Current Insights into the Chemistry and Antitubercular Potential of Benzimidazole and Imidazole Derivatives

Page: [643 - 657] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Tuberculosis is a disease caused by Mycobacterium tuberculosis (Mtb), affecting millions of people worldwide. The emergence of drug resistance is a major problem in the successful treatment of tuberculosis. Due to the commencement of MDR-TB (multi-drug resistance) and XDR-TB (extensively drug resistance), there is a crucial need for the development of novel anti-tubercular agents with improved characteristics such as low toxicity, enhanced inhibitory activity and short duration of treatment. In this direction, various heterocyclic compounds have been synthesized and screened against Mycobacterium tuberculosis. Among them, benzimidazole and imidazole containing derivatives have been found to have potential anti-tubercular activity. The present review focuses on various imidazole and benzimidazole derivatives (from 2015-2019) with their structure-activity relationships in the treatment of tuberculosis.

Keywords: Mycobacterium tuberculosis, benzimidazole, imidazole, drug resistance, anti-tubercular activity, structure activity relationships.

Graphical Abstract

[1]
Fogel, N. Tuberculosis: A disease without boundaries. Tuberculosis (Edinb.), 2015, 95(5), 527-531.
[http://dx.doi.org/10.1016/j.tube.2015.05.017] [PMID: 26198113]
[2]
Chaturvedi, A.K.; Verma, A.K.; Thakur, J.P.; Roy, S.; Bhushan Tripathi, S.; Kumar, B.S.; Khwaja, S.; Sachan, N.K.; Sharma, A.; Chanda, D.; Shanker, K.; Saikia, D.; Negi, A.S. A novel synthesis of 2-arylbenzimidazoles in molecular sieves-MeOH system and their antitubercular activity. Bioorg. Med. Chem., 2018, 26(15), 4551-4559.
[http://dx.doi.org/10.1016/j.bmc.2018.07.049] [PMID: 30097361]
[3]
Knechel, N.A. Tuberculosis: Pathophysiology, clinical features, and diagnosis. Crit. Care Nurse, 2009, 29(2), 34-43.
[http://dx.doi.org/10.4037/ccn2009968] [PMID: 19339446]
[4]
Furin, J; Cox, H; Pai, M. Seminar Tuberculosis, 2019.
[5]
Ashok, D.; Gundu, S.; Aamate, V.K.; Devulapally, M.G. Conventional and microwave-assisted synthesis of new indole-tethered benzimidazole-based 1,2,3-triazoles and evaluation of their antimycobacterial, antioxidant and antimicrobial activities. Mol. Divers., 2018, 22(4), 769-778.
[http://dx.doi.org/10.1007/s11030-018-9828-1] [PMID: 29671194]
[6]
Wejse, C.; Gustafson, P.; Nielsen, J.; Gomes, V.F.; Aaby, P.; Andersen, P.L.; Sodemann, M. TBscore: Signs and symptoms from tuberculosis patients in a low-resource setting have predictive value and may be used to assess clinical course. Scand. J. Infect. Dis., 2008, 40(2), 111-120.
[http://dx.doi.org/10.1080/00365540701558698] [PMID: 17852907]
[7]
Flynn, J.L.; Chan, J. Immunology of tuberculosis. Annu. Rev. Immunol., 2001, 19, 93-129.
[http://dx.doi.org/10.1146/annurev.immunol.19.1.93] [PMID: 11244032]
[8]
Macchi, F.S.; Pissinate, K.; Villela, A.D.; Abbadi, B.L.; Rodrigues-Junior, V.; Nabinger, D.D.; Altenhofen, S.; Sperotto, N.; da Silva Dadda, A.; Subtil, F.T.; de Freitas, T.F.; Erhart Rauber, A.P.; Borsoi, A.F.; Bonan, C.D.; Bizarro, C.V.; Basso, L.A.; Santos, D.S.; Machado, P. 1H-Benzo[d]imidazoles and 3,4-dihydroquinazolin-4-ones: Design, synthesis and antitubercular activity. Eur. J. Med. Chem., 2018, 155, 153-164.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.005] [PMID: 29885576]
[9]
Yoon, Y.K.; Ali, M.A.; Wei, A.C.; Choon, T.S.; Ismail, R. Synthesis and evaluation of antimycobacterial activity of new benzimidazole aminoesters. Eur. J. Med. Chem., 2015, 93, 614-624.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.025] [PMID: 24996257]
[10]
Surineni, G.; Gao, Y.; Hussain, M.; Liu, Z.; Lu, Z.; Chhotaray, C.; Islam, M.M.; Hameed, H.M.A.; Zhang, T. Design, synthesis, and in vitro biological evaluation of novel benzimidazole tethered allylidenehydrazinylmethylthiazole derivatives as potent inhibitors of Mycobacterium tuberculosis. MedChemComm, 2018, 10(1), 49-60.
