cieplak, M.; Kutner, W. Protein Determination Using Molecularly Imprinted Polymer (MIP) Chemosensors.Molecularly Imprinted Polymers for Analytical Chemistry Applications; Sharma, P.S.; Kutner, W., Eds.; 2018, pp. 282-329..
[http://dx.doi.org/10.1039/9781788010474-00282]
[26]
Dabrowski, M.; Lach, P.; Cieplak, M.; Kutner, W. Nanostructured molecularly imprinted polymers for protein chemosensing. Biosens. Bioelectron., 2018, 102, 17-26.
[http://dx.doi.org/10.1016/j.bios.2017.10.045] [PMID: 29101784]
[27]
Yarman, A.; Kurbanoglu, S.; Jetzschmann, K.J.; Ozkan, S.A.; Wollenberger, U.; Scheller, F.W. Electrochemical MIP-sensors for drugs. Curr. Med. Chem., 2018, 25(33), 4007-4019.
[http://dx.doi.org/10.2174/0929867324666171005103712] [PMID: 28982312]
[28]
Pandey, H.; Khare, P.; Singh, S.; Singh, S.P. Carbon nanomaterials integrated molecularly imprinted polymers for biological sample analysis: A critical review. Mater. Chem. Phys., 2020, 239, 121966-121985.
[http://dx.doi.org/10.1016/j.matchemphys.2019.121966]
[29]
Azizi, A.; Shahhoseini, F.; Bottaro, C.S. Magnetic molecularly imprinted polymers prepared by reversible addition fragmentation chain transfer polymerization for dispersive solid phase extraction of polycyclic aromatic hydrocarbons in water. J. Chromatogr. A, 2020, 1610, 460534-460549.
[http://dx.doi.org/10.1016/j.chroma.2019.460534] [PMID: 31540751]
[30]
Liu, Y.; Li, Z.; Jia, L. Synthesis of molecularly imprinted polymer modified magnetic particles for chiral separation of tryptophan enantiomers in aqueous medium. J. Chromatogr. A, 2020, 1622, 461147-461156.
[http://dx.doi.org/10.1016/j.chroma.2020.461147] [PMID: 32450989]
[31]
Yang, J.; Feng, W.; Liang, K.; Chen, C.; Cai, C. A novel fluorescence molecularly imprinted sensor for Japanese encephalitis virus detection based on metal organic frameworks and passivation-enhanced selectivity. Talanta, 2020, 212, 120744-120752.
[http://dx.doi.org/10.1016/j.talanta.2020.120744] [PMID: 32113530]
[32]
Zhang, Y.; Xie, Y.; Zhang, C.; Wu, M.; Feng, S. Preparation of porous magnetic molecularly imprinted polymers for fast and specifically extracting trace norfloxacin residue in pork liver. J. Sep. Sci., 2020, 43(2), 478-485.
[http://dx.doi.org/10.1002/jssc.201900589] [PMID: 31633312]
[33]
Cui, Y.; Li, M.; Hong, X.; Du, D.; Ma, Y. Solid-phase interfacial synthesis of dual-imprinted colloid particles for multifunctional nanomedicine development. Colloid Interface Sci. Commun., 2020, 36, 100267-100273.
[http://dx.doi.org/10.1016/j.colcom.2020.100267]
[34]
Parisi, O.I.; Ruffo, M.; Malivindi, R.; Vattimo, A.F.; Pezzi, V.; Puoci, F. Molecularly Imprinted Polymers (MIPs) as theranostic systems for sunitinib controlled release and self-monitoring in cancer therapy. Pharmaceutics, 2020, 12(1), 41.
[http://dx.doi.org/10.3390/pharmaceutics12010041] [PMID: 31947815]
[35]
Kandimalla, V.B.; Ju, H. Molecular imprinting: a dynamic technique for diverse applications in analytical chemistry. Anal. Bioanal. Chem., 2004, 380(4), 587-605.
[http://dx.doi.org/10.1007/s00216-004-2793-9] [PMID: 15480581]
[36]
Wang, H.; Yuan, L.; Zhu, H.; Jin, R.; Xing, J. Comparative study of capsaicin molecularly imprinted polymers prepared by different polymerization methods. J. Polym. Sci. A Polym. Chem., 2019, 57(2), 157-164.
[http://dx.doi.org/10.1002/pola.29281]
[37]
Hasanah, A.N.; Dwi Utari, T.N.; Pratiwi, R. Synthesis of atenolol-imprinted polymers with methyl methacrylate as functional monomer in propanol using bulk and precipitation polymerization method. J. Anal. Methods Chem., 2019, 2019, 9853620.
[http://dx.doi.org/10.1155/2019/9853620] [PMID: 31236306]
[38]
Cantarella, M.; Carroccio, S.C.; Dattilo, S.; Avolio, R.; Castaldo, R.; Puglisi, C.; Privitera, V. Molecularly imprinted polymer for selective adsorption of diclofenac from contaminated water. Chem. Eng. J., 2019, 367, 180-188.
