Simultaneous Optimization of Activity and Stability of Xylose Reductase from D. nepalensis NCYC 3413 Using Statistical Experimental Design

Page: [489 - 500] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Physical parameters like pH and temperature play a major role in the design of an industrial enzymatic process. Enzyme stability and activity are greatly influenced by these parameters; hence optimization and control of these parameters becomes a key point in determining the economic feasibility of the process.

Objective: This study was taken up with the objective to optimize physical parameters for maximum stability and activity of xylose reductase from D. nepalensis NCYC 3413 through separate and simultaneous optimization studies and comparison thereof.

Methods: Effects of pH and temperature on the activity and stability of xylose reductase from Debaryomyces nepalensis NCYC 3413 were investigated by enzyme assays and independent variables were optimised using surface response methodology. Enzyme activity and stability were optimised separately and concurrently to decipher the appropriate conditions.

Results: Optimized conditions of pH and temperature for xylose reductase activity were determined to be 7.1 and 27 °C respectively, with predicted responses of specific activity (72.3 U/mg) and half-life time (566 min). The experimental values (specific activity 50.2 U/mg, half-life time 818 min) were on par with predicted values indicating the significance of the model.

Conclusion: Simultaneous optimization of xylose reductase activity and stability using statistical methods is effective as compared to optimisation of the parameters separately.

Keywords: Central composite design, xylose reductase, enzyme activity, stability, half-life time, response surface methodology, temperature and pH.

