Fundamentals of Nanocarriers and Probiotics in the Treatment of Cervical Cancer

Page: [342 - 357] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Cancer is a pivotal disease, which is a serious concern towards scientific research. In the recent era of scientific discovery and innovation, probiotics have been proposed as a new preventive and therapeutic option in therapy and to control cancer growth. Probiotics may thus offer a new way in research to investigate active compounds in different probiotic strains having anticancer features. Studies in laboratory animals and cell lines with respect to cancer treatments are encouraging. With rare conventional treatments, the need for new alternatives as the transportation of chemotherapeutic agents by nanocarriers using nanotechnology is one such approach. This review considers various drug delivery systems used in the therapy of cervical cancer, such as dendrimers, liposomes and nanoparticles. These drug delivery systems assist in the improvement of pharmacological activity, solubility, bioavailability and, thus, facilitating new innovative therapeutic technologies. This review summarizes the application of nanotechnology and probiotics in the treatment of cervical cancer.

Keywords: Carcinoma, cervical cancer, liposomes, nanocarrier, novel drug delivery system, probiotics.

Graphical Abstract

[1]
Peralta-Zaragoza O, Bermúdez-Morales VH, Pérez-Plasencia C, et al. Targeted treatments for cervical cancer: a review. OncoTargets Ther 2012; 5: 315.
[http://dx.doi.org/10.2147/OTT.S25123]
[2]
Burd EM. Human papillomavirus and cervical cancer. Clin Microbiol Rev 2003; 16(1): 1-17.
[http://dx.doi.org/10.1128/CMR.16.1.1-17.2003] [PMID: 12525422]
[3]
Karim MR, Abbaszadegan M, LeChevallier M. Potential for pathogen intrusion during pressure transients. J Am Water Works Assoc 2003; 95: 134-46.
[http://dx.doi.org/10.1002/j.1551-8833.2003.tb10368.x]
[4]
Fichorova RN, Rheinwald JG, Anderson DJ. Generation of papillomavirus-immortalized cell lines from normal human ectocervical, endocervical, and vaginal epithelium that maintain expression of tissue-specific differentiation proteins. Biol Reprod 1997; 57(4): 847-55.
[http://dx.doi.org/10.1095/biolreprod57.4.847] [PMID: 9314589]
[5]
Magnusson PK, Gyllensten UB. Cervical cancer risk: is there a genetic component? Mol Med Today 2000; 6(4): 145-8.
[http://dx.doi.org/10.1016/S1357-4310(00)01685-3] [PMID: 10740252]
[6]
Yeh I-TVA. LiVolsi, Noumoff J.S. Endocervical Carcinoma. Pathol Res Pract 1991; 187: 129-44.
[http://dx.doi.org/10.1016/S0344-0338(11)80763-6] [PMID: 2067992]
[7]
Trottier H, Franco EL. The epidemiology of genital human papillomavirus infection. Vaccine 2006; 24: S4-S15.
[http://dx.doi.org/10.1016/j.vaccine.2005.09.054]
[8]
Misra S, Chaturvedi A, Misra NC. Penile carcinoma: a challenge for the developing world. Lancet Oncol 2004; 5(4): 240-7.
[http://dx.doi.org/10.1016/S1470-2045(04)01427-5] [PMID: 15050955]
[9]
Syrjänen KJ. HPV infections in benign and malignant sinonasal lesions. J Clin Pathol 2003; 56(3): 174-81.
[http://dx.doi.org/10.1136/jcp.56.3.174 ] [PMID: 12610092]
[10]
Guo M, Sneige N, Silva EG, et al. Distribution and viral load of eight oncogenic types of human papillomavirus (HPV) and HPV 16 integration status in cervical intraepithelial neoplasia and carcinoma. Mod Pathol 2007; 20(2): 256-66.
[http://dx.doi.org/10.1038/modpathol.3800737] [PMID: 17192787]
[11]
Wenig BM. Squamous cell carcinoma of the upper aerodigestive tract: precursors and problematic variants. Mod Pathol 2002; 15(3): 229-54.