[http://dx.doi.org/10.1039/C8MD00389K] [PMID: 30774854]
[11]
Petrini, B.; Hoffner, S. Drug-resistant and multidrug-resistant tubercle bacilli. Int. J. Antimicrob. Agents, 1999, 13(2), 93-97.
[http://dx.doi.org/10.1016/S0924-8579(99)00111-9] [PMID: 10595567]
[12]
Rakesh; Bruhn, D.F.; Scherman, M.S.; Singh, A.P.; Yang, L.; Liu, J.; Lenaerts, A.J.; Lee, R.E. Synthesis and evaluation of pretomanid (PA-824) oxazolidinone hybrids. Bioorg. Med. Chem. Lett., 2016, 26(2), 388-391.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.002] [PMID: 26711150]
[13]
Desai, N.C.; Shihory, N.R.; Kotadiya, G.M.; Desai, P. Synthesis, antibacterial and antitubercular activities of benzimidazole bearing substituted 2-pyridone motifs. Eur. J. Med. Chem., 2014, 82, 480-489.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.004] [PMID: 24934572]
[14]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S. The antitubercular activity of various nitro(triazole/imidazole)-based compounds. Bioorg. Med. Chem., 2017, 25(21), 6039-6048.
[http://dx.doi.org/10.1016/j.bmc.2017.09.037] [PMID: 28993106]
[15]
Ramprasad, J.; Nayak, N.; Dalimba, U.; Yogeeswari, P.; Sriram, D.; Peethambar, S.K.; Achur, R.; Kumar, H.S. Synthesis and biological evaluation of new imidazo[2,1-b][1,3,4]thiadiazole-benzimidazole derivatives. Eur. J. Med. Chem., 2015, 95, 49-63.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.024] [PMID: 25794789]
[16]
Gawad, J.; Bonde, C. Decaprenyl-phosphoryl-ribose 2′-epimerase (DprE1): Challenging target for antitubercular drug discovery. Chem. Cent. J., 2018, 12(1), 72.
[http://dx.doi.org/10.1186/s13065-018-0441-2] [PMID: 29936616]
[17]
Su, C.C.; Klenotic, P.A.; Bolla, J.R.; Purdy, G.E.; Robinson, C.V.; Yu, E.W. MmpL3 is a lipid transporter that binds trehalose monomycolate and phosphatidylethanolamine. Proc. Natl. Acad. Sci. USA, 2019, 116(23), 11241-11246.
[http://dx.doi.org/10.1073/pnas.1901346116] [PMID: 31113875]
[18]
Bald, D.; Villellas, C.; Lu, P.; Koul, A. Targeting energy metabolism in Mycobacterium tuberculosis, a new paradigm in antimycobacterial drug discovery. MBio, 2017, 8(2), e00272-e17.
[http://dx.doi.org/10.1128/mBio.00272-17] [PMID: 28400527]
[19]
Shukla, H.; Kumar, V.; Singh, A.K.; Rastogi, S.; Khan, S.R.; Siddiqi, M.I.; Krishnan, M.Y.; Akhtar, M.S. Isocitrate lyase of Mycobacterium tuberculosis is inhibited by quercetin through binding at N-terminus. Int. J. Biol. Macromol., 2015, 78, 137-141.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.04.005] [PMID: 25869309]
[20]
Yadav, S.; Narasimhan, B.; Lim, S.M. Synthesis and evaluation of antimicrobial, antitubercular and anticancer activities of benzimidazole derivatives. Egypt. J. Basic Appl. Sci., 2018, 5, 100-109.
[http://dx.doi.org/10.1016/j.ejbas.2017.11.001]
[21]
Keri, R.S.; Rajappa, C.K.; Patil, S.A.; Nagaraja, B.M. Benzimidazole-core as an antimycobacterial agent. Pharmacol. Rep., 2016, 68(6), 1254-1265.