[http://dx.doi.org/10.1016/j.cej.2019.02.146]
[39]
Zu, B.; Zhang, Y.; Guo, X.; Zhang, H. Preparation of molecularly imprinted polymers via atom transfer radical “bulk” polymerization. J. Polym. Sci. A Polym. Chem., 2010, 48(3), 532-541.
[http://dx.doi.org/10.1002/pola.23750]
[40]
Mohajeri, S.A.; Karimi, G.; Aghamohammadian, J.; Khansari, M.R. Clozapine recognition via molecularly imprinted polymers; bulk polymerization versus precipitation method. J. Appl. Polym. Sci., 2011, 121(6), 3590-3595.
[http://dx.doi.org/10.1002/app.34147]
[41]
Odabaşi, M.; Say, R.; Denizli, A. Molecular imprinted particles for lysozyme purification. Mater. Sci. Eng. C, 2007, 27(1), 90-99.
[http://dx.doi.org/10.1016/j.msec.2006.03.002]
[42]
Mazzotta, E.; Picca, R.A.; Malitesta, C.; Piletsky, S.A.; Piletska, E.V. Development of a sensor prepared by entrapment of MIP particles in electrosynthesised polymer films for electrochemical detection of ephedrine. Biosens. Bioelectron., 2008, 23(7), 1152-1156.
[http://dx.doi.org/10.1016/j.bios.2007.09.020] [PMID: 17997092]
[43]
Lei, J-D.; Tong, A-J. Preparation of Z-L-Phe-OH-NBD imprinted microchannel and its molecular recognition study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2005, 61(6), 1029-1033.
[http://dx.doi.org/10.1016/j.saa.2004.06.001] [PMID: 15741098]
[44]
Yang, K.; Liu, Z.; Mao, M.; Zhang, X.; Zhao, C.; Nishi, N. Molecularly imprinted polyethersulfone microspheres for the binding and recognition of bisphenol A. Anal. Chim. Acta, 2005, 546(1), 30-36.
[http://dx.doi.org/10.1016/j.aca.2005.05.008] [PMID: 29569552]
[45]
Tamayo, F.G.; Titirici, M.M.; Martin-Esteban, A.; Sellergren, B. Synthesis and evaluation of new propazine-imprinted polymer formats for use as stationary phases in liquid chromatography. Anal. Chim. Acta, 2005, 542(1), 38-46.
[http://dx.doi.org/10.1016/j.aca.2004.12.063] [PMID: 17723329]
[46]
Haginaka, J.; Kagawa, C. Uniformly sized molecularly imprinted polymer for d-chlorpheniramine. Evaluation of retention and molecular recognition properties in an aqueous mobile phase. J. Chromatogr. A, 2002, 948(1-2), 77-84.
[http://dx.doi.org/10.1016/S0021-9673(01)01262-6] [PMID: 12831185]
[47]
Hosoya, K.; Yoshizako, K.; Shirasu, Y.; Kimata, K.; Araki, T.; Tanaka, N.; Haginaka, J. Molecularly imprinted uniform-size polymer-based stationary phase for high-performance liquid chromatography structural contribution of cross-linked polymer network on specific molecular recognition. J. Chromatogr. A, 1996, 728(1-2), 139-147.
[http://dx.doi.org/10.1016/0021-9673(95)01165-X]
[48]
Haginaka, J.; Sakai, Y. Uniform-sized molecularly imprinted polymer material for (S)-propranolol. J. Pharm. Biomed. Anal., 2000, 22(6), 899-907.
[http://dx.doi.org/10.1016/S0731-7085(00)00293-4] [PMID: 10857558]
[49]
Hosoya, K.; Yoshizako, K.; Tanaka, N.; Kimata, K.; Araki, T.; Haginaka, J. Uniform-size macroporous polymer-based stationary phase for HPLC prepared through molecular imprinting technique. Chem. Lett., 1994, 23(8), 1437-1438.
[http://dx.doi.org/10.1246/cl.1994.1437]
[50]
Yan, H.; Row, K.H. Characteristic and synthetic approach of molecularly imprinted polymer. Int. J. Mol. Sci., 2006, 7(5), 155-178.
[http://dx.doi.org/10.3390/i7050155]
[51]
Sellergren, B. Direct drug determination by selective sample enrichment on an imprinted polymer. Anal. Chem., 1994, 66(9), 1578-1582.
[http://dx.doi.org/10.1021/ac00081a036]
[52]
Sellergren, B. Imprinted dispersion polymers: a new class of easily accessible affinity stationary phases. J. Chromatogr. A, 1994, 673(1), 133-141.
[http://dx.doi.org/10.1016/0021-9673(94)87066-7]
[53]
Paine, A.J. Dispersion polymerization of styrene in polar solvents. IV. Solvency control of particle size from hydroxypropyl cellulose stabilized polymerizations. J. Polym. Sci. A Polym. Chem., 1990, 28(9), 2485-2500.