[http://dx.doi.org/10.1038/modpathol.3880520] [PMID: 11904340]
[12]
O’Shaughnessy JA, Kelloff GJ, Gordon GB, et al. Treatment and prevention of intraepithelial neoplasia: an important target for accelerated new agent development. Clin Cancer Res 2002; 8(2): 314-46.
[PMID: 11839647]
[13]
Bhatia N, Lynde C, Vender R, Bourcier M. Understanding genital warts: epidemiology, pathogenesis, and burden of disease of human papillomavirus. J Cutan Med Surg 2013; 17(Suppl. 2): S47-54.
[PMID: 24388558]
[14]
Hui EK-W. Reasons for the increase in emerging and re-emerging viral infectious diseases. Microbes Infect 2006; 8(3): 905-16.
[http://dx.doi.org/10.1016/j.micinf.2005.06.032] [PMID: 16448839]
[15]
Hatton T, Zhou S, Standring DN. RNA- and DNA-binding activities in hepatitis B virus capsid protein: a model for their roles in viral replication. J Virol 1992; 66(9): 5232-41.
[http://dx.doi.org/10.1128/JVI.66.9.5232-5241.1992] [PMID: 1501273]
[16]
Stanley M. Pathology and epidemiology of HPV infection in females. Gynecol Oncol 2010; 117(2)(Suppl.): S5-S10.
[http://dx.doi.org/10.1016/j.ygyno.2010.01.024] [PMID: 20304221]
[17]
Moscicki A-B, Hills N, Shiboski S, et al. Risks for incident human papillomavirus infection and low-grade squamous intraepithelial lesion development in young females. JAMA 2001; 285(23): 2995-3002.
[http://dx.doi.org/10.1001/jama.285.23.2995] [PMID: 11410098]
[18]
Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Human papillomavirus and cervical cancer. Lancet 2007; 370(9590): 890-907.
[http://dx.doi.org/10.1016/S0140-6736(07)61416-0] [PMID: 17826171]
[19]
McClure JB, Westbrook E, Curry SJ, Wetter DW. Proactive, motivationally enhanced smoking cessation counseling among women with elevated cervical cancer risk. Nicotine Tob Res 2005; 7(6): 881-9.
[http://dx.doi.org/10.1080/14622200500266080] [PMID: 16298723]
[20]
Mehta S, Moore RD, Graham NM. Potential factors affecting adherence with HIV therapy. AIDS 1997; 11(14): 1665-70.
[http://dx.doi.org/10.1097/00002030-199714000-00002] [PMID: 9386800]
[21]
Kaur P, Aggarwal A, Nagpal M, Oberoi L, Sharma S. Prevalence and clinical utility of human papilloma virus genotyping in patients with cervical lesions. J Obstet Gynaecol India 2014; 64(4): 279-83.
[http://dx.doi.org/10.1007/s13224-014-0508-5] [PMID: 25136175]
[22]
Gross G, Pfister H. Role of human papillomavirus in penile cancer, penile intraepithelial squamous cell neoplasias and in genital warts. Med Microbiol Immunol (Berl) 2004; 193(1): 35-44.
[http://dx.doi.org/10.1007/s00430-003-0181-2] [PMID: 12838415]
[23]
Van Tine BA, Dao LD, Wu S-Y, et al. Human papillomavirus (HPV) origin-binding protein associates with mitotic spindles to enable viral DNA partitioning. Proc Natl Acad Sci USA 2004; 101(12): 4030-5.
[http://dx.doi.org/10.1073/pnas.0306848101] [PMID: 15020762]
[24]
Bharadwaj M, Hussain S, Tripathi R, Singh N, Mehrotra R. Animal Biotechnology. Elsevier 2014; pp. 95-120.
[http://dx.doi.org/10.1016/B978-0-12-416002-6.00006-7]
[25]
Huang C-F, Monie A, Weng W-H, Wu T. DNA vaccines for cervical cancer. Am J Transl Res 2010; 2(1): 75-87.
[PMID: 20182584]
[26]
Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 2010; 10(8): 550-60.
[http://dx.doi.org/10.1038/nrc2886] [PMID: 20592731]
[27]
Vousden K. Interactions of human papillomavirus transforming proteins with the products of tumor suppressor genes. FASEB J 1993; 7(10): 872-9.