[http://dx.doi.org/10.1016/j.pharep.2016.08.002] [PMID: 27686965]
[22]
Fan, Y.L.; Jin, X.H.; Huang, Z.P.; Yu, H.F.; Zeng, Z.G.; Gao, T.; Feng, L.S. Recent advances of imidazole-containing derivatives as anti-tubercular agents. Eur. J. Med. Chem., 2018, 150, 347-365.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.016] [PMID: 29544148]
[23]
Jirakkakul, J.; Punya, J.; Pongpattanakitshote, S.; Paungmoung, P.; Vorapreeda, N.; Tachaleat, A.; Klomnara, C.; Tanticharoen, M.; Cheevadhanarak, S. Identification of the nonribosomal peptide synthetase gene responsible for bassianolide synthesis in wood-decaying fungus Xylaria sp. BCC1067. Microbiology, 2008, 154(Pt 4), 995-1006.
[http://dx.doi.org/10.1099/mic.0.2007/013995-0] [PMID: 18375793]
[24]
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870), 389-395.
[http://dx.doi.org/10.1038/415389a] [PMID: 11807545]
[25]
Giuliani, A.; Pirri, G.; Nicoletto, S. Antimicrobial peptides: An overview of a promising class of therapeutics. Open Life Sci., 2007, 2, 1-33.
[http://dx.doi.org/10.2478/s11535-007-0010-5]
[26]
Fjell, C.D.; Hiss, J.A.; Hancock, R.E.; Schneider, G. Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug Discov., 2011, 11(1), 37-51.
[http://dx.doi.org/10.1038/nrd3591] [PMID: 22173434]
[27]
Seo, M.D.; Won, H.S.; Kim, J.H.; Mishig-Ochir, T.; Lee, B.J. Antimicrobial peptides for therapeutic applications: A review. Molecules, 2012, 17(10), 12276-12286.
[http://dx.doi.org/10.3390/molecules171012276] [PMID: 23079498]
[28]
Khusro, A.; Aarti, C.; Agastian, P. Anti-tubercular peptides: A quest of future therapeutic weapon to combat tuberculosis. Asian Pac. J. Trop. Med., 2016, 9(11), 1023-1034.
[http://dx.doi.org/10.1016/j.apjtm.2016.09.005] [PMID: 27890360]
[29]
Kapoor, R.; Eimerman, P.R.; Hardy, J.W.; Cirillo, J.D.; Contag, C.H.; Barron, A.E. Efficacy of antimicrobial peptoids against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2011, 55(6), 3058-3062.
[http://dx.doi.org/10.1128/AAC.01667-10] [PMID: 21464254]
[30]
Jena, P.; Mohanty, S.; Mohanty, T.; Kallert, S.; Morgelin, M.; Lindstrøm, T.; Borregaard, N.; Stenger, S.; Sonawane, A.; Sørensen, O.E. Azurophil granule proteins constitute the major mycobactericidal proteins in human neutrophils and enhance the killing of mycobacteria in macrophages. PLoS One, 2012, 7(12)e50345
[http://dx.doi.org/10.1371/journal.pone.0050345] [PMID: 23251364]
[31]
Sharma, A.; Sharma, S.; Khuller, G.K.; Kanwar, A.J. In vitro and ex vivo activity of peptide deformylase inhibitors against Mycobacterium tuberculosis H37Rv. Int. J. Antimicrob. Agents, 2009, 34(3), 226-230.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.04.005] [PMID: 19505802]
[32]
Daletos, G.; Kalscheuer, R.; Koliwer-Brandl, H.; Hartmann, R.; de Voogd, N.J.; Wray, V.; Lin, W.; Proksch, P. Callyaerins from the marine sponge Callyspongia aerizusa: Cyclic peptides with antitubercular activity. J. Nat. Prod., 2015, 78(8), 1910-1925.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00266] [PMID: 26213786]
[33]
Koyama, N.; Kojima, S.; Nonaka, K.; Masuma, R.; Matsumoto, M.; Omura, S.; Tomoda, H. Calpinactam, a new anti-mycobacterial agent, produced by Mortierella alpina FKI-4905. J. Antibiot. (Tokyo), 2010, 63(4), 183-186.