[http://dx.doi.org/10.1002/pola.1990.080280921]
[54]
Rymaruk, M.J.; O’Brien, C.T.; Brown, S.L.; Williams, C.N.; Armes, S.P. RAFT dispersion polymerization of benzyl methacrylate in silicone oil using a silicone-based methacrylic stabilizer provides convenient access to spheres, worms, and vesicles. Macromolecules, 2020, 53(5), 1785-1794.
[http://dx.doi.org/10.1021/acs.macromol.9b02697]
[55]
Zeng, R.; Chen, Y.; Zhang, L.; Tan, J. Uncontrolled polymerization that occurred during photoinitiated RAFT dispersion polymerization of acrylic monomers promotes the formation of uniform raspberry-like polymer particles. Polym. Chem., 2020, 11, 4591-4603.
[http://dx.doi.org/10.1039/D0PY00678E]
[56]
Ye, L.; Cormack, P.A.; Mosbach, K. Molecular imprinting on microgel spheres. Anal. Chim. Acta, 2001, 435(1), 187-196.
[http://dx.doi.org/10.1016/S0003-2670(00)01248-4]
[57]
Piscopo, L.; Prandi, C.; Coppa, M.; Sparnacci, K.; Laus, M.; Laganà, A.; Curini, R.; D’Ascenzo, G. Uniformly sized molecularly imprinted polymers (MIPs) for 17β‐estradiol. Macromol. Chem. Phys., 2002, 203(10‐11), 1532-1538.
[http://dx.doi.org/10.1002/1521-3935(200207)203:10/11<1532:AID-MACP1532>3.0.CO;2-C]
[58]
Li, W-H.; Stöver, H.D. Monodisperse cross-linked core-shell polymer microspheres by precipitation polymerization. Macromolecules, 2000, 33(12), 4354-4360.
[http://dx.doi.org/10.1021/ma9920691]
[59]
Downey, J.S.; McIsaac, G.; Frank, R.S.; Stöver, H.D. Poly (divinylbenzene) microspheres as an intermediate morphology between microgel, macrogel, and coagulum in cross-linking precipitation polymerization. Macromolecules, 2001, 34(13), 4534-4541.
[http://dx.doi.org/10.1021/ma000386y]
[60]
Surugiu, I.; Danielsson, B.; Ye, L.; Mosbach, K.; Haupt, K. Chemiluminescence imaging ELISA using an imprinted polymer as the recognition element instead of an antibody. Anal. Chem., 2001, 73(3), 487-491.
[http://dx.doi.org/10.1021/ac0011540] [PMID: 11217751]
[61]
Ye, L.; Surugiu, I.; Haupt, K. Scintillation proximity assay using molecularly imprinted microspheres. Anal. Chem., 2002, 74(5), 959-964.
[http://dx.doi.org/10.1021/ac015629e] [PMID: 11924998]
[62]
Spégel, P.; Schweitz, L.; Nilsson, S. Molecularly imprinted microparticles for capillary electrochromatography: studies on microparticle synthesis and electrolyte composition. Electrophoresis, 2001, 22(17), 3833-3841.
[http://dx.doi.org/10.1002/1522-2683(200109)22:17<3833:AID-ELPS3833>3.0.CO;2-9] [PMID: 11699926]
[63]
De Boer, T.; Mol, R.; De Zeeuw, R.A.; De Jong, G.J.; Sherrington, D.C.; Cormack, P.A.; Ensing, K. Spherical molecularly imprinted polymer particles: a promising tool for molecular recognition in capillary electrokinetic separations. Electrophoresis, 2002, 23(9), 1296-1300.
[http://dx.doi.org/10.1002/1522-2683(200205)23:9<1296:AID-ELPS1296>3.0.CO;2-2] [PMID: 12007129]
[64]
Kamra, T.; Zhou, T.; Montelius, L.; Schnadt, J.; Ye, L. Implementation of molecularly imprinted polymer beads for surface enhanced Raman detection. Anal. Chem., 2015, 87(10), 5056-5061.
[http://dx.doi.org/10.1021/acs.analchem.5b00774] [PMID: 25897989]
[65]
Younis, M.R.; Bajwa, S.Z.; Lieberzeit, P.A.; Khan, W.S.; Mujahid, A.; Ihsan, A.; Rehman, A. Molecularly imprinted porous beads for the selective removal of copper ions. J. Sep. Sci., 2016, 39(4), 793-798.
[http://dx.doi.org/10.1002/jssc.201500984] [PMID: 26632078]
[66]
Ji, W.; Wang, T.; Liu, W.; Liu, F.; Guo, L.; Geng, Y.; Wang, X. Water-compatible micron-sized monodisperse molecularly imprinted beads for selective extraction of five iridoid glycosides from Cornus officinalis fructus. J. Chromatogr. A, 2017, 1504, 1-8.
[http://dx.doi.org/10.1016/j.chroma.2017.05.003] [PMID: 28511931]
[67]
Liu, Y.; Liu, L.; He, Y.; He, Q.; Ma, H. Quantum-dots-encoded-microbeads based molecularly imprinted polymer. Biosens. Bioelectron., 2016, 77, 886-893.