[http://dx.doi.org/10.1096/fasebj.7.10.8393818] [PMID: 8393818]
[28]
Tommasino M, Crawford L. Human papillomavirus E6 and E7: proteins which deregulate the cell cycle. BioEssays 1995; 17(6): 509-18.
[http://dx.doi.org/10.1002/bies.950170607] [PMID: 7575492]
[29]
Lechner MS, Mack DH, Finicle AB, Crook T, Vousden KH, Laimins LA. Human papillomavirus E6 proteins bind p53 in vivo and abrogate p53-mediated repression of transcription. EMBO J 1992; 11(8): 3045-52.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05375.x] [PMID: 1379175]
[30]
Van Loo P, Nordgard SH, Lingjærde OC, et al. Allele-specific copy number analysis of tumors. Proceedings of the National Academy of Sciences 2010; 107(39): 16910-5.
[31]
Osley MA. The regulation of histone synthesis in the cell cycle. Annu Rev Biochem 1991; 60: 827-61.
[http://dx.doi.org/10.1146/annurev.bi.60.070191.004143] [PMID: 1883210]
[32]
Zerfass K, Schulze A, Spitkovsky D, Friedman V, Henglein B, Jansen-Dürr P. Sequential activation of cyclin E and cyclin A gene expression by human papillomavirus type 16 E7 through sequences necessary for transformation. J Virol 1995; 69(10): 6389-99.
[http://dx.doi.org/10.1128/JVI.69.10.6389-6399.1995] [PMID: 7666540]
[33]
Pim D, Banks L. Interaction of viral oncoproteins with cellular target molecules: infection with high-risk vs low-risk human papillomaviruses. APMIS 2010; 118(6-7): 471-93.
[http://dx.doi.org/10.1111/j.1600-0463.2010.02618.x] [PMID: 20553529]
[34]
Korzeniewski N, Spardy N, Duensing A, Duensing S. Genomic instability and cancer: lessons learned from human papillomaviruses. Cancer Lett 2011; 305(2): 113-22.
[http://dx.doi.org/10.1016/j.canlet.2010.10.013] [PMID: 21075512]
[35]
Horikawa I, Barrett JC. Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanisms. Carcinogenesis 2003; 24(7): 1167-76.
[http://dx.doi.org/10.1093/carcin/bgg085 PMID: 12807729]
[36]
Narisawa-Saito M, Kiyono T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci 2007; 98(10): 1505-11.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00546.x] [PMID: 17645777]
[37]
Huang L, Kinnucan E, Wang G, et al. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 1999; 286(5443): 1321-6.
[38]
Autry MT, Schmidt OS. Mvasi (Bevacizumab-awwb, Amgen Inc.) with PAP. 2017.
[39]
Ansell SM, Armitage J. Non-hodgkin lymphoma: diagnosis and treatment. Mayo Clin Proc 2005; 80: 1087-97.
[40]
Hartman DL, Gaither JM, Kesler KA, Mylet DM, Brown JW, Mathur PN. Comparison of insufflated talc under thoracoscopic guidance with standard tetracycline and bleomycin pleurodesis for control of malignant pleural effusions. J Thorac Cardiovasc Surg 1993; 105(4): 743-7.
[http://dx.doi.org/10.1016/S0022-5223(19)34203-5] [PMID: 7682268]
[41]
Moore DH, Blessing JA, McQuellon RP, et al. Phase III study of cisplatin with or without paclitaxel in stage IVB, recurrent, or persistent squamous cell carcinoma of the cervix: a gynecologic oncology group study. J Clin Oncol 2004; 22(15): 3113-9.
[http://dx.doi.org/10.1200/JCO.2004.04.170] [PMID: 15284262]
[42]
Topaly J, Zeller WJ, Fruehauf S. Synergistic activity of the new ABL-specific tyrosine kinase inhibitor STI571 and chemotherapeutic drugs on BCR-ABL-positive chronic myelogenous leukemia cells. Leukemia 2001; 15(3): 342-7.
[http://dx.doi.org/10.1038/sj.leu.2402041 ] [PMID: 11237055]
[43]
DeVita VT Jr, Young RC, Canellos GP. Combination versus single agent chemotherapy: a review of the basis for selection of drug treatment of cancer. Cancer 1975; 35(1): 98-110.