[http://dx.doi.org/10.1038/ja.2010.14] [PMID: 20186169]
[34]
Loomans, H.J.; Hahn, B.L.; Li, Q.Q.; Phadnis, S.H.; Sohnle, P.G. Histidine-based zinc-binding sequences and the antimicrobial activity of calprotectin. J. Infect. Dis., 1998, 177(3), 812-814.
[http://dx.doi.org/10.1086/517816] [PMID: 9498472]
[35]
Rastogi, N.; Labrousse, V.; Goh, K.S. In vitro activities of fourteen antimicrobial agents against drug susceptible and resistant clinical isolates of Mycobacterium tuberculosis and comparative intracellular activities against the virulent H37Rv strain in human macrophages. Curr. Microbiol., 1996, 33(3), 167-175.
[http://dx.doi.org/10.1007/s002849900095] [PMID: 8672093]
[36]
Steinwede, K.; Maus, R.; Bohling, J.; Voedisch, S.; Braun, A.; Ochs, M.; Schmiedl, A.; Länger, F.; Gauthier, F.; Roes, J.; Welte, T.; Bange, F.C.; Niederweis, M.; Bühling, F.; Maus, U.A. Cathepsin G and neutrophil elastase contribute to lung-protective immunity against mycobacterial infections in mice. J. Immunol., 2012, 188(9), 4476-4487.
[http://dx.doi.org/10.4049/jimmunol.1103346] [PMID: 22461690]
[37]
Sonawane, A.; Santos, J.C.; Mishra, B.B.; Jena, P.; Progida, C.; Sorensen, O.E.; Gallo, R.; Appelberg, R.; Griffiths, G. Cathelicidin is involved in the intracellular killing of mycobacteria in macrophages. Cell. Microbiol., 2011, 13(10), 1601-1617.
[http://dx.doi.org/10.1111/j.1462-5822.2011.01644.x] [PMID: 21790937]
[38]
Li, M.; Rigby, K.; Lai, Y.; Nair, V.; Peschel, A.; Schittek, B.; Otto, M. Staphylococcus aureus mutant screen reveals interaction of the human antimicrobial peptide dermcidin with membrane phospholipids. Antimicrob. Agents Chemother., 2009, 53(10), 4200-4210.
[http://dx.doi.org/10.1128/AAC.00428-09] [PMID: 19596877]
[39]
Sosunov, V.; Mischenko, V.; Eruslanov, B.; Svetoch, E.; Shakina, Y.; Stern, N.; Majorov, K.; Sorokoumova, G.; Selishcheva, A.; Apt, A. Antimycobacterial activity of bacteriocins and their complexes with liposomes. J. Antimicrob. Chemother., 2007, 59(5), 919-925.
[http://dx.doi.org/10.1093/jac/dkm053] [PMID: 17347179]
[40]
Gao, W.; Kim, J.Y.; Anderson, J.R.; Akopian, T.; Hong, S.; Jin, Y.Y.; Kandror, O.; Kim, J.W.; Lee, I.A.; Lee, S.Y.; McAlpine, J.B.; Mulugeta, S.; Sunoqrot, S.; Wang, Y.; Yang, S.H.; Yoon, T.M.; Goldberg, A.L.; Pauli, G.F.; Suh, J.W.; Franzblau, S.G.; Cho, S. The cyclic peptide ecumicin targeting ClpC1 is active against Mycobacterium tuberculosis in vivo. Antimicrob. Agents Chemother., 2015, 59(2), 880-889.
[http://dx.doi.org/10.1128/AAC.04054-14] [PMID: 25421483]
[41]
Slungaard, A.; Mahoney, J.R., Jr Bromide-dependent toxicity of eosinophil peroxidase for endothelium and isolated working rat hearts: A model for eosinophilic endocarditis. J. Exp. Med., 1991, 173(1), 117-126.
[http://dx.doi.org/10.1084/jem.173.1.117] [PMID: 1985118]
[42]
Borelli, V.; Vita, F.; Shankar, S.; Soranzo, M.R.; Banfi, E.; Scialino, G.; Brochetta, C.; Zabucchi, G. Human eosinophil peroxidase induces surface alteration, killing, and lysis of Mycobacterium tuberculosis. Infect. Immun., 2003, 71(2), 605-613.