[http://dx.doi.org/10.1016/j.bios.2015.10.024] [PMID: 26520251]
[68]
Urraca, J.L.; Chamorro-Mendiluce, R.; Orellana, G.; Moreno-Bondi, M.C. Molecularly imprinted polymer beads for clean-up and preconcentration of β-lactamase-resistant penicillins in milk. Anal. Bioanal. Chem., 2016, 408(7), 1843-1854.
[http://dx.doi.org/10.1007/s00216-015-8941-6] [PMID: 26342308]
[69]
Carrasco, S.; Benito-Peña, E.; Walt, D.R.; Moreno-Bondi, M.C. Fiber-optic array using molecularly imprinted microspheres for antibiotic analysis. Chem. Sci. (Camb.), 2015, 6(5), 3139-3147.
[http://dx.doi.org/10.1039/C5SC00115C] [PMID: 29142687]
[70]
Pardeshi, S.; Singh, S.K. Precipitation polymerization: a versatile tool for preparing molecularly imprinted polymer beads for chromatography applications. RSC Advances, 2016, 6(28), 23525-23536.
[http://dx.doi.org/10.1039/C6RA02784A]
[71]
Shahar, T.; Tal, N.; Mandler, D. Molecularly imprinted polymer particles: Formation, characterization and application. Colloids Surf. A Physicochem. Eng. Asp., 2016, 495, 11-19.
[http://dx.doi.org/10.1016/j.colsurfa.2016.01.027]
[72]
Bates, F.; del Valle, M. Voltammetric sensor for theophylline using sol-gel immobilized molecularly imprinted polymer particles. Mikrochim. Acta, 2015, 182(5-6), 933-942.
[http://dx.doi.org/10.1007/s00604-014-1413-4]
[73]
Zeng, H.; Yu, X.; Wan, J.; Cao, X. Rational design and synthesis of molecularly imprinted polymers (MIP) for purifying tylosin by seeded precipitation polymerization. Process Biochem., 2020, 94, 329-339.
[http://dx.doi.org/10.1016/j.procbio.2020.03.025]
[74]
Pérez, N.; Whitcombe, M.J.; Vulfson, E.N. Molecularly imprinted nanoparticles prepared by core‐shell emulsion polymerization. J. Appl. Polym., 2000, 77(8), 1851-1859.
[http://dx.doi.org/10.1002/1097-4628(20000822)77:8<1851:AID-APP23>3.0.CO;2-J]
[75]
Tamai, H.; Nishida, Y.; Suzawa, T. Surface properties of micron-size polystyrene latex particles prepared by seeded polymerization. J. Colloid Sci., 1991, 146(1), 288-290.
[http://dx.doi.org/10.1016/0021-9797(91)90024-3]
[76]
Eshuis, A.; Leendertse, H.; Thoenes, D. Surfactant-free emulsion polymerization of styrene using crosslinked seed particles. Colloid Polym. Sci., 1991, 269(11), 1086-1089.
[http://dx.doi.org/10.1007/BF00654115]
[77]
Okubo, M.; Kondo, Y.; Takahashi, M. Production of submicron-size monodisperse polymer particles having aldehyde groups by seeded aldol condensation polymerization. Colloid Polym. Sci., 1993, 271(2), 109-113.
[http://dx.doi.org/10.1007/BF00651812]
[78]
Okubo, M.; Fujibayashi, T.; Yamada, M.; Minami, H. Micron-sized, monodisperse, snowman/confetti-shaped polymer particles by seeded dispersion polymerization. Colloid Polym. Sci., 2005, 283(9), 1041-1045.
[http://dx.doi.org/10.1007/s00396-004-1240-y]
[79]
Okubo, M.; Ahmad, H. Effect of shell thickness on the temperature-sensitive property of core‐shell composite polymer particles. J. Polym. Sci. A Polym. Chem., 1996, 34(15), 3147-3153.
[http://dx.doi.org/10.1002/(SICI)1099-0518(19961115)34:15<3147:AID-POLA6>3.0.CO;2-U]
[80]
Lee, C.F.; Lin, K.R.; Chiu, W.Y. Kinetics studies of two‐stage soapless emulsion polymerization of butyl acrylate and methyl methacrylate. J. Appl. Polym. Sci., 1994, 51(9), 1621-1628.
[http://dx.doi.org/10.1002/app.1994.070510912]
[81]
Pérez-Moral, N.; Mayes, A. Comparative study of imprinted polymer particles prepared by different polymerisation methods. Anal. Chim. Acta, 2004, 504(1), 15-21.
[http://dx.doi.org/10.1016/S0003-2670(03)00533-6]
[82]
Carter, S.R.; Rimmer, S. Molecular recognition of caffeine by shell molecular imprinted core–shell polymer particles in aqueous media. Adv. Mater., 2002, 14(9), 667-670.