Graphical Abstract

[1]
Delgado Arcaño, Y.; Valmaña García, O.D.; Mandelli, D.; Carvalho, W.A.; Magalhães Pontes, L.A. Xylitol: a review on the progress and challenges of its production by chemical route. Catal. Today, 2020, 344, 2-14.
[http://dx.doi.org/10.1016/j.cattod.2018.07.060]
[2]
Rafiqul, I.S.M.; Sakinah, A.M.M. Processes for the production of xylitol—a review. Food Rev. Int., 2013, 29, 127-156.
[http://dx.doi.org/10.1080/87559129.2012.714434]
[3]
Kumdam, H.B.; Murthy, S.N.; Gummadi, S.N. A statistical approach to optimize xylitol production by Debaryomyces nepalensis NCYC 3413 in vitro. Food Nutr. Sci., 2012, 03, 1027-1036.
[http://dx.doi.org/10.4236/fns.2012.38136]
[4]
Pappu, J.S.M.; Gummadi, S.N. Modeling and simulation of xylitol production in bioreactor by Debaryomyces nepalensis NCYC 3413 using unstructured and artificial neural network models. Bioresour. Technol., 2016, 220, 490-499.
[http://dx.doi.org/10.1016/j.biortech.2016.08.097] [PMID: 27611032]
[5]
Kumar, S.; Gummadi, S.N. Osmotic adaptation in halotolerant yeast, Debaryomyces nepalensis NCYC 3413: role of osmolytes and cation transport. Extremophiles, 2009, 13(5), 793-805.
[http://dx.doi.org/10.1007/s00792-009-0267-x] [PMID: 19593594]
[6]
Kumar, S.; Lal, P.; Gummadi, S.N. Growth of halotolerant food spoiling yeast Debaryomyces nepalensis NCYC 3413 under the influence of pH and salt. Curr. Microbiol., 2008, 57(6), 598-602.
[http://dx.doi.org/10.1007/s00284-008-9249-y] [PMID: 18810540]
[7]
Paidimuddala, B.; Krishna Aradhyam, G.; Gummadi, S.N. A halotolerant aldose reductase from Debaryomyces nepalensis: gene isolation, overexpression and biochemical characterization. RSC Advances, 2017, 7, 20384-20393.
[http://dx.doi.org/10.1039/C7RA01697B]
[8]
Malla, S.; Gummadi, S.N. Thermal stability of xylose reductase from Debaryomyces nepalensis NCYC 3413: deactivation kinetics and structural studies. Process Biochem., 2018, 67, 71-79.
[http://dx.doi.org/10.1016/j.procbio.2018.01.010]
[9]
Paidimuddala, B.; Rathod, A.; Gummadi, S.N. Inhibition of Debaryomyces nepalensis xylose reductase by lignocellulose derived by-products. Biochem. Eng. J., 2017, 121, 73-82.
[http://dx.doi.org/10.1016/j.bej.2017.01.019]
[10]
Drago, G.A.; Gibson, T.D. Enzyme stability and stabilisation: applications and case studies. In: Engineering and Manufacturing for Biotechnology. Focus on Biotechnology, Hofman, M.; Thonart, P.; Eds., Springer: Dordrecht, 2001, vol. 4, pp 361-376.
[http://dx.doi.org/10.1007/0-306-46889-1_24]
[11]
Sadana, A. Biocatalysis: Fundamentals of Enzyme Deactvation Kinetics; Prentice-Hall, Inc.: Englewood Cliffs, New Jersey, 1995.
[12]
Ahmad, E.; Fatima, S.; Khan, M.M.; Khan, R.H. More stable structure of wheat germ lipase at low pH than its native state. Biochimie, 2010, 92(7), 885-893.
[http://dx.doi.org/10.1016/j.biochi.2010.03.023] [PMID: 20363283]
[13]
Talley, K.; Alexov, E. On the pH-optimum of activity and stability of proteins. Proteins, 2010, 78(12), 2699-2706.
[http://dx.doi.org/10.1002/prot.22786] [PMID: 20589630]
[14]
Kosjek, B.; Nti-gyabaah, J.; Telari, K.; Dunne, L.; Moore, J.C. Preparative asymmetric synthesis of 4, 4-dimethoxytetrahydro-2h-pyran-3-ol with a ketone reductase and in situ cofactor recycling using glucose dehydrogenase. Org. Process Res. Dev., 2008, 12, 584-588.
[http://dx.doi.org/10.1021/op700255b]
[15]
Toolabi, A.; Malakootian, M.; Ghaneian, M.T.; Esrafili, A.; Ehrampoush, M.H.; Tabatabaei, M.; AskarShahi, M. Optimization of photochemical decomposition acetamiprid pesticide from aqueous solutions and effluent toxicity assessment by Pseudomonas aeruginosa BCRC using response surface methodology. AMB Express, 2017, 7(1), 159.
[http://dx.doi.org/10.1186/s13568-017-0455-5] [PMID: 28789482]
[16]
Dash, S.S.; Gummadi, S.N. Enhanced biodegradation of caffeine by Pseudomonas sp. using response surface methodology. Biochem. Eng. J., 2007, 36, 288-293.
[http://dx.doi.org/10.1016/j.bej.2007.03.002]
[17]
Gummadi, S.N.; Kumar, D.S. Optimization of chemical and physical parameters affecting the activity of pectin lyase and pectate lyase from Debaryomyces nepalensis: A statistical approach. Biochem. Eng. J., 2006, 30, 130-137.
[http://dx.doi.org/10.1016/j.bej.2006.02.014]
[18]
Panda, T.; Naidu, G.S.N.; Sinha, J. Multiresponse analysis of microbiological parameters affecting the production of pectolytic enzymes by Aspergillus niger: a statistical view. Process Biochem., 1999, 35, 187-195.
[http://dx.doi.org/10.1016/S0032-9592(99)00050-3]
[19]
Derringer, G.; Suich, R. Simultaneous optimization of several response variables. J. Qual. Technol., 1980, 12, 214-219.
[http://dx.doi.org/10.1080/00224065.1980.11980968]
[20]
Bezerra, M.A.; Ferreira, S.L.C.; Novaes, C.G.; Dos Santos, A.M.P.; Valasques, G.S.; da Mata Cerqueira, U.M.F.; Dos Santos Alves, J.P. Simultaneous optimization of multiple responses and its application in analytical chemistry - a review. Talanta, 2019, 194, 941-959.
[http://dx.doi.org/10.1016/j.talanta.2018.10.088] [PMID: 30609628]
[21]
Pirieh, P.; Naeimpoor, F. Multiple versus single response optimization in thiosulfate bio-removal and its products formation and function of optimum point in bioreactor. Process Saf. Environ. Prot., 2020, 134, 277-291.
[http://dx.doi.org/10.1016/j.psep.2019.11.034]
[22]
Khusro, A.; Kaliyan, B.K.; Al-Dhabi, N.A.; Arasu, M.V.; Agastian, P. Statistical optimization of thermo-alkali stable xylanase production from Bacillus tequilensis strain ARMATI. Electron. J. Biotechnol., 2016, 22, 16-25.
[http://dx.doi.org/10.1016/j.ejbt.2016.04.002]
[23]
Hakalin, N.L.S.; Molina-Gutiérrez, M.; Prieto, A.; Martínez, M.J. Optimization of lipase-catalyzed synthesis of β-sitostanol esters by response surface methodology. Food Chem., 2018, 261, 139-148.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.031] [PMID: 29739574]
[24]
Naidu, G.S.N.; Panda, T. Performance of pectolytic enzymes during hydrolysis of pectic substances under assay conditions: a statistical approach. Enzyme Microb. Technol., 1999, 25, 116-124.
[http://dx.doi.org/10.1016/S0141-0229(99)00017-4]
[25]
Gupta, G.; Sahai, V.; Gupta, R.K. Thermal stability and thermodynamics of xylanase from Melanocarpus albomyces in presence of polyols and salts. BioResources, 2014, 9, 5801-5816.
[http://dx.doi.org/10.15376/biores.9.4.5801-5816]
[26]
Branchu, S.; Forbes, R.T.; York, P.; Nyqvist, H. A central composite design to invesigate the thermal stabilization of lysozyme. Pharm. Res., 1999, 16(5), 702-708.
[http://dx.doi.org/10.1023/A:1018876625126]
[27]
Goswami, R.; Veeranki, V.D.; Mishra, V.K. Optimization of process conditions and evaluation of pH & thermal stability of recombinant L-Asparaginase II of Erwinia carotovora subsp. atroseptica SCRI 1043 in E. coli. Biocatal. Agric. Biotechnol., 2019, 22, 101377.
[http://dx.doi.org/10.1016/j.bcab.2019.101377]