[http://dx.doi.org/10.1128/IAI.71.2.605-613.2003] [PMID: 12540536]
[43]
Nemeth, E.; Ganz, T. The role of hepcidin in iron metabolism. Acta Haematol., 2009, 122(2-3), 78-86.
[http://dx.doi.org/10.1159/000243791] [PMID: 19907144]
[44]
Sow, F.B.; Florence, W.C.; Satoskar, A.R.; Schlesinger, L.S.; Zwilling, B.S.; Lafuse, W.P. Expression and localization of hepcidin in macrophages: A role in host defense against tuberculosis. J. Leukoc. Biol., 2007, 82(4), 934-945.
[http://dx.doi.org/10.1189/jlb.0407216] [PMID: 17609338]
[45]
Yang, H.; Chen, H.; Liu, Z.; Ma, H.; Qin, L.; Jin, R.; Zheng, R.; Feng, Y.; Cui, Z.; Wang, J.; Liu, J.; Hu, Z. A novel B-cell epitope identified within Mycobacterium tuberculosis CFP10/ESAT-6 protein. PLoS One, 2013, 8(1)e52848
[http://dx.doi.org/10.1371/journal.pone.0052848] [PMID: 23308124]
[46]
Harder, J.; Bartels, J.; Christophers, E.; Schroder, J.M. Isolation and characterization of human β -defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem., 2001, 276(8), 5707-5713.
[http://dx.doi.org/10.1074/jbc.M008557200] [PMID: 11085990]
[47]
Corrales-Garcia, L.; Ortiz, E.; Castañeda-Delgado, J.; Rivas-Santiago, B.; Corzo, G. Bacterial expression and antibiotic activities of recombinant variants of human β-defensins on pathogenic bacteria and M. tuberculosis. Protein Expr. Purif., 2013, 89(1), 33-43.
[http://dx.doi.org/10.1016/j.pep.2013.02.007] [PMID: 23459290]
[48]
Kalita, A.; Verma, I.; Khuller, G.K. Role of human neutrophil peptide-1 as a possible adjunct to antituberculosis chemotherapy. J. Infect. Dis., 2004, 190(8), 1476-1480.
[http://dx.doi.org/10.1086/424463] [PMID: 15378441]
[49]
Carroll, J.; Draper, L.A.O.; O’Connor, P.M.; Coffey, A.; Hill, C.; Ross, R.P.; Cotter, P.D.; O’Mahony, J. Comparison of the activities of the lantibiotics nisin and lacticin 3147 against clinically significant mycobacteria. Int. J. Antimicrob. Agents, 2010, 36(2), 132-136.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.03.029] [PMID: 20547041]
[50]
Welsh, K.J.; Hwang, S.A.; Boyd, S.; Kruzel, M.L.; Hunter, R.L.; Actor, J.K. Influence of oral lactoferrin on Mycobacterium tuberculosis induced immunopathology. Tuberculosis (Edinb.), 2011, 91(Suppl. 1), S105-S113.
[http://dx.doi.org/10.1016/j.tube.2011.10.019] [PMID: 22138562]
[51]
Nascimento de Araújo, A.; Giugliano, L.G. Nascimento de AA. Human milk fractions inhibit the adherence of diffusely adherent Escherichia coli (DAEC) and enteroaggregative E. coli (EAEC) to HeLa cells. FEMS Microbiol. Lett., 2000, 184(1), 91-94.
[http://dx.doi.org/10.1016/S0378-1097(00)00028-8] [PMID: 10689172]
[52]
Gudmundsson, G.H.; Agerberth, B.; Odeberg, J.; Bergman, T.; Olsson, B.; Salcedo, R. The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur. J. Biochem., 1996, 238(2), 325-332.