[http://dx.doi.org/10.1002/1097-0142(197501)35:1<98:AID-CNCR2820350115>3.0.CO;2-B] [PMID: 162854]
[44]
Ryan Q, Ibrahim A, Cohen MH, et al. FDA drug approval summary: lapatinib in combination with capecitabine for previously treated metastatic breast cancer that overexpresses HER-2. Oncologist 2008; 13(10): 1114-9.
[http://dx.doi.org/10.1634/theoncologist.2008-0816] [PMID: 18849320]
[45]
Florea A-M, Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel) 2011; 3(1): 1351-71.
[http://dx.doi.org/10.3390/cancers3011351] [PMID: 24212665]
[46]
Coates A, Abraham S, Kaye SB, et al. On the receiving end--patient perception of the side-effects of cancer chemotherapy. Eur J Cancer Clin Oncol 1983; 19(2): 203-8.
[http://dx.doi.org/10.1016/0277-5379(83)90418-2] [PMID: 6681766]
[47]
Magni M, Di Nicola M, Devizzi L, et al. Successful in vivo purging of CD34-containing peripheral blood harvests in mantle cell and indolent lymphoma: evidence for a role of both chemotherapy and rituximab infusion. Blood 2000; 96(3): 864-9.
[http://dx.doi.org/10.1182/blood.V96.3.864] [PMID: 10910898]
[48]
Regberg J, Srimanee A, Langel U. Applications of cell-penetrating peptides for tumor targeting and future cancer therapies. Pharmaceuticals (Basel) 2012; 5(9): 991-1007.
[http://dx.doi.org/10.3390/ph5090991 ] [PMID: 24280701]
[49]
Carr C, Ng J, Wigmore T. The side effects of chemotherapeutic agents. Curr Anaesth Crit Care 2008; 19: 70-9.
[http://dx.doi.org/10.1016/j.cacc.2008.01.004]
[50]
Santhosh PB, Ulrih NP. Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics. Cancer Lett 2013; 336(1): 8-17.
[http://dx.doi.org/10.1016/j.canlet.2013.04.032] [PMID: 23664890]
[51]
Calixto G, Bernegossi J, Fonseca-Santos B, Chorilli M. Nanotechnology-based drug delivery systems for treatment of oral cancer: a review. Int J Nanomedicine 2014; 9: 3719-35.
[http://dx.doi.org/10.2147/IJN.S61670 ] [PMID: 25143724]
[52]
Khan DR. The use of nanocarriers for drug delivery in cancer therapy. J Cancer Sci Ther 2010; 2: 58-62.
[http://dx.doi.org/10.4172/1948-5956.1000024]
[53]
Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 2016; 116(9): 5338-431.
[http://dx.doi.org/10.1021/acs.chemrev.5b00589] [PMID: 27109701]
[54]
Andresen TL, Jensen SS, Jørgensen K. Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res 2005; 44(1): 68-97.
[http://dx.doi.org/10.1016/j.plipres.2004.12.001] [PMID: 15748655]
[55]
Woodrow KA, Cu Y, Booth CJ, Saucier-Sawyer JK, Wood MJ, Saltzman WM. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat Mater 2009; 8(6): 526-33.
[http://dx.doi.org/10.1038/nmat2444] [PMID: 19404239]
[56]
Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009; 30(11): 592-9.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[57]
Davis ME, Chen Z, Shin DM. Nanoscience and technology: A collection of reviews from nature journals. World Scientific 2010; pp. 239-50.
[58]
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010; 148(2): 135-46.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[59]
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013; 12(11): 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[60]
Chen M-X, Li B-K, Yin D-K, Liang J, Li S-S, Peng D-Y. Layer-by-layer assembly of chitosan stabilized multilayered liposomes for paclitaxel delivery. Carbohydr Polym 2014; 111: 298-304.
[http://dx.doi.org/10.1016/j.carbpol.2014.04.038] [PMID: 25037355]
[61]
Simbre VC, Duffy SA, Dadlani GH, Miller TL, Lipshultz SE. Cardiotoxicity of cancer chemotherapy: implications for children. Paediatr Drugs 2005; 7(3): 187-202.