[http://dx.doi.org/10.1002/1521-4095(20020503)14:9<667:AID-ADMA667>3.0.CO;2-3]
[83]
Sreenivasan, K. Surface imprinted polyurethane film as a chiral discriminator. Talanta, 2006, 68(3), 1037-1039.
[http://dx.doi.org/10.1016/j.talanta.2005.05.005] [PMID: 18970429]
[84]
Zhou, T.; Zhang, K.; Kamra, T.; Bülow, L.; Ye, L. Preparation of protein imprinted polymer beads by Pickering emulsion polymerization. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(7), 1254-1260.
[http://dx.doi.org/10.1039/C4TB01605J] [PMID: 32264476]
[85]
Huang, C.; Shen, X. Janus molecularly imprinted polymer particles. Chem. Commun. (Camb.), 2014, 50(20), 2646-2649.
[http://dx.doi.org/10.1039/C3CC49586H] [PMID: 24469062]
[86]
Araki, K.; Maruyama, T.; Kamiya, N.; Goto, M. Metal ion-selective membrane prepared by surface molecular imprinting. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 818(2), 141-145.
[http://dx.doi.org/10.1016/j.jchromb.2004.12.030] [PMID: 15734153]
[87]
Norrlöw, O.; Glad, M.; Mosbach, K. Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates. J. Chromatogr. A, 1984, 299, 29-41.
[http://dx.doi.org/10.1016/S0021-9673(01)97819-7]
[88]
Wulff, G.; Oberkobusch, D.; Minárik, M. Enzyme-analogue built polymers, 18 chiral cavities in polymer layers coated on wide-pore silica. React. Polym. Ion Exchang Sorb., 1985, 3(4), 261-275.
[http://dx.doi.org/10.1016/0167-6989(85)90017-0]
[89]
Glad, M.; Reinholdsson, P.; Mosbach, K. Molecularly imprinted composite polymers based on trimethylolpropane trimethacrylate (TRIM) particles for efficient enantiomeric separations. React. Polym., 1995, 25(1), 47-54.
[http://dx.doi.org/10.1016/0923-1137(95)00018-E]
[90]
Mayes, A.G.; Mosbach, K. Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal. Chem., 1996, 68(21), 3769-3774.
[http://dx.doi.org/10.1021/ac960363a] [PMID: 21619249]
[91]
Birlik, E.; Ersöz, A.; Denizli, A.; Say, R. Preconcentration of copper using double-imprinted polymer via solid phase extraction. Anal. Chim. Acta, 2006, 565(2), 145-151.
[http://dx.doi.org/10.1016/j.aca.2006.02.051] [PMID: 17723706]
[92]
Andaç, M.; Say, R.; Denizli, A. Molecular recognition based cadmium removal from human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 811(2), 119-126.
[http://dx.doi.org/10.1016/j.jchromb.2004.08.024] [PMID: 15522710]
[93]
Saatçılar, Ö.; Şatıroğlu, N.; Say, R.; Bektas, S.; Denizli, A. Binding behavior of Fe3+ ions on ion‐imprinted polymeric beads for analytical applications. J. Appl. Polym., 2006, 101(5), 3520-3528.
[http://dx.doi.org/10.1002/app.24591]
[94]
Svec, F.; Fréchet, J.M. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal. Chem., 1992, 64(7), 820-822.
[http://dx.doi.org/10.1021/ac00031a022]
[95]
Sherrington, D.C.; Hodge, P. Syntheses and separations using functional polymers, 1st ed; Wiley, 1988, pp. 1-454.
[96]
Khan, H.; Park, J.K. The preparation of D-phenylalanine imprinted microbeads by a novel method of modified suspension polymerization. Biotechnol. Bioprocess Eng.; BBE, 2006, 11(6), 503-509.
[http://dx.doi.org/10.1007/BF02932074]
[97]
Zhang, Y.; Liu, R.; Hu, Y.; Li, G. Microwave heating in preparation of magnetic molecularly imprinted polymer beads for trace triazines analysis in complicated samples. Anal. Chem., 2009, 81(3), 967-976.
[http://dx.doi.org/10.1021/ac8018262] [PMID: 19178336]
[98]
Park, J.K.; Khan, H.; Lee, J.W. Preparation of phenylalanine imprinted polymer by the sol–gel transition method. Enzyme Microb. Technol., 2004, 35(6-7), 688-693.
[http://dx.doi.org/10.1016/j.enzmictec.2004.08.023]
[99]
Khan, H.; Khan, T.; Park, J.K. Separation of phenylalanine racemates using d-phenylalanine imprinted microbeads as HPLC stationary phase. Separ. Purif. Tech., 2008, 62(2), 363-369.
[http://dx.doi.org/10.1016/j.seppur.2008.02.011]
[100]
Reinholdsson, P.; Hargitai, T.; Isaksson, R.; Törnell, B. Preparation and properties of porous particles from trimethylolpropane trimethacrylate. Die Angew. Makromol. Chem., 1991, 192(1), 113-132.
[http://dx.doi.org/10.1002/apmc.1991.051920110]
[101]
Nilsson, H.; Mosbach, R.; Mosbach, K. The use of bead polymerization of acrylic monomers for immobilization of enzymes. Biochim. Biophys. Acta, 1972, 268(1), 253-256.
[http://dx.doi.org/10.1016/0005-2744(72)90222-7] [PMID: 5018278]
[102]
Lenain, P.; Diana Di Mavungu, J.; Dubruel, P.; Robbens, J.; De Saeger, S. Development of suspension polymerized molecularly imprinted beads with metergoline as template and application in a solid-phase extraction procedure toward ergot alkaloids. Anal. Chem., 2012, 84(23), 10411-10418.
[http://dx.doi.org/10.1021/ac302671h] [PMID: 23130751]
[103]
Abou-Hany, R.A.; Urraca, J.L.; Descalzo, A.B.; Gómez-Arribas, L.N.; Moreno-Bondi, M.C.; Orellana, G. Tailoring molecularly imprinted polymer beads for alternariol recognition and analysis by a screening with mycotoxin surrogates. J. Chromatogr. A, 2015, 1425, 231-239.
[http://dx.doi.org/10.1016/j.chroma.2015.11.055] [PMID: 26632518]
[104]
Aghazadeh, M.; Karimzadeh, I. One-pot electro-synthesis and characterization of chitosan capped superparamagnetic Iron oxide nanoparticles (SPIONs) from ethanol media. Curr. Nanosci., 2018, 14(1), 42-49.
[105]
Poma, A.; Turner, A.P.; Piletsky, S.A. Advances in the manufacture of MIP nanoparticles. Trends Biotechnol., 2010, 28(12), 629-637.
[http://dx.doi.org/10.1016/j.tibtech.2010.08.006] [PMID: 20880600]
[106]
Hayat, T.; Khan, M.I.; Qayyum, S.; Alsaedi, A. Entropy generation in flow with silver and copper nanoparticles. Colloids Surf. A Physicochem. Eng. Asp., 2018, 539, 335-346.
[http://dx.doi.org/10.1016/j.colsurfa.2017.12.021]
[107]
Rashid, M.; Khan, M.I.; Hayat, T.; Khan, M.I.; Alsaedi, A. Entropy generation in flow of ferromagnetic liquid with nonlinear radiation and slip condition. J. Mol. Liq., 2019, 276, 441-452.
[http://dx.doi.org/10.1016/j.molliq.2018.11.148]
[108]
Bossi, A.; Piletsky, S.A.; Piletska, E.V.; Righetti, P.G.; Turner, A.P. Surface-grafted molecularly imprinted polymers for protein recognition. Anal. Chem., 2001, 73(21), 5281-5286.
[http://dx.doi.org/10.1021/ac0006526] [PMID: 11721930]
[109]
Mehdinia, A.; Baradaran Kayyal, T.; Jabbari, A.; Aziz-Zanjani, M.O.; Ziaei, E. Magnetic molecularly imprinted nanoparticles based on grafting polymerization for selective detection of 4-nitrophenol in aqueous samples. J. Chromatogr. A, 2013, 1283, 82-88.
[http://dx.doi.org/10.1016/j.chroma.2013.01.093] [PMID: 23465129]
[110]
Moczko, E.; Poma, A.; Guerreiro, A.; Perez de Vargas Sansalvador, I.; Caygill, S.; Canfarotta, F.; Whitcombe, M.J.; Piletsky, S. Surface-modified multifunctional MIP nanoparticles. Nanoscale, 2013, 5(9), 3733-3741.
[http://dx.doi.org/10.1039/c3nr00354j] [PMID: 23503559]
[111]
Selvolini, G.; Marrazza, G. MIP-based sensors: Promising new tools for cancer biomarker determination. Sensors (Basel), 2017, 17(4), 718-737.
[http://dx.doi.org/10.3390/s17040718] [PMID: 28353669]
[112]
Yola, M.L.; Gupta, V.K.; Eren, T.; Şen, A.E.; Atar, N. A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim. Acta, 2014, 120, 204-211.
[http://dx.doi.org/10.1016/j.electacta.2013.12.086]
[113]
Guo, L.; Ma, X.; Xie, X.; Huang, R.; Zhang, M.; Li, J.; Zeng, G.; Fan, Y. Preparation of dual-dummy-template molecularly imprinted polymers coated magnetic graphene oxide for separation and enrichment of phthalate esters in water. Chem. Eng. J., 2019, 361, 245-255.
[http://dx.doi.org/10.1016/j.cej.2018.12.076]
[114]
Piovesana, S.; Capriotti, A.L.; Cavaliere, C.; Sparnacci, K.; Gianotti, V.; Laus, M.; Antonioli, D.; Laganà, A. Magnetic molecularly imprinted multishell particles for zearalenone recognition. Polymer (Guildf.), 2020, 188, 122102-122111.
[http://dx.doi.org/10.1016/j.polymer.2019.122102]
[115]
Aghazadeh, M.; Karimzadeh, I.; Ganjali, M.R. Preparation and characterization of amine-and carboxylic acid-functionalized superparamagnetic Iron oxide nanoparticles through a one-step facile electrosynthesis method. Curr. Nanosci., 2019, 15(2), 169-177.
[http://dx.doi.org/10.2174/1573413714666180622150216]
[116]
Nabavi, S.A.; Vladisavljević, G.T.; Wicaksono, A.; Georgiadou, S.; Manović, V. Production of molecularly imprinted polymer particles with amide-decorated cavities for CO2 capture using membrane emulsification/suspension polymerisation. Colloids Surf. A Physicochem. Eng. Asp., 2017, 521, 231-238.
[http://dx.doi.org/10.1016/j.colsurfa.2016.05.033]
[117]
Dabrowski, M.; Cieplak, M.; Noworyta, K.; Heim, M.; Adamkiewicz, W.; Kuhn, A.; Sharma, P.S.; Kutner, W. Surface enhancement of a molecularly imprinted polymer film using sacrificial silica beads for increasing l-arabitol chemosensor sensitivity and detectability. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(31), 6292-6299.
[http://dx.doi.org/10.1039/C7TB01407D] [PMID: 32264445]
[118]
Turiel, E.; Díaz-Álvarez, M.; Martín-Esteban, A. Supported liquid membrane-protected molecularly imprinted beads for the solid phase micro-extraction of triazines from environmental waters. J. Chromatogr. A, 2016, 1432, 1-6.
[http://dx.doi.org/10.1016/j.chroma.2015.11.086] [PMID: 26777780]
[119]
Ayadi, H.; Mekhalif, T.; Salmi, Z.; Carbonnier, B.; Djazi, F.; Chehimi, M.M. Molecularly imprinted PVC beads for the recognition of proteins. J. Appl. Polym. Sci., 2016, 133(33), 43694.
[http://dx.doi.org/10.1002/app.43694]
[120]
Monier, M.; Abdel-Latif, D.A.; Youssef, I. Preparation of ruthenium (III) ion-imprinted beads based on 2-pyridylthiourea modified chitosan. J. Colloid Interface Sci., 2018, 513, 266-278.
[http://dx.doi.org/10.1016/j.jcis.2017.11.004] [PMID: 29153721]
[121]
Wagner, S.; Bell, J.; Biyikal, M.; Gawlitza, K.; Rurack, K. Integrating fluorescent molecularly imprinted polymer (MIP) sensor particles with a modular microfluidic platform for nanomolar small-molecule detection directly in aqueous samples. Biosens. Bioelectron., 2018, 99, 244-250.
[http://dx.doi.org/10.1016/j.bios.2017.07.053] [PMID: 28772227]
[122]
Tang, Y.; Liu, H.; Gao, J.; Liu, X.; Gao, X.; Lu, X.; Fang, G.; Wang, J.; Li, J. Upconversion particle@Fe3O4@molecularly imprinted polymer with controllable shell thickness as high-performance fluorescent probe for sensing quinolones. Talanta, 2018, 181, 95-103.
[http://dx.doi.org/10.1016/j.talanta.2018.01.006] [PMID: 29426547]
[123]
Yu, D.; Hu, X.; Wei, S.; Wang, Q.; He, C.; Liu, S. Dummy molecularly imprinted mesoporous silica prepared by hybrid imprinting method for solid-phase extraction of bisphenol A. J. Chromatogr. A, 2015, 1396, 17-24.
[http://dx.doi.org/10.1016/j.chroma.2015.04.006] [PMID: 25892637]
[124]
Williamson, B.; Lukas, R.; Winnik, M.; Croucher, M. The preparation of micron-size polymer particles in nonpolar media. J. Colloid Interface Sci., 1987, 119(2), 559-564.
[http://dx.doi.org/10.1016/0021-9797(87)90303-1]
[125]
Lu, S.; Cheng, G.; Pang, X. Preparation of molecularly imprinted Fe3O4/P (St‐DVB) composite beads with magnetic susceptibility and their characteristics of molecular recognition for amino acid. J. Appl. Polym. Sci., 2003, 89(14), 3790-3796.
[http://dx.doi.org/10.1002/app.12530]
[126]
Li, Y.; Yin, X-F.; Chen, F-R.; Yang, H-H.; Zhuang, Z-X.; Wang, X-R. Synthesis of magnetic molecularly imprinted polymer nanowires using a nanoporous alumina template. Macromolecules, 2006, 39(13), 4497-4499.
[http://dx.doi.org/10.1021/ma0526185]
[127]
Zhu, Q.; Tang, J.; Dai, J.; Gu, X.; Chen, S. Synthesis and characteristics of imprinted 17-β-estradiol microparticle and nanoparticle with TFMAA as functional monomer. J. Appl. Polym. Sci., 2007, 104(3), 1551-1558.
[http://dx.doi.org/10.1002/app.25564]
[128]
Dinc, M.; Esen, C.; Mizaikoff, B. Recent advances on core–shell magnetic molecularly imprinted polymers for biomacromolecules. Trends Analyt. Chem., 2019, 114, 202-217.
[http://dx.doi.org/10.1016/j.trac.2019.03.008]
[129]
Li, Q.; Shinde, S.; Grasso, G.; Caroli, A.; Abouhany, R.; Lanzillotta, M.; Pan, G.; Wan, W.; Rurack, K.; Sellergren, B. Selective detection of phospholipids using molecularly imprinted fluorescent sensory core-shell particles. Sci. Rep., 2020, 10(1), 9924.
[http://dx.doi.org/10.1038/s41598-020-66802-3] [PMID: 32555511]
[130]
Markowitz, M.A.; Kust, P.R.; Deng, G.; Schoen, P.E.; Dordick, J.S.; Clark, D.S.; Gaber, B.P. Catalytic silica particles via template-directed molecular imprinting. Langmuir, 2000, 16(4), 1759-1765.
[http://dx.doi.org/10.1021/la990809t]
[131]
Zhang, H. Molecularly imprinted nanoparticles for biomedical applications. Adv. Mater., 2020, 32(3), e1806328.
[http://dx.doi.org/10.1002/adma.201806328] [PMID: 31090976]
[132]
Gao, D.; Zhang, Z.; Wu, M.; Xie, C.; Guan, G.; Wang, D. A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles. J. Am. Chem. Soc., 2007, 129(25), 7859-7866.
[http://dx.doi.org/10.1021/ja070975k] [PMID: 17550249]
[133]
Xie, C.; Liu, B.; Wang, Z.; Gao, D.; Guan, G.; Zhang, Z. Molecular imprinting at walls of silica nanotubes for TNT recognition. Anal. Chem., 2008, 80(2), 437-443.
[http://dx.doi.org/10.1021/ac701767h] [PMID: 18088103]
[134]
Pham, V.H.; Lee, Y.H.; Lee, D.J.; Chung, J.S. Influence of emulsifiers on particle size and particle size distribution of PVC latex synthesized by miniemulsion polymerization. Korean J. Chem. Eng., 2009, 26(6), 1585-1590.
[http://dx.doi.org/10.1007/s11814-009-0278-4]
[135]
Yoshimatsu, K.; Reimhult, K.; Krozer, A.; Mosbach, K.; Sode, K.; Ye, L. Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: the control of particle size suitable for different analytical applications. Anal. Chim. Acta, 2007, 584(1), 112-121.
[http://dx.doi.org/10.1016/j.aca.2006.11.004] [PMID: 17386593]
[136]
Refaat, D.; Aggour, M.G.; Farghali, A.A.; Mahajan, R.; Wiklander, J.G.; Nicholls, I.A.; Piletsky, S.A. Strategies for molecular imprinting and the evolution of MIP nanoparticles as plastic antibodies-Synthesis and applications. Int. J. Mol. Sci., 2019, 20(24), 6304.
[http://dx.doi.org/10.3390/ijms20246304] [PMID: 31847152]
[137]
Hussain, M. Molecular imprinting’as multidisciplinary material science: today and tomorrow. Int. J. Adv. Mater. Res., 2015, 1(5), 132-154.
[138]
Tokonami, S.; Shiigi, H.; Nagaoka, T. Review: micro- and nanosized molecularly imprinted polymers for high-throughput analytical applications. Anal. Chim. Acta, 2009, 641(1-2), 7-13.
[http://dx.doi.org/10.1016/j.aca.2009.03.035] [PMID: 19393361]
[139]
Vaihinger, D.; Landfester, K.; Kräuter, I.; Brunner, H.; Tovar, G.E. Molecularly imprinted polymer nanospheres as synthetic affinity receptors obtained by miniemulsion polymerisation. Macromol. Chem. Phys., 2002, 203(13), 1965-1973.
[http://dx.doi.org/10.1002/1521-3935(200209)203:13<1965:AID-MACP1965>3.0.CO;2-C]
[140]
Zarejousheghani, M.; Lorenz, W.; Vanninen, P.; Alizadeh, T.; Cämmerer, M.; Borsdorf, H. Molecularly imprinted polymer materials as selective recognition sorbents for explosives: A Review. Polymers (Basel), 2019, 11(5), 888-905.
[http://dx.doi.org/10.3390/polym11050888] [PMID: 31096617]
[141]
Lu, C-H.; Zhou, W-H.; Han, B.; Yang, H-H.; Chen, X.; Wang, X-R. Surface-imprinted core-shell nanoparticles for sorbent assays. Anal. Chem., 2007, 79(14), 5457-5461.
[http://dx.doi.org/10.1021/ac070282m] [PMID: 17563116]
[142]
Yang, H-H.; Zhang, S-Q.; Tan, F.; Zhuang, Z-X.; Wang, X-R. Surface molecularly imprinted nanowires for biorecognition. J. Am. Chem. Soc., 2005, 127(5), 1378-1379.
[http://dx.doi.org/10.1021/ja0467622] [PMID: 15686362]