[http://dx.doi.org/10.1111/j.1432-1033.1996.0325z.x] [PMID: 8681941]
[53]
Rivas-Santiago, B.; Rivas Santiago, C.E.; Castañeda-Delgado, J.E.; León-Contreras, J.C.; Hancock, R.E.; Hernandez-Pando, R. Activity of LL-37, CRAMP and antimicrobial peptide-derived compounds E2, E6 and CP26 against Mycobacterium tuberculosis. Int. J. Antimicrob. Agents, 2013, 41(2), 143-148.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.09.015] [PMID: 23141114]
[54]
Silva, J.P.; Gonçalves, C.; Costa, C.; Sousa, J.; Silva-Gomes, R.; Castro, A.G.; Pedrosa, J.; Appelberg, R.; Gama, F.M. Delivery of LLKKK18 loaded into self-assembling hyaluronic acid nanogel for tuberculosis treatment. J. Control. Release, 2016, 235, 112-124.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.064] [PMID: 27261333]
[55]
Iwatsuki, M.; Uchida, R.; Takakusagi, Y.; Matsumoto, A.; Jiang, C.L.; Takahashi, Y.; Arai, M.; Kobayashi, S.; Matsumoto, M.; Inokoshi, J.; Tomoda, H.; Omura, S. Lariatins, novel anti-mycobacterial peptides with a lasso structure, produced by Rhodococcus jostii K01-B0171. J. Antibiot. (Tokyo), 2007, 60(6), 357-363.
[http://dx.doi.org/10.1038/ja.2007.48] [PMID: 17617692]
[56]
Gavrish, E.; Sit, C.S.; Cao, S.; Kandror, O.; Spoering, A.; Peoples, A.; Ling, L.; Fetterman, A.; Hughes, D.; Bissell, A.; Torrey, H.; Akopian, T.; Mueller, A.; Epstein, S.; Goldberg, A.; Clardy, J.; Lewis, K. Lassomycin, a ribosomally synthesized cyclic peptide, kills mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem. Biol., 2014, 21(4), 509-518.
[http://dx.doi.org/10.1016/j.chembiol.2014.01.014] [PMID: 24684906]
[57]
Chung, H.J.; Montville, T.J.; Chikindas, M.L. Nisin depletes ATP and proton motive force in mycobacteria. Lett. Appl. Microbiol., 2000, 31(6), 416-420.
[http://dx.doi.org/10.1046/j.1472-765x.2000.00840.x] [PMID: 11123548]
[58]
Linde, C.M.; Hoffner, S.E.; Refai, E.; Andersson, M. In vitro activity of PR-39, a proline-arginine-rich peptide, against susceptible and multi-drug-resistant Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2001, 47(5), 575-580.
[http://dx.doi.org/10.1093/jac/47.5.575] [PMID: 11328767]
[59]
Ling, L.L.; Schneider, T.; Peoples, A.J.; Spoering, A.L.; Engels, I.; Conlon, B.P.; Mueller, A.; Schäberle, T.F.; Hughes, D.E.; Epstein, S.; Jones, M.; Lazarides, L.; Steadman, V.A.; Cohen, D.R.; Felix, C.R.; Fetterman, K.A.; Millett, W.P.; Nitti, A.G.; Zullo, A.M.; Chen, C.; Lewis, K. A new antibiotic kills pathogens without detectable resistance. Nature, 2015, 517(7535), 455-459.
[http://dx.doi.org/10.1038/nature14098] [PMID: 25561178]
[60]
Pruksakorn, P.; Arai, M.; Kotoku, N.; Vilchèze, C.; Baughn, A.D.; Moodley, P.; Jacobs, W.R., Jr; Kobayashi, M. Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorg. Med. Chem. Lett., 2010, 20(12), 3658-3663.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.100] [PMID: 20483615]
[61]
Pruksakorn, P.; Arai, M.; Liu, L.; Moodley, P.; Jacobs, W.R., Jr; Kobayashi, M. Action-mechanism of trichoderin A, an anti-dormant mycobacterial aminolipopeptide from marine sponge-derived Trichoderma sp. Biol. Pharm. Bull., 2011, 34(8), 1287-1290.
[http://dx.doi.org/10.1248/bpb.34.1287] [PMID: 21804219]
[62]
Alonso, S.; Pethe, K.; Russell, D.G.; Purdy, G.E. Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proc. Natl. Acad. Sci. USA, 2007, 104(14), 6031-6036.
[http://dx.doi.org/10.1073/pnas.0700036104] [PMID: 17389386]
[63]
Ramón-García, S.; Mikut, R.; Ng, C.; Ruden, S.; Volkmer, R.; Reischl, M.; Hilpert, K.; Thompson, C.J. Targeting Mycobacterium tuberculosis and other microbial pathogens using improved synthetic antibacterial peptides. Antimicrob. Agents Chemother., 2013, 57(5), 2295-2303.