[http://dx.doi.org/10.2165/00148581-200507030-00005] [PMID: 15977964]
[62]
Lukong KE. Understanding breast cancer - The long and winding road. BBA Clin 2017; 7: 64-77.
[http://dx.doi.org/10.1016/j.bbacli.2017.01.001] [PMID: 28194329]
[63]
Lukyanov AN, Elbayoumi TA, Chakilam AR, Torchilin VP. Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release 2004; 100(1): 135-44.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.007] [PMID: 15491817]
[64]
Montalti M, Cantelli A, Battistelli G. Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem Soc Rev 2015; 44(14): 4853-921.
[http://dx.doi.org/10.1039/C4CS00486H ] [PMID: 26051500]
[65]
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010; 75(1): 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[66]
Mittal G, Sahana DK, Bhardwaj V, Ravi Kumar MN. Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release 2007; 119(1): 77-85.
[http://dx.doi.org/10.1016/j.jconrel.2007.01.016] [PMID: 17349712]
[67]
Grottkau BE, Cai X, Wang J, Yang X, Lin Y. Polymeric nanoparticles for a drug delivery system. Curr Drug Metab 2013; 14(8): 840-6.
[http://dx.doi.org/10.2174/138920021131400105] [PMID: 24016112]
[68]
Yuan Y-G, Gurunathan S. Combination of graphene oxide-silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells. Int J Nanomedicine 2017; 12: 6537-58.
[http://dx.doi.org/10.2147/IJN.S125281 ] [PMID: 28919753]
[69]
Banerjee SL, Khamrai M, Sarkar K, Singha NK, Kundu PP. Modified chitosan encapsulated core-shell Ag Nps for superior antimicrobial and anticancer activity. Int J Biol Macromol 2016; 85: 157-67.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.068] [PMID: 26724687]
[70]
Jeyaraj M, Rajesh M, Arun RD. MubarakAli, G. Sathishkumar, G. Sivanandhan, G. K. Dev, M. Manickavasagam, K. Premkumar and N. Thajuddin. Colloids Surf B Biointerfaces 2013; 102: 708-17.
[http://dx.doi.org/10.1016/j.colsurfb.2012.09.042] [PMID: 23117153]
[71]
Sims LB, Curtis LT, Frieboes HB, Steinbach-Rankins JM. Enhanced uptake and transport of PLGA-modified nanoparticles in cervical cancer. J Nanobiotechnology 2016; 14: 33.
[http://dx.doi.org/10.1186/s12951-016-0185-x] [PMID: 27102372]
[72]
Chaplot SP, Rupenthal ID. Dendrimers for gene delivery--a potential approach for ocular therapy? J Pharm Pharmacol 2014; 66(4): 542-56.
[http://dx.doi.org/10.1111/jphp.12104 ] [PMID: 24635556]
[73]
Donalisio M, Rusnati M, Civra A, et al. Identification of a dendrimeric heparan sulfate-binding peptide that inhibits infectivity of genital types of human papillomaviruses. Antimicrob Agents Chemother 2010; 54(10): 4290-9.
[http://dx.doi.org/10.1128/AAC.00471-10 ] [PMID: 20643894]
[74]
Bon I, Lembo D, Rusnati M, et al. Peptide-derivatized SB105-A10 dendrimer inhibits the infectivity of R5 and X4 HIV-1 strains in primary PBMCs and cervicovaginal histocultures. PLoS One 2013; 8(10)e76482
[http://dx.doi.org/10.1371/journal.pone.0076482]] [PMID: 24116111]
[75]
Dutta T, Burgess M, McMillan NA, Parekh HS. Dendrosome-based delivery of siRNA against E6 and E7 oncogenes in cervical cancer. Nanomedicine (Lond) 2010; 6(3): 463-70.
[http://dx.doi.org/10.1016/j.nano.2009.12.001] [PMID: 20044033]
[76]
Balabathula P. Development and evaluation of amphotericin b loaded iron oxide nanoparticles for targeted drug delivery to systemic fungal infections(Doctoral dissertation, The University of Tennessee Health Science Center) 2015.
