Subcellular Organelle Targeting of Mitochondria Using Nanomedicines: Cancer Therapeutics and Theranostics Potential

Page: [358 - 390] Pages: 33

  • * (Excluding Mailing and Handling)

Abstract

Nanomedicines are rapidly evolving in chemotherapy and image-guided theranostics for specific and controlled delivery of the target therapeutic molecule. Targeting the subcellular organelles of cancer cells has gained focus in the recent decade for precise targeting of cancer cells and the activation of specific cancer death pathways. This strategy also overcomes the limitations of conventional chemo and radiation therapies, such as non-specificity and toxicity to the surrounding healthy tissue. Diverse roles of mitochondria in cancer, including oxidative stress signaling, metabolic reprogramming, cell death evasion, and cell survival mechanism, make it a promising target for cancer therapy. However, targeting mitochondria is tedious due to its complex structure and strong negative membrane potential. Various studies have designed mitochondria specific inorganic-, polymer-, dendrimer-, peptide- and protein-based nanoformulations to overcome barriers in targeting mitochondria of cancer cells. In this review, we have summarized the recently developed mitochondria-targeted nanoformulations in the field of chemotherapy, imageguided phototherapy, and combinatorial therapies. These nanoformulations showed enhanced cell penetration and mitochondrial accumulation of the drug molecules. In vitro and in vivo studies have shown promising results and further pre-clinical and clinical studies are required to develop these nanoformulations as effective cancer therapy.

Keywords: Cancer therapy, combinatorial therapy, mitochondrial-targeting, nanoformulations, phototherapy, nanomedicines.