[http://dx.doi.org/10.1128/AAC.00175-13] [PMID: 23478953]
[64]
Khalil, Z.G.; Salim, A.A.; Lacey, E.; Blumenthal, A.; Capon, R.J. Wollamides: Antimycobacterial cyclic hexapeptides from an Australian soil Streptomyces. Org. Lett., 2014, 16(19), 5120-5123.
[http://dx.doi.org/10.1021/ol502472c] [PMID: 25229313]
[65]
Patil, A.; Ganguly, S.; Surana, S. A systematic review of benzimidazole derivatives as an antiulcer agent. Rasayan J. Chem., 2008, 1, 447-460.
[66]
Dubey, A.K.; Sanyal, P.K. Benzimidazoles in a wormy world. Online Vet J., 2010, 5, 63.
[67]
Fonseca, T.; Gigante, B.; Gilchrist, T.L. A short synthesis of phenanthro [2, 3-d] imidazoles from dehydroabietic acid, application of the methodology as a convenient route to benzimidazoles. Tetrahedron, 2001, 57, 1793-1799.
[http://dx.doi.org/10.1016/S0040-4020(00)01158-3]
[68]
Pabba, C.; Wang, H.J.; Mulligan, S.R.; Chen, Z.J.; Stark, T.M.; Gregg, B.T. Microwave assisted synthesis of 1-aryl-1H-indazoles via one pot two-step Cu-catalyzed intramolecular N-arylation of arylhydrazones. Tetrahedron Lett., 2005, 46, 7553-7557.
[http://dx.doi.org/10.1016/j.tetlet.2005.08.143]
[69]
Torres-Gómez, H.; Hernández-Núñez, E.; León-Rivera, I.; Guerrero-Alvarez, J.; Cedillo-Rivera, R.; Moo-Puc, R.; Argotte-Ramos, R. Rodríguez-Gutiérrez, Mdel.C.; Chan-Bacab, M.J.; Navarrete-Vázquez, G. Design, synthesis and in vitro antiprotozoal activity of benzimidazole-pentamidine hybrids. Bioorg. Med. Chem. Lett., 2008, 18(11), 3147-3151.
[http://dx.doi.org/10.1016/j.bmcl.2008.05.009] [PMID: 18486471]
[70]
Denny, W.A.; Rewcastle, G.W.; Baguley, B.C. Potential antitumor agents. 59. Structure-activity relationships for 2-phenylbenzimidazole-4-carboxamides, a new class of “minimal” DNA-intercalating agents which may not act via topoisomerase II. J. Med. Chem., 1990, 33(2), 814-819.
[http://dx.doi.org/10.1021/jm00164a054] [PMID: 2153829]
[71]
Chopra, S.; Matsuyama, K.; Tran, T.; Malerich, J.P.; Wan, B.; Franzblau, S.G.; Lun, S.; Guo, H.; Maiga, M.C.; Bishai, W.R.; Madrid, P.B. Evaluation of gyrase B as a drug target in Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2012, 67(2), 415-421.
[http://dx.doi.org/10.1093/jac/dkr449] [PMID: 22052686]
[72]
Nandha, B.; Nargund, L.G.; Nargund, S.L.; Bhat, K. Design and synthesis of some novel fluorobenzimidazoles substituted with structural motifs present in physiologically active natural products for antitubercular activity. Iran. J. Pharm. Res., 2017, 16(3), 929-942.
[PMID: 29201084]
[73]
Shaikh, I.N.; Hosamani, K.M.; Kurjogi, M.M. Design, synthesis, and evaluation of new α-aminonitrile-based benzimidazole biomolecules as potent antimicrobial and antitubercular agents. Arch. Pharm. (Weinheim), 2018, 351(2)e1700205
[http://dx.doi.org/10.1002/ardp.201700205] [PMID: 29356105]
[74]
Gobis, K.; Foks, H.; Suchan, K.; Augustynowicz-Kopeć, E.; Napiórkowska, A.; Bojanowski, K. Novel 2-(2-phenalkyl)-1H-benzo[d]imidazoles as antitubercular agents. Synthesis, biological evaluation and structure-activity relationship. Bioorg. Med. Chem., 2015, 23(9), 2112-2120.
[http://dx.doi.org/10.1016/j.bmc.2015.03.008] [PMID: 25797161]
[75]
Anguru, M.R.; Taduri, A.K.; Bhoomireddy, R.D.; Jojula, M.; Gunda, S.K. Novel drug targets for Mycobacterium tuberculosis: 2-heterostyrylbenzimidazoles as inhibitors of cell wall protein synthesis. Chem. Cent. J., 2017, 11(1), 68.
[http://dx.doi.org/10.1186/s13065-017-0295-z] [PMID: 29086847]
[76]
Verma, A.; Joshi, S.; Singh, D. Imidazole: Having versatile biological activities. J. Chem., 2013, 329412, 1-12.
[77]
Howell Wescott, H.A.; Roberts, D.M.; Allebach, C.L.; Kokoczka, R.; Parish, T. Imidazoles induce reactive oxygen species in Mycobacterium tuberculosis which is not associated with cell death. ACS Omega, 2017, 2(1), 41-51.
[http://dx.doi.org/10.1021/acsomega.6b00212] [PMID: 28180188]
[78]
Wang, H.; Wang, A.; Gu, J.; Fu, L.; Lv, K.; Ma, C.; Tao, Z.; Wang, B.; Liu, M.; Guo, H.; Lu, Y. Synthesis and antitubercular evaluation of reduced lipophilic imidazo[1,2-a]pyridine-3-carboxamide derivatives. Eur. J. Med. Chem., 2019, 165, 11-17.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.071] [PMID: 30654236]
[79]
Khan, I.H.; Patel, N.B.; Patel, V.M. Synthesis, in silico molecular docking and pharmacokinetic studies, in vitro antimycobacterial and antimicrobial studies of new imidozolones clubbed with thiazolidinedione. Curr. Comput. Aided Drug Des., 2018, 14(4), 269-283.
[http://dx.doi.org/10.2174/1573409914666180516113552] [PMID: 29766819]
[80]
Pulipati, L.; Sridevi, J.P.; Yogeeswari, P.; Sriram, D.; Kantevari, S. Synthesis and antitubercular evaluation of novel dibenzo[b,d]thiophene tethered imidazo[1,2-a]pyridine-3-carboxamides. Bioorg. Med. Chem. Lett., 2016, 26(13), 3135-3140.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.088] [PMID: 27184765]
[81]
Krasavin, M.; Mujumdar, P.; Parchinsky, V.; Vinogradova, T.; Manicheva, O.; Dogonadze, M. Library of diversely substituted 2-(quinolin-4-yl)imidazolines delivers novel non-cytotoxic antitubercular leads. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1146-1155.
[http://dx.doi.org/10.3109/14756366.2015.1101094] [PMID: 26526717]
[82]
Desai, N.C.; Trivedi, A.R.; Khedkar, V.M. Preparation, biological evaluation and molecular docking study of imidazolyl dihydropyrimidines as potential Mycobacterium tuberculosis dihydrofolate reductase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(16), 4030-4035.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.082] [PMID: 27397497]
[83]
Shalini; Viljoen, A.; Kremer, L.; Kumar, V. Alkylated/aminated nitroimidazoles and nitroimidazole-7-chloroquinoline conjugates: Synthesis and anti-mycobacterial evaluation. Bioorg. Med. Chem. Lett., 2018, 28(8), 1309-1312.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.021] [PMID: 29551480]
[84]
Kang, Y.G.; Park, C.Y.; Shin, H.; Singh, R.; Arora, G.; Yu, C.M.; Lee, I.Y. Synthesis and anti-tubercular activity of 2-nitroimidazooxazines with modification at the C-7 position as PA-824 analogs. Bioorg. Med. Chem. Lett., 2015, 25(17), 3650-3653.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.060] [PMID: 26199118]
[85]
Palmer, B.D.; Sutherland, H.S.; Blaser, A.; Kmentova, I.; Franzblau, S.G.; Wan, B.; Wang, Y.; Ma, Z.; Denny, W.A.; Thompson, A.M. Synthesis and structure-activity relationships for extended side chain analogues of the antitubercular drug (6S)-2-nitro-6-[4-(trifluoromethoxy)benzyl]oxy-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824). J. Med. Chem., 2015, 58(7), 3036-3059.
[http://dx.doi.org/10.1021/jm501608q] [PMID: 25781074]