[77]
Chen Z, Chen Z, Zhang A, Hu J, Wang X, Yang Z. Electrospun nanofibers for cancer diagnosis and therapy. Biomater Sci 2016; 4(6): 922-32.
[http://dx.doi.org/10.1039/C6BM00070C ] [PMID: 27048889]
[78]
Fu Y, Kao WJ. In situ forming poly(ethylene glycol)-based hydrogels via thiol-maleimide Michael-type addition. J Biomed Mater Res A 2011; 98(2): 201-11.
[http://dx.doi.org/10.1002/jbm.a.33106 ] [PMID: 21548071]
[79]
Fuller R. Probiotics in human medicine. Gut 1991; 32(4): 439-42.
[http://dx.doi.org/10.1136/gut.32.4.439 ] [PMID: 1902810]
[80]
Sahu MK, Swarnakumar NS, Sivakumar K, Thangaradjou T, Kannan L. Probiotics in aquaculture: importance and future perspectives. Indian J Microbiol 2008; 48(3): 299-308.
[http://dx.doi.org/10.1007/s12088-008-0024-3] [PMID: 23100726]
[81]
Naidu AS, Bidlack WR, Clemens RA. Probiotic spectra of lactic acid bacteria (LAB). Crit Rev Food Sci Nutr 1999; 39(1): 13-126.
[http://dx.doi.org/10.1080/10408699991279187] [PMID: 10028126]
[82]
Sinkiewicz G. Lactobacillus reuteri in Health and Disease. Malmö University 2010.
[83]
Harish K, Varghese T. Probiotics in humans–evidence based review. Calicut Med J 2006; 4(4)e3
[84]
Tripathi MK, Giri SK. Probiotic functional foods: Survival of probiotics during processing and storage. J Funct Foods 2014; 9: 225-41.
[http://dx.doi.org/10.1016/j.jff.2014.04.030]
[85]
Sharma S, Singh RL, Kakkar P. Modulation of Bax/Bcl-2 and caspases by probiotics during aceta356 Current Nanomedicine, 2020, Vol. 10, No. 4 Singh et al.aminophen induced apoptosis in primary hepatocytes. Food Chem Toxicol 2011; 49(4): 770-9.
[http://dx.doi.org/10.1016/j.fct.2010.11.041 ] [PMID: 21130831]
[86]
Pool-Zobel B, van Loo J, Rowland I, Roberfroid MB. Experimental evidences on the potential of prebiotic fructans to reduce the risk of colon cancer. Br J Nutr 2002; 87(Suppl. 2): S273-81.
[http://dx.doi.org/10.1079/BJN/2002548 ] [PMID: 12088529]
[87]
Scharlau D, Borowicki A, Habermann N, et al. Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutat Res Rev Mutat Res 2009; 682: 39-53.
[http://dx.doi.org/10.1016/j.mrrev.2009.04.001]
[88]
Rafter J. Lactic acid bacteria and cancer: mechanistic perspective. Br J Nutr 2002; 88(Suppl. 1): S89-94.
[http://dx.doi.org/10.1079/BJN2002633 ] [PMID: 12215183]
[89]
Rafter J. Probiotics and colon cancer. Best Pract Res Clin Gastroenterol 2003; 17(5): 849-59.
[http://dx.doi.org/10.1016/S1521-6918(03)00056-8] [PMID: 14507593]
[90]
Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proceedings of the National Academy of Sciences 2009; 106(7): 2365-70.
[91]
Ma EL, Choi YJ, Choi J, Pothoulakis C, Rhee SH, Im E. The anticancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. Int J Cancer 2010; 127(4): 780-90.
[PMID: 19876926]
[92]
Marinelli L, Tenore GC, Novellino E. Probiotic species in the modulation of the anticancer immune response. Semin Cancer Biol 2017; 46: 182-90. [Academic Press.]
[93]
Linsalata M, Russo F, Notarnicola M, et al. Effects of genistein on the polyamine metabolism and cell growth in DLD-1 human colon cancer cells. Nutr Cancer 2005; 52(1): 84-93.
[http://dx.doi.org/10.1207/s15327914nc5201_11] [PMID: 16091008]
[94]
Saarela M, Mogensen G, Fondén R, Mättö J, Mattila-Sandholm T. Probiotic bacteria: safety, functional and technological properties. J Biotechnol 2000; 84(3): 197-215.
[http://dx.doi.org/10.1016/S0168-1656(00)00375-8] [PMID: 11164262]
[95]
de Roos NM, Katan MB. Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: a review of papers published between 1988 and 1998. Am J Clin Nutr 2000; 71(2): 405-11.
[http://dx.doi.org/10.1093/ajcn/71.2.405 ] [PMID: 10648252]
[96]
Hotel ACP, Cordoba A, Hotel A. Health, and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention 2001; 5: 1-10.
[97]
Suzuki R, Kohno H, Sugie S, et al. Preventive effects of extract of leaves of ginkgo (Ginkgo biloba) and its component bilobalide on azoxymethane-induced colonic aberrant crypt foci in rats. Cancer Lett 2004; 210(2): 159-69.
[http://dx.doi.org/10.1016/j.canlet.2004.01.034] [PMID: 15183531]
[98]
Salminen S, Isolauri E, Salminen E. Clinical uses of probiotics for stabilizing the gut mucosal barrier: successful strains and future challenges. Antonie van Leeuwenhoek 1996; 70(2-4): 347-58.
[http://dx.doi.org/10.1007/BF00395941 ] [PMID: 8992950]
[99]
Lippman SM, Hawk ET. Cancer prevention: from 1727 to milestones of the past 100 years. Cancer Res 2009; 69(13): 5269-84.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1750] [PMID: 19491253]
[100]
Park J, Floch MH. Prebiotics, probiotics, and dietary fiber in gastrointestinal disease. Gastroenterol Clin North Am 2007; 36(1): 47-63.
[http://dx.doi.org/10.1016/j.gtc.2007.03.001] [PMID: 17472874]
[101]
Zhu Q, Gao R, Wu W, Qin H. The role of gut microbiota in the pathogenesis of colorectal cancer. Tumour Biol 2013; 34(3): 1285-300.
[http://dx.doi.org/10.1007/s13277-013-0684-4] [PMID: 23397545]
[102]
Zitvogel L, Daillère R, Roberti MP, Routy B, Kroemer G. Anticancer effects of the microbiome and its products. Nat Rev Microbiol 2017; 15(8): 465-78.
[http://dx.doi.org/10.1038/nrmicro.2017.44] [PMID: 28529325]
[103]
Choi SS, Kim Y, Han KS, You S, Oh S, Kim SH. Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro. Lett Appl Microbiol 2006; 42(5): 452-8.
[http://dx.doi.org/10.1111/j.1472-765X.2006.01913.x] [PMID: 16620202]
[104]
Fauzi AN, Norazmi MN, Yaacob NS. Tualang honey induces apoptosis and disrupts the mitochondrial membrane potential of human breast and cervical cancer cell lines. Food Chem Toxicol 2011; 49(4): 871-8.
[http://dx.doi.org/10.1016/j.fct.2010.12.010] [PMID: 21167897]
[105]
Verhoeven V, Renard N, Makar A, et al. Probiotics enhance the clearance of human papillomavirus-related cervical lesions: a prospective controlled pilot study. Eur J Cancer Prev 2013; 22(1): 46-51.
[http://dx.doi.org/10.1097/CEJ.0b013e328355ed23] [PMID: 22706167]
[106]
Perišić Ž, Perišić N, Goločorbin-Kon S, et al. The influence of probiotics on the cervical malignancy diagnostics quality Vojnosanitetski pregled. 2011; 68(11): 956-960..
[107]
Motevaseli E, Shirzad M, Raoofian R, et al. Differences in vaginal lactobacilli composition of Iranian healthy and bacterial vaginosis infected women: a comparative analysis of their cytotoxic effects with commercial vaginal probiotics. Iran Red Crescent Med J 2013; 15(3): 199-206.
[http://dx.doi.org/10.5812/ircmj.3533 ] [PMID: 23983998]
[108]
Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 2014; 185: 12-21.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.018] [PMID: 24768792]
[109]
Li C, Ge X, Wang L. Construction and comparison of different nanocarriers for co-delivery of cisplatin and curcumin: A synergistic combination nanotherapy for cervical cancer. Biomed Pharmacother 2017; 86: 628-36.
[http://dx.doi.org/10.1016/j.biopha.2016.12.042] [PMID: 28027539]
[110]
Liu Y, Sun J, Cao W, et al. Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int J Pharm 2011; 421(1): 160-9.
[http://dx.doi.org/10.1016/j.ijpharm.2011.09.006] [PMID: 21945183]
[111]
Liu Y, Sun J, Lian H, Cao W, Wang Y, He Z. Folate and CD44 receptors dual-targeting hydrophobized hyaluronic acid paclitaxel-loaded polymeric micelles for overcoming multidrug resistance and improving tumor distribution. J Pharm Sci 2014; 103(5): 1538-47.
[http://dx.doi.org/10.1002/jps.23934] [PMID: 24619562]
[112]
Sriraman SK, Salzano G, Sarisozen C, Torchilin V. Anti-cancer activity of doxorubicin-loaded liposomes co-modified with transferrin and folic acid. Eur J Pharm Biopharm 2016; 105: 40-9.
[http://dx.doi.org/10.1016/j.ejpb.2016.05.023] [PMID: 27264717]
[113]
Motevaseli E, Shirzad M, Akrami SM, Mousavi A-S, Mirsalehian A, Modarressi MH. Normal and tumour cervical cells respond differently to vaginal lactobacilli, independent of pH and lactate. J Med Microbiol 2013; 62(Pt 7): 1065-72.
[http://dx.doi.org/10.1099/jmm.0.057521-0 ] [PMID: 23618799]
[114]
Nami Y, Abdullah N, Haghshenas B, Radiah D, Rosli R, Khosroushahi AY. Probiotic potential and biotherapeutic effects of newly isolated vaginal Lactobacillus acidophilus 36YL strain on cancer cells. Anaerobe 2014; 28: 29-36.
[http://dx.doi.org/10.1016/j.anaerobe.2014.04.012] [PMID: 24818631]
[115]
Sungur T, Aslim B, Karaaslan C, Aktas B. Impact of Exopolysaccharides (EPSs) of Lactobacillus gasseri strains isolated from human vagina on cervical tumor cells (HeLa). Anaerobe 2017; 47: 137-44.
[http://dx.doi.org/10.1016/j.anaerobe.2017.05.013] [PMID: 28554813]
[116]
Negi D, Singh A, Joshi N, Mishra N. Cisplatin and probiotic biomass loaded pessaries for the management of cervical cancer Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 2020; 120: 589-98..
[http://dx.doi.org/10.2174/1871520619666191211110640]
[117]
Riaz Rajoka MS, Zhao H, Lu Y, et al. Anticancer potential against cervix cancer (HeLa) cell line of probiotic Lactobacillus casei and Lactobacillus paracasei strains isolated from human breast milk. Food Funct 2018; 9(5): 2705-15.
[http://dx.doi.org/10.1039/C8FO00547H ] [PMID: 29762617]
[118]
Wang KD, Xu DJ, Wang BY, Yan DH, Lv Z, Su JR. Inhibitory effect of vaginal Lactobacillus supernatants on cervical cancer cells. Probiotics Antimicrob Proteins 2018; 10(2): 236-42.
[http://dx.doi.org/10.1007/s12602-017-9339-x] [PMID: 29071554]
[119]
Li X, Wang H, Du X, et al. Lactobacilli inhibit cervical cancer cell migration in vitro and reduce tumor burden in vivo through upregulation of E-cadherin. Oncol Rep 2017; 38(3): 1561-8.
[http://dx.doi.org/10.3892/or.2017.5791 ] [PMID: 28713905]
[120]
Jang SE, Jeong JJ, Choi SY, Kim H, Han MJ, Kim DH. Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus La-14 attenuate Gardnerella vaginalis-infected bacterial vaginosis in mice. Nutrients 2017; 9(6): 531.
[http://dx.doi.org/10.3390/nu9060531 ] [PMID: 28545241]
[121]
Nouri Z, Karami F, Neyazi N, et al. Dual anti-metastatic and anti-proliferative activity assessment of two probiotics on HeLa and HT-29 cell lines. Cell J 2016; 18(2): 127-34.
[PMID: 27551673]