Graphical Abstract

[1]
Wallace DC. Mitochondria and cancer. Nat Rev Cancer 2012; 12(10): 685-98.https://pubmed.ncbi.nlm. nih.gov/23001348
[http://dx.doi.org/10.1038/nrc3365] [PMID: 23001348]
[2]
Chandel NS. Mitochondria as signaling organelles. BMC Biol 2014; 12: 34.https://pubmed.ncbi.nlm.nih. gov/24884669
[http://dx.doi.org/10.1186/1741-7007-12-34] [PMID: 24884669]
[3]
Vyas S, Zaganjor E, Haigis MC. Mitochondria and Cancer. Cell 2016; 166(3): 555-66.https://pubmed. ncbi.nlm.nih.gov/27471965
[http://dx.doi.org/10.1016/j.cell.2016.07.002] [PMID: 27471965]
[4]
Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet 2005; 6(5): 389-402.https://pubmed.ncbi.nlm.nih.gov/15861210
[http://dx.doi.org/10.1038/nrg1606] [PMID: 15861210]
[5]
Carew JS, Huang P. Mitochondrial defects in cancer. Mol Cancer 2002; 1: 9.https://pubmed.ncbi.nlm.nih. gov/12513701
[http://dx.doi.org/10.1186/1476-4598-1-9] [PMID: 12513701]
[6]
Brandon M, Baldi P, Wallace DC. Mitochondrial mutations in cancer. Oncogene 2006; 25(34): 4647-62.
[http://dx.doi.org/10.1038/sj.onc.1209607] [PMID: 16892079]
[7]
Jia D, Park JH, Jung KH, Levine H, Kaipparettu BA. Elucidating the metabolic plasticity of cancer: Mitochondrial reprogramming and hybrid metabolic states. Cells 2018; 7(3): 21.https://pubmed.ncbi.nlm.nih. gov/29534029
[http://dx.doi.org/10.3390/cells7030021] [PMID: 29534029]
[8]
Porporato PE, Filigheddu N, Pedro JMB, Kroemer G, Galluzzi L. Mitochondrial metabolism and cancer. Cell Res 2018; 28(3): 265-80.
[http://dx.doi.org/10.1038/cr.2017.155] [PMID: 29219147]
[9]
Dong L, Neuzil J. Targeting mitochondria as an anticancer strategy. Cancer Commun (Lond) 2019; 39(1): 63.
[http://dx.doi.org/10.1186/s40880-019-0412-6] [PMID: 31653274]
[10]
Wang W, Karamanlidis G, Tian R. Novel targets for mitochondrial medicine. Sci Transl Med 2016; 8326rv3https://pubmed.ncbi.nlm.nih.gov/26888432
[http://dx.doi.org/10.1126/scitranslmed.aac7410]
[11]
Vakifahmetoglu-Norberg H, Xia H, Yuan J. Pharmacologic agents targeting autophagy. J Clin Invest 2015; 125(1): 5-13.https://pubmed.ncbi.nlm.nih. gov/25654545
[12]
Tuquet C, Dupont J, Mesneau A, Roussaux J. Effects of tamoxifen on the electron transport chain of isolated rat liver mitochondria. Cell Biol Toxicol 2000; 16(4): 207-19.
[http://dx.doi.org/10.1023/A:1007695308257] [PMID: 11101003]
[13]
dos Santos GAS, Abreu e Lima RS, Pestana CR, et al. (+)α-Tocopheryl succinate inhibits the mitochondrial respiratory chain complex I and is as effective as arsenic trioxide or ATRA against acute promyelocytic leukemia in vivo. Leukemia 2012; 26(3): 451-60.
[http://dx.doi.org/10.1038/leu.2011.216] [PMID: 21869839]
[14]
Jardim-Messeder D, Moreira-Pacheco F. 3-Bromopyruvic acid inhibits tricarboxylic acid cycle and glutaminolysis in HepG2 Cells. Anticancer Res 2016; 36(5): 2233-41.http://ar.iiarjournals.org/ content/36/5/2233
[15]
Karlsson H, Senkowski W, Fryknäs M, et al. A novel tumor spheroid model identifies selective enhancement of radiation by an inhibitor of oxidative phosphorylation. Oncotarget 2019; 10(51): 5372-82.https://pubmed.ncbi.nlm.nih.gov/31523395
[http://dx.doi.org/10.18632/oncotarget.27166] [PMID: 31523395]
[16]
Zhou Y, Lu N, Qiao C, et al. FV-429 induces apoptosis and inhibits glycolysis by inhibiting Akt-mediated phosphorylation of hexokinase II in MDA-MB-231 cells. Mol Carcinog 2016; 55(9): 1317-28.
[http://dx.doi.org/10.1002/mc.22374] [PMID: 26258875]
[17]
Guo Y, Wei L, Zhou Y, et al. Flavonoid GL-V9 induces apoptosis and inhibits glycolysis of breast cancer via disrupting GSK-3β-modulated mitochondrial binding of HKII. Free Radic Biol Med 2020; 146: 119-29.http://europepmc.org/abstract/MED/31669347
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.10.413] [PMID: 31669347]
[18]
Scheffold A, Jebaraj BMC, Stilgenbauer S. Venetoclax: targeting bcl2 in hematological cancers Recent results cancer res fortschritte der krebsforsch prog dans les rech sur le cancer 2018; 212: 215-42..
[19]
Pathak RK, Kolishetti N, Dhar S. Targeted nanoparticles in mitochondrial medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015; 7(3): 315-29.https://pubmed.ncbi.nlm.nih.gov/25348382
[http://dx.doi.org/10.1002/wnan.1305]
[20]
Schenkel LC, Bakovic M. Formation and regulation of mitochondrial membranes.Aquilano K, Editor Int J Cell Biol. 2014; 709828..
[http://dx.doi.org/10.1155/2014/709828]
[21]
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm Res 2016; 33(10): 2373-87.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
[22]
Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: principles, properties, and regulatory issues. Front Chem 2018; 6: 360.https://www.frontiersin.org/ article/10.3389/fchem.2018.00360
[http://dx.doi.org/10.3389/fchem.2018.00360] [PMID: 30177965]
[23]
Ventola CL. Progress in nanomedicine: Approved and investigational nanodrugs. P&T 2017; 42(12): 742-55.https://pubmed.ncbi.nlm.nih.gov/29234213
[PMID: 29234213]
[24]
Hasan S. A Review on nanoparticles. Their synthesis and types. Res J Recent Sci 2015; 4: 1-3.
[25]
Lombardo D, Kiselev MA, Caccamo MT. Smart Nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine Fratoddi I. Editor J Nanomater.. