Bioadhesive Films as Drug Delivery Systems

Page: [2 - 15] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Bioadhesive films are considered a novel drug delivery system thatprovides improved therapy and better patient compliance than conventional dosage forms. The type and concentration of polymer or the blend of polymers used are important factors that can influence the properties of bioadhesive films, the product outcome and the performance. But the modification of available polymers to synthesize polymers with improved properties is the current area of research. Furthermore, addressing the challenges in formulating bioadhesive films for transdermal delivery of a variety of different classes of drug molecules is the frontier for future research. With the advancement of synthetic chemistry and the development of newer technology like 3D printing, more studies are being conducted on bioadhesive films that have opened up many opportunities in this field of research. This article reviews the current advancements in developing bio-adhesive films and provides basic principles that will be helpful to overcome the difficulties that are associated with the design of formulation.

Keywords: Bioadhesion, bioadhesive polymer, bioadhesive film, mucoadhesive film, 3D printing, transdermal patch, buccal film, hot-melt extrusion.

Graphical Abstract

[1]
Reddy, D.P.; Swarnalatha, D. Recent Advances in Novel Drug Delivery Systems. Int. J. Pharm. Tech. Res., 2010, 2(3), 2025-2027.
[2]
Perioli, L.; Ambrogi, V.; Angelici, F.; Ricci, M.; Giovagnoli, S.; Capuccella, M.; Rossi, C. Development of mucoadhesive patches for buccal administration of ibuprofen. J. Control. Release, 2004, 99(1), 73-82.
[http://dx.doi.org/10.1016/j.jconrel.2004.06.005] [PMID: 15342182]
[3]
Giovino, C.; Ayensu, I.; Tetteh, J.; Boateng, J.S. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules. Int. J. Pharm., 2012, 428(1-2), 143-151.
[http://dx.doi.org/10.1016/j.ijpharm.2012.02.035] [PMID: 22405987]
[4]
Meher, J.G.; Tarai, M.; Yadav, N.P.; Patnaik, A.; Mishra, P.; Yadav, K.S. Development and characterization of cellulose-polymethacrylate mucoadhesive film for buccal delivery of carvedilol. Carbohydr. Polym., 2013, 96(1), 172-180.
[http://dx.doi.org/10.1016/j.carbpol.2013.03.076] [PMID: 23688467]
[5]
Kianfar, F.; Ayensu, I.; Boateng, J.S. Development and physico-mechanical characterization of carrageenan and poloxamer-based lyophilized matrix as a potential buccal drug delivery system. Drug Dev. Ind. Pharm., 2014, 40(3), 361-369.
[http://dx.doi.org/10.3109/03639045.2012.762655] [PMID: 23600651]
[6]
Flávia, C.C.; Raul, C.E.; Maria, P.D.G. Mucoadhesive drug delivery system. Braz. J. Pharm. Sci., 2010, 46(1), 1-17.
[http://dx.doi.org/10.1590/S1984-82502010000100002]
[7]
Ahuja, A.; Khar, R.K.; Ali, J. Mucoadhesive drug delivery systems. Drug Dev. Ind. Pharm., 1997, 23(5), 489-515.
[http://dx.doi.org/10.3109/03639049709148498]
[8]
Patel, V.F.; Liu, F.; Brown, M.B. Advances in oral transmucosal drug delivery. J. Control. Release, 2011, 153(2), 106-116.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.027] [PMID: 21300115]
[9]
Deepak, S.; Kaur, D.; Verma, S.; Singh, D.; Singh, M.; Singh, G.; Garg, R. Fast dissolving oral films technology: a recent trend for an innovative oral drug delivery system. Int. J. Drug Deliv., 2015, 7, 60-75.
[10]
Barbu, E.; Verestiuc, L.; Nevell, T.G.; Tsibouklis, J. Polymeric materials for ophthalmic drug delivery: trends and perspectives. J. Mater. Chem., 2006, 16(34), 3439-3443.
[http://dx.doi.org/10.1039/b605640g]
[11]
Achouri, D.; Alhanout, K.; Piccerelle, P.; Andrieu, V. Recent advances in ocular drug delivery. Drug Dev. Ind. Pharm., 2013, 39(11), 1599-1617.
[http://dx.doi.org/10.3109/03639045.2012.736515] [PMID: 23153114]
[12]
Karki, S.; Kim, H.; Na, S-J.; Shin, D.; Jo, K.; Lee, J. Thin films as an emerging platform for drug delivery. Asian J. Pharm. Sci., 2016, 11(5), 559-574.
[http://dx.doi.org/10.1016/j.ajps.2016.05.004]
[13]
Morales, J.O.; McConville, J.T. Manufacture and characterization of mucoadhesive buccal films. Eur. J. Pharm. Biopharm., 2011, 77(2), 187-199.
[http://dx.doi.org/10.1016/j.ejpb.2010.11.023] [PMID: 21130875]
[14]
Singh, I.; Rana, V. Techniques for the Assessment of Mucoadhesion in Drug Delivery Systems: An Overview. J. Adhes. Sci. Technol., 2012, 26(18-19), 2251-2267.
[http://dx.doi.org/10.1163/156856111X610171]
[15]
Alam, M.T.; Parvez, N.; Sharma, P.K. FDA-approved natural polymers for fast Dissolving tablets. J. Pharm. (Cairo), 2014, 2014952970
[http://dx.doi.org/10.1155/2014/952970] [PMID: 26556207]
[16]
Wening, K.; Breitkreutz, J. Oral drug delivery in personalized medicine: unmet needs and novel approaches. Int. J. Pharm., 2011, 404(1-2), 1-9.
[http://dx.doi.org/10.1016/j.ijpharm.2010.11.001] [PMID: 21070842]
[17]
Singh, I.P.P.; Sanusi, E.A.; Odeku, O.A. Mucoadhesive polymers for drug delivery systems. Adhesion Pharm. Biomed. Dental Fields, (Eds.) KLMaFME; Scrivener Publishing LLC,, 2017, pp. 89-113.
[http://dx.doi.org/10.1002/9781119323716.ch5]
[18]
Sultana, Y.; Jain, R.; Aqil, M.; Ali, A. Review of ocular drug delivery. Curr. Drug Deliv., 2006, 3(2), 207-217.
[http://dx.doi.org/10.2174/156720106776359186] [PMID: 16611007]
[19]
Zhang, J.; Niu, S.; Ebert, C.; Stanley, T.H. An in vivo dog model for studying recovery kinetics of the buccal mucosa permeation barrier after exposure to permeation enhancers: apparent evidence of effective enhancement without tissue damage. Int. J. Pharm., 1994, 101(1), 15-22.
[http://dx.doi.org/10.1016/0378-5173(94)90071-X]
[20]
Janssen, E.M.; Schliephacke, R.; Breitenbach, A.; Breitkreutz, J. Drug-printing by flexographic printing technology--a new manufacturing process for orodispersible films. Int. J. Pharm., 2013, 441(1-2), 818-825.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.023] [PMID: 23266759]
[21]
Chaturvedi, A.; Srivastava, P.; Yadav, S.; Bansal, M.; Garg, G.; Sharma, P.K. Fast dissolving films: a review. Curr. Drug Deliv., 2011, 8(4), 373-380.
[http://dx.doi.org/10.2174/156720111795768022] [PMID: 21453260]
[22]
Galgatte, U. Challenges in formulation development of fast dissolving oral film. Indo Am. J. Pharm. Res., 2013, 03, 6391-6407.
[23]
Amin, P.M.; Gangurde, A.B.; Alai, P.V. Oral film technology: challenges and future Scope for pharmaceutical industry. Int. J. Pharmacy Pharm. Res., 2015.
[24]
Haríharan, M.; Bogue, A. Orally dissolving film strips (ODFS): the final evolution of orally dissolving dosage forms. Drug Deliv. Technol., 2009, 9, 24-29.
[25]
Lee, Y.; Chien, Y.W. Oral mucosa controlled delivery of LHRH by bilayer mucoadhesive polymer systems. J. Control. Release, 1995, 37(3), 251-261.
[http://dx.doi.org/10.1016/0168-3659(95)00082-8]
[26]
Bassi, P.; Kaur, G. Polymeric films as a promising carrier for bioadhesive drug delivery: Development, characterization and optimization. Saudi Pharm. J., 2017, 25(1), 32-43.
[http://dx.doi.org/10.1016/j.jsps.2015.06.003] [PMID: 28223860]
[27]
Ajala, T.O.; Olaiya, H.I.; Odeku, O.A. Film forming properties of cissus pulpunea (Guill and Perr) and irvingia gabonensis (O’Rorke) gums. Polim. Med., 2017, 47(1), 25-33.
[http://dx.doi.org/10.17219/pim/76059] [PMID: 29160626]
[28]
Castán, H.; Ruiz, M.A.; Clares, B.; Morales, M.E. Design, development and characterization of buccal bioadhesive films of Doxepin for treatment of odontalgia. Drug Deliv., 2015, 22(6), 869-876.
[http://dx.doi.org/10.3109/10717544.2014.896958] [PMID: 24670096]
[29]
McBain, J.W.; Hopkins, D.G. On adhesives and adhesive action. J. Phys. Chem., 1925, 29(2), 188-204.
[http://dx.doi.org/10.1021/j150248a008]
[30]
Shaikh, R.; Raj Singh, T.R.; Garland, M.J.; Woolfson, A.D.; Donnelly, R.F. Mucoadhesive drug delivery systems. J. Pharm. Bioallied Sci., 2011, 3(1), 89-100.
[http://dx.doi.org/10.4103/0975-7406.76478] [PMID: 21430958]
[31]
Skeist, I. Adhesion and the formulation of adhesives. J. Polymer Sci.: Polymer Lett., Edition; 2nd Ed.William Wake, Applied Science Publishers, London, , 1982, 21, pp. (4)301-302.
[32]
Murata, Y.; Isobe, T.; Kofuji, K.; Nishida, N.; Kamaguchi, R. Preparation of fast dissolving films for oral dosage from natural polysaccharides. Materials (Basel), 2010, 3(8), 4291-4299.
[http://dx.doi.org/10.3390/ma3084291] [PMID: 28883330]
[33]
Kinloch, A. The science of adhesion. J. Mater. Sci., 1980, 15, 2141-2166.
[http://dx.doi.org/10.1007/BF00552302]
[34]
Gu, J.M.; Robinson, J.R.; Leung, S.H. Binding of acrylic polymers to mucin/epithelial surfaces: structure-property relationships. Crit. Rev. Ther. Drug Carrier Syst., 1988, 5(1), 21-67.
[PMID: 3293807]
[35]
Sudhakar, Y.; Kuotsu, K.; Bandyopadhyay, A.K. Buccal bioadhesive drug delivery--a promising option for orally less efficient drugs. J. Control. Release, 2006, 114(1), 15-40.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.012] [PMID: 16828915]
[36]
Andrews, G.P.; Laverty, T.P.; Jones, D.S. Mucoadhesive polymeric platforms for controlled drug delivery. Eur. J. Pharm. Biopharm., 2009, 71(3), 505-518.
[http://dx.doi.org/10.1016/j.ejpb.2008.09.028] [PMID: 18984051]
[37]
Park, H.; Robinson, J.R. Mechanisms of mucoadhesion of poly(acrylic acid) hydrogels. Pharm. Res., 1987, 4(6), 457-464.
[http://dx.doi.org/10.1023/A:1016467219657] [PMID: 3508557]
[38]
Sau-Hung Spence, L.; Robinson, J.R. The contribution of anionic polymer structural features to mucoadhesion. J. Control. Release, 1987, 5(3), 223-231.
[http://dx.doi.org/10.1016/0168-3659(88)90021-1]
[39]
Lopez, C.G.; Rogers, S.E.; Colby, R.H.; Graham, P.; Cabral, J.T. structure of sodium carboxymethyl cellulose aqueous solutions: a SANS and rheology study. J. Polym. Sci., B, Polym. Phys., 2015, 53(7), 492-501.
[http://dx.doi.org/10.1002/polb.23657] [PMID: 26709336]
[40]
Sanford, B.A.; Thomas, V.L.; Ramsay, M.A. Binding of staphylococci to mucus in vivo and in vitro. Infect. Immun., 1989, 57(12), 3735-3742.
[http://dx.doi.org/10.1128/IAI.57.12.3735-3742.1989] [PMID: 2807545]
[41]
Agarwal, S.; Murthy, R.S.R. Effect of different polymer concentration on drug release rate and physicochemical properties of mucoadhesive gastroretentive tablets. Indian J. Pharm. Sci., 2015, 77(6), 705-714.
[http://dx.doi.org/10.4103/0250-474X.174993] [PMID: 26997698]
[42]
Patil, R.T.; Speaker, T.J. Carrageenan as an anionic polymer for aqueous microencapsulation. Drug Deliv., 1998, 5(3), 179-182.
[http://dx.doi.org/10.3109/10717549809052033] [PMID: 19569983]
[43]
Brahmbhatt, D. Bioadhesive drug delivery systems: Overview and recent advances. Int. J. Chem. Life Sci., 2017, 6, 2016.
[http://dx.doi.org/10.21746/ijcls.2017.3.1]
[44]
Černochová, P.; Blahová, L.; Medalová, J.; Nečas, D.; Michlíček, M.; Kaushik, P.; Přibyl, J.; Bartošíková, J.; Manakhov, A.; Bačáková, L.; Zajíčková, L. Cell type specific adhesion to surfaces functionalised by amine plasma polymers. Sci. Rep., 2020, 10(1), 9357.
[http://dx.doi.org/10.1038/s41598-020-65889-y] [PMID: 32518261]
[45]
Maji, S.; Jerca, V.V.; Jerca, F.A.; Hoogenboom, R. 7 - Smart polymeric gels. Polymeric Gels; Pal K, Banerjee I. Eds. Wood head Publishing 2018, 179-230.
[46]
Nakano, T.; Betti, M.; Pietrasik, Z. Extraction, isolation and analysis of chondroitin sulfate glycosaminoglycans. Recent Pat. Food Nutr. Agric., 2010, 2(1), 61-74.
[http://dx.doi.org/10.2174/1876142911002010061] [PMID: 20653551]
[47]
Lacroix, M.; LeTien, C. 20 - Edible films and coatings from nonstarch polysaccharides. Innovations in Food Packaging; Han, J.H., Ed.; Eds. Academic Press London, 2005, pp. 338-361.
[48]
Lee, K.Y.; Mooney, D.J. Alginate: properties and biomedical applications. Prog. Polym. Sci., 2012, 37(1), 106-126.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003] [PMID: 22125349]
[49]
Cheung, R.C.F.; Ng, T.B.; Wong, J.H.; Chan, W.Y. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar. Drugs, 2015, 13(8), 5156-5186.
[http://dx.doi.org/10.3390/md13085156] [PMID: 26287217]
[50]
Hajifathaliha, F.; Mahboubi, A.; Nematollahi, L.; Mohit, E.; Bolourchian, N. Comparison of different cationic polymers efficacy in fabrication of alginate multilayer microcapsules. Asian J. Pharm. Sci, 2018.
[51]
Besschetnova, T.Y.; Roy, B.; Shah, J.V. Chapter 16 Imaging Intraflagellar Transport in Mammalian Primary Cilia. Methods Cell Biol., King, S.M.; Pazour, G.J. Academic Press; , 2009, pp. 331-346.
[52]
Kunte, S.; Tandale, P. Fast dissolving strips: A novel approach for the delivery of verapamil. J. Pharm. Bioallied Sci., 2010, 2(4), 325-328.
[http://dx.doi.org/10.4103/0975-7406.72133] [PMID: 21180465]
[53]
El-Setouhy, D.A.; Abd El-Malak, N.S. Formulation of a novel tianeptine sodium orodispersible film. AAPS PharmSciTech, 2010, 11(3), 1018-1025.
[http://dx.doi.org/10.1208/s12249-010-9464-2] [PMID: 20532710]
[54]
Cilurzo, F.; Cupone, I.E.; Minghetti, P.; Selmin, F.; Montanari, L. Fast dissolving films made of maltodextrins. Eur. J. Pharm. Biopharm., 2008, 70(3), 895-900.
[http://dx.doi.org/10.1016/j.ejpb.2008.06.032] [PMID: 18667164]
[55]
Low, A.Q.; Parmentier, J.; Khong, Y.M.; Chai, C.C.; Tun, T.Y.; Berania, J.E.; Liu, X.; Gokhale, R.; Chan, S.Y. Effect of type and ratio of solubilising polymer on characteristics of hot-melt extruded orodispersible films. Int. J. Pharm., 2013, 455(1-2), 138-147.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.046] [PMID: 23916824]
[56]
Preis, M.; Woertz, C.; Kleinebudde, P.; Breitkreutz, J. Oromucosal film preparations: classification and characterization methods. Expert Opin. Drug Deliv., 2013, 10(9), 1303-1317.
[http://dx.doi.org/10.1517/17425247.2013.804058] [PMID: 23768198]
[57]
Manyikana, M.; Choonara, Y.E.; Tomar, L.K.; Tyagi, C.; Kumar, P.; du Toit, L.C.; Pillay, V. A review of formulation techniques that impact the disintegration and mechanical properties of oradispersible drug delivery technologies. Pharm. Dev. Technol., 2016, 21(3), 354-366.
[http://dx.doi.org/10.3109/10837450.2014.996897] [PMID: 25560782]
[58]
Palem, C.R.; Kumar Battu, S.; Maddineni, S.; Gannu, R.; Repka, M.A.; Yamsani, M.R. Oral transmucosal delivery of domperidone from immediate release films produced via hot-melt extrusion technology. Pharm. Dev. Technol., 2013, 18(1), 186-195.
[http://dx.doi.org/10.3109/10837450.2012.693505] [PMID: 22881235]
[59]
Repka, M.A.; Prodduturi, S.; Stodghill, S.P. Production and characterization of hot-melt extruded films containing clotrimazole. Drug Dev. Ind. Pharm., 2003, 29(7), 757-765.
[http://dx.doi.org/10.1081/DDC-120021775] [PMID: 12906333]
[60]
Castro, P.M.; Fonte, P.; Sousa, F.; Madureira, A.R.; Sarmento, B.; Pintado, M.E. Oral films as breakthrough tools for oral delivery of proteins/peptides. J. Control. Release, 2015, 211, 63-73.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.258] [PMID: 25979328]
[61]
Chokshi, R.; Hossein, Z. Hot-Melt extrusion Technique: a review. Iran. J. Pharm. Res., 2004, 3, 3-16.
[62]
Jani, R.H.; Patel, D.M. Hot melt extrusion: An industrially feasible approach for casting orodispersible film. Asian J. Pharm. Sci., 2015, 10, 292-305.
[http://dx.doi.org/10.1016/j.ajps.2015.03.002]
[63]
Genina, N.; Fors, D.; Vakili, H.; Ihalainen, P.; Pohjala, L.; Ehlers, H.; Kassamakov, I.; Haeggström, E.; Vuorela, P.; Peltonen, J.; Sandler, N. Tailoring controlled-release oral dosage forms by combining inkjet and flexographic printing techniques. Eur. J. Pharm. Sci., 2012, 47(3), 615-623.
[http://dx.doi.org/10.1016/j.ejps.2012.07.020] [PMID: 22902482]
[64]
Maniruzzaman, M.; Boateng, J.S.; Snowden, M.J.; Douroumis, D. A review of hot-melt extrusion: process technology to pharmaceutical products. ISRN Pharm., 2012, 2012436763
[http://dx.doi.org/10.5402/2012/436763] [PMID: 23326686]
[65]
Alamán, J.; Alicante, R.; Peña, J.I.; Sánchez-Somolinos, C. Inkjet Printing of Functional Materials for Optical and Photonic Applications. Materials (Basel), 2016, 9(11), 910.
[http://dx.doi.org/10.3390/ma9110910] [PMID: 28774032]
[66]
Cuddihy, G.; Wasan, E.K.; Di, Y.; Wasan, K.M. The Development of oral amphotericin B to treat systemic fungal and parasitic infections: has the myth been finally realized? Pharmaceutics, 2019, 11(3), 99.
[http://dx.doi.org/10.3390/pharmaceutics11030099 ] [PMID: 30813569]
[67]
Panasci, L.; Paiement, J.; Christodoulopoulos, G.; Belenkov, A.; Malapetsa, A.; Aloyz, R. Chlorambucil drug resistance in chronic lymphocytic leukemia the emerging role of dna repair. Clin. Cancer Res., 2001, 7, 454-461.
[68]
Kolter, K. Hot Melt Extrusion with BASF Pharma Polymer, 2012.
[69]
Kulkarni, C.S. Novel formulations of a poorly soluble drug using the extrusion process; Life Sci. Doctor Philosophy, 2013, p. 224.
[70]
Maniruzzaman, M.; Rana, M.M.; Boateng, J.S.; Mitchell, J.C.; Douroumis, D. Dissolution enhancement of poorly water-soluble APIs processed by hot-melt extrusion using hydrophilic polymers. Drug Dev. Ind. Pharm., 2013, 39(2), 218-227.
[http://dx.doi.org/10.3109/03639045.2012.670642] [PMID: 22452601]
[71]
Zheng, X.; Yang, R.; Tang, X.; Zheng, L.; Part, I. Part I: characterization of solid dispersions of nimodipine prepared by hot-melt extrusion. Drug Dev. Ind. Pharm., 2007, 33(7), 791-802.
[http://dx.doi.org/10.1080/03639040601050213] [PMID: 17654028]
[72]
Wurster, D.E.; Bhattacharjya, S.; Flanagan, D.R. Effect of curing on water diffusivities in acrylate free films as measured via a sorption technique. AAPS PharmSciTech, 2007, 8(3)E71
[http://dx.doi.org/10.1208/pt0803071] [PMID: 17915821]
[73]
Repka, M.; McGinity, J. Bioadhesive properties of hydroxypropylcellulose topical films produced by hot-melt extrusion. J. Control. Release, 2001, 70, 341-351.
[74]
Repka, M.A.; Gutta, K.; Prodduturi, S.; Munjal, M.; Stodghill, S.P. Characterization of cellulosic hot-melt extruded films containing lidocaine. Eur. J. Pharm. Biopharm., 2005, 59(1), 189-196.
[http://dx.doi.org/10.1016/j.ejpb.2004.06.008] [PMID: 15567317]
[75]
Prodduturi, S.; Manek, R.V.; Kolling, W.M.; Stodghill, S.P.; Repka, M.A. Solid-state stability and characterization of hot-melt extruded poly(ethylene oxide) films. J. Pharm. Sci., 2005, 94(10), 2232-2245.
[http://dx.doi.org/10.1002/jps.20437] [PMID: 16136579]
[76]
Repka, M.A. Encyclopaedia of Pharmaceutical Technology. 2nd edition; Edited by J. Swarbrick and J. C. Boylan Marcel Dekker: New York 2002;
[77]
Mididoddi, P.K.; Repka, M.A. Characterization of hot-melt extruded drug delivery systems for onychomycosis. Eur. J. Pharm. Biopharm., 2007, 66(1), 95-105.
[http://dx.doi.org/10.1016/j.ejpb.2006.08.013] [PMID: 17045468]
[78]
Prodduturi, S.; Manek, R.V.; Kolling, W.M.; Stodghill, S.P.; Repka, M.A. Water vapor sorption of hot-melt extruded hydroxypropyl cellulose films: effect on physico-mechanical properties, release characteristics, and stability. J. Pharm. Sci., 2004, 93(12), 3047-3056.
[http://dx.doi.org/10.1002/jps.20222] [PMID: 15515008]
[79]
Ehtezazi, T.; Algellay, M.; Islam, Y.; Roberts, M.; Dempster, N.; Sarker, S. The application of 3d printing in the formulation of multilayered fast dissolving oral films. J. Pharm. Sci., 2017, 107(4), 1076-1085.
[PMID: 29208374]
[80]
Tian, Y.; Orlu, M.; Woerdenbag, H.J.; Scarpa, M.; Kiefer, O.; Kottke, D.; Sjöholm, E.; Öblom, H.; Sandler, N.; Hinrichs, W.L.J.; Frijlink, H.W.; Breitkreutz, J.; Visser, J.C. Oromucosal films: from patient centricity to production by printing techniques. Expert Opin. Drug Deliv., 2019, 16(9), 981-993.
[http://dx.doi.org/10.1080/17425247.2019.1652595] [PMID: 31382842]
[81]
Costa, I. S.; Abranches, R.P.; Garcia, M.T.; Pierre, M.B. Chitosan-based mucoadhesive films containing 5-aminolevulinic acid for buccal cancer’s treatment. J. Photochem. Photobiol. B, 2014, 140, 266-275.
[http://dx.doi.org/10.1016/j.jphotobiol.2014.08.005] [PMID: 25190225]
[82]
Varan, C.; Wickström, H.; Sandler, N.; Aktaş, Y.; Bilensoy, E. Inkjet printing of antiviral PCL nanoparticles and anticancer cyclodextrin inclusion complexes on bioadhesive film for cervical administration. Int. J. Pharm., 2017, 531(2), 701-713.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.036] [PMID: 28432016]
[83]
Jorge Alamán, R.A. Jose Ignacio Peña, Carlos Sánchez-Somolinos. Inkjet printing of functional materials for optical and photonic applications. Materials (Basel), 2016, 9(910), 1-47.
[84]
Buanz, A.B.; Saunders, M.H.; Basit, A.W.; Gaisford, S. Preparation of personalized-dose salbutamol sulphate oral films with thermal ink-jet printing. Pharm. Res., 2011, 28(10), 2386-2392.
[http://dx.doi.org/10.1007/s11095-011-0450-5] [PMID: 21544688]
[85]
Garsuch, V.; Breitkreutz, J. Comparative investigations on different polymers for the preparation of fast-dissolving oral films. J. Pharm. Pharmacol., 2010, 62(4), 539-545.
[http://dx.doi.org/10.1211/jpp.62.04.0018] [PMID: 20604845]
[86]
Meléndez, P.A.; Kane, K.M.; Ashvar, C.S.; Albrecht, M.; Smith, P.A. Thermal inkjet application in the preparation of oral dosage forms: dispensing of prednisolone solutions and polymorphic characterization by solid-state spectroscopic techniques. J. Pharm. Sci., 2008, 97(7), 2619-2636.
[http://dx.doi.org/10.1002/jps.21189] [PMID: 17876767]
[87]
Buanz, A.B.M.; Belaunde, C.C.; Soutari, N.; Tuleu, C.; Gul, M.O.; Gaisford, S. Ink-jet printing versus solvent casting to prepare oral films: Effect on mechanical properties and physical stability. Int. J. Pharm., 2015, 494(2), 611-618.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.032] [PMID: 25526674]
[88]
Bala, R.; Khanna, S.; Pawar, P.K. Formulation and optimization of fast dissolving intraoral drug delivery system for clobazam using response surface methodology. J. Adv. Pharm. Technol. Res., 2013, 4(3), 151-159.
[http://dx.doi.org/10.4103/2231-4040.116785] [PMID: 24083203]
[89]
de Oliveira Fulgêncio, G.; Viana, F.A.; Silva, R.O.; Lobato, F.C.; Ribeiro, R.R.; Fanca, J.R.; Byrro, R.M.; Faraco, A.A.; da Silva Cunha-Júnior, A. Mucoadhesive chitosan films as a potential ocular delivery system for ofloxacin: preliminary in vitro studies. Vet. Ophthalmol., 2014, 17(2), 150-155.
[http://dx.doi.org/10.1111/vop.12140] [PMID: 24428388]
[90]
Prabhushankar, G. L.; Gopalkrishna, B.; Manjunatha, K. M.; Girisha, C.H. Formulation and evaluation of levofloxacin dental films for periodontitis., 2010, 2, 162-168.
[91]
Perumal, V.A.; Lutchman, D.; Mackraj, I.; Govender, T. Formulation of monolayered films with drug and polymers of opposing solubilities. Int. J. Pharm., 2008, 358(1-2), 184-191.
[http://dx.doi.org/10.1016/j.ijpharm.2008.03.005] [PMID: 18430529]
[92]
Alibolandi, M.; Sadeghi, F.; Sazmand, S.H.; Shahrokhi, S.M.; Seifi, M.; Hadizadeh, F. Synthesis and self-assembly of biodegradable polyethylene glycol-poly (lactic acid) diblock copolymers as polymersomes for preparation of sustained release system of doxorubicin. Int. J. Pharm. Investig., 2015, 5(3), 134-141.
[http://dx.doi.org/10.4103/2230-973X.160846] [PMID: 26258054]
[93]
Tofighia, P.; Soltani, S.; Montazam, S.H.; Montazam, S.A.; Jelvehgari, M. Formulation of tolmetin ocuserts as carriers for ocular drug delivery system. Iran. J. Pharm. Res., 2017, 16(2), 432-441.
[PMID: 28979298]
[94]
Bala, R.; Sharma, S. Formulation optimization and evaluation of fast dissolving film of aprepitant by using design of experiment. Bull. Fac. Pharm. Cairo Univ., 2018, 56(2), 159-168.
[http://dx.doi.org/10.1016/j.bfopcu.2018.04.002]
[95]
Chinna Reddy, P.; Chaitanya, K.S.C.; Madhusudan Rao, Y. A review on bioadhesive buccal drug delivery systems: current status of formulation and evaluation methods. Daru, 2011, 19(6), 385-403.
[PMID: 23008684]
[96]
Hao, J.; Heng, P.W. Buccal delivery systems. Drug Dev. Ind. Pharm., 2003, 29(8), 821-832.
[http://dx.doi.org/10.1081/DDC-120024178] [PMID: 14570303]
[97]
Panomsuk, S.P.; Hatanaka, T.; Aiba, T.; Katayama, K.; Koizumi, T. A study of the hydrophilic cellulose matrix: effect of drugs on swelling properties. Chem. Pharm. Bull. (Tokyo), 1996, 44(5), 1039-1042.
[http://dx.doi.org/10.1248/cpb.44.1039]
[98]
McCulley, J.P.; Shine, W.E. The lipid layer: the outer surface of the ocular surface tear film. Biosci. Rep., 2001, 21(4), 407-418.
[http://dx.doi.org/10.1023/A:1017987608937] [PMID: 11900319]
[99]
Shahwal, V. Design and characterization of sustained release levofloxacin ocular inserts. Int. J. Biol. Adv. Res., 2012, 2(12), 453-466.
[http://dx.doi.org/10.7439/ijbar.v2i12.209]
[100]
Obiedallah, M.M.; Abdel-Mageed, A.M.; Elfaham, T.H. Ocular administration of acetazolamide microsponges in situ gel formulations. Saudi Pharm. J., 2018, 26(7), 909-920.
[101]
Rathore, K.; Nema, R.K.; Sisodia, S. Preparation and characterization of timolol maleate ocular films. Int. J. Pharm. Tech. Res., 2010, 2, 1995-2000.
[102]
Nesseem, D.I.; Eid, S.F.; El-Houseny, S.S. Development of novel transdermal self-adhesive films for tenoxicam, an anti-inflammatory drug. Life Sci., 2011, 89(13-14), 430-438.
[http://dx.doi.org/10.1016/j.lfs.2011.06.026] [PMID: 21777594]
[103]
Aktar, B.; Erdal, M.; Sagirli, O.; Güngör, S.; Ozsoy, Y. Optimization of biopolymer based transdermal films of metoclopramide as an alternative delivery approach. Polymers (Basel), 2014, 63390, 1350-1365.
[http://dx.doi.org/10.3390/polym6051350]
[104]
Ammar, H.O.; Ghorab, M.; Mahmoud, A.A.; Makram, T.S.; Ghoneim, A.M. Rapid pain relief using transdermal film forming polymeric solution of ketorolac. Pharm. Dev. Technol., 2013, 18(5), 1005-1016.
[http://dx.doi.org/10.3109/10837450.2011.627867] [PMID: 22191998]
[105]
Tanner, T.; Marks, R. Delivering drugs by the transdermal route: review and comment. Skin Res. Technol., 2008, 14(3), 249-260.
[http://dx.doi.org/10.1111/j.1600-0846.2008.00316.x] [PMID: 19159369]
[106]
van Smeden, J.; Janssens, M.; Gooris, G.S.; Bouwstra, J.A. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim. Biophys. Acta, 2014, 1841(3), 295-313.
[http://dx.doi.org/10.1016/j.bbalip.2013.11.006] [PMID: 24252189]
[107]
Peniche, C.; Argüelles-Monal, W.; Peniche, H.; Acosta, N. Chitosan: An Attractive Biocompatible Polymer for Microencapsulation. Macromol. Biosci., 2003, 3(10), 511-520.
[http://dx.doi.org/10.1002/mabi.200300019]
[108]
Sezer, A.D.; Hatipoğlu, F.; Cevher, E.; Oğurtan, Z.; Baş, A.L.; Akbuğa, J. Chitosan film containing fucoidan as a wound dressing for dermal burn healing: preparation and in vitro/in vivo evaluation. AAPS PharmSciTech, 2007, 8(2), 39.
[http://dx.doi.org/10.1208/pt0802039] [PMID: 17622117]
[109]
García, M.C.; Aldana, A.A.; Tártara, L.I.; Alovero, F.; Strumia, M.C.; Manzo, R.H.; Martinelli, M.; Jimenez-Kairuz, A.F. Bioadhesive and biocompatible films as wound dressing materials based on a novel dendronized chitosan loaded with ciprofloxacin. Carbohydr. Polym., 2017, 175, 75-86.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.053] [PMID: 28917926]
[110]
Ghosh, D.; Dastidar, D.G.; Banerjee, D.; Chatterjee, S. pH-Triggered in-situ release of silver nanoparticle in hydrogel for topical applications. Biomed. Phys. Eng. Express, 2019, 5(6)065009
[http://dx.doi.org/10.1088/2057-1976/ab4382]
[111]
Thomas, V.; Yallapu, M.M.; Sreedhar, B.; Bajpai, S.K. Fabrication, characterization of chitosan/nanosilver film and its potential antibacterial application. J. Biomater. Sci. Polym. Ed., 2009, 20(14), 2129-2144.
[http://dx.doi.org/10.1163/156856209X410102] [PMID: 19874682]
[112]
Nair, A.B.; Kumria, R.; Harsha, S.; Attimarad, M.; Al-Dhubiab, B.E.; Alhaider, I.A. In vitro techniques to evaluate buccal films. J. Control. Release, 2013, 166(1), 10-21.
[http://dx.doi.org/10.1016/j.jconrel.2012.11.019] [PMID: 23219961]
[113]
Ali, J.; Arora, S.; Ahuja, A.; Babbar, A.K.; Sharma, R.K.; Khar, R.K. Formulation and development of floating capsules of celecoxib: in vitro and in vivo evaluation. AAPS PharmSciTech, 2007, 8(4)E119
[http://dx.doi.org/10.1208/pt0804119] [PMID: 18181540]
[114]
Preis, M.; Pein, M.; Breitkreutz, J. Development of a taste-masked orodispersible film containing dimenhydrinate. Pharmaceutics, 2012, 4(4), 551-562.
[http://dx.doi.org/10.3390/pharmaceutics4040551] [PMID: 24300370]
[115]
Dong, Z.; Wang, Q.; Du, Y. Alginate/gelatin blend films and their properties for drug controlled release. J. Membr. Sci., 2006, 280, 37-44.
[http://dx.doi.org/10.1016/j.memsci.2006.01.002]
[116]
Heng, P.W.; Chan, L.W.; Ong, K.T. Influence of storage conditions and type of plasticizers on ethylcellulose and acrylate films formed from aqueous dispersions. J. Pharm. Pharm. Sci., 2003, 6(3), 334-344.
[PMID: 14738714]
[117]
Prabhakar, B.; Roy, S. Bioadhesive Polymeric Platforms for Transmucosal Drug Delivery Systems – a Review. Trop. J. Pharm. Res., 2010, 9(1), 91-104.
[118]
Aburahma, M.H.; Mahmoud, A.A. Biodegradable ocular inserts for sustained delivery of brimonidine tartarate: preparation and in vitro/in vivo evaluation. AAPS PharmSciTech, 2011, 12(4), 1335-1347.
[http://dx.doi.org/10.1208/s12249-011-9701-3] [PMID: 21979886]
[119]
Hoffmann, E.M.; Breitenbach, A.; Breitkreutz, J. Advances in orodispersible films for drug delivery. Expert Opin. Drug Deliv., 2011, 8(3), 299-316.
[http://dx.doi.org/10.1517/17425247.2011.553217] [PMID: 21284577]
[120]
Adrover, A.; Pedacchia, A.; Petralito, S.; Spera, R. In vitro dissolution testing of oral thin films: A comparison between USP 1, USP 2 apparatuses and a new millifluidic flow-through device. Chem. Eng. Res. Des., 2015, 95, 173-178.
[http://dx.doi.org/10.1016/j.cherd.2014.10.020]
[121]
Guideline, U. F. I. . Q1A(R2) Stability Testing of New Drug Substances and Products 2020.
[122]
Patel, S.K.; Shah, D.R.; Tiwari, S. Bioadhesive films containing fluconazole for mucocutaneous candidiasis. Indian J. Pharm. Sci., 2015, 77(1), 55-61.
[http://dx.doi.org/10.4103/0250-474X.151601] [PMID: 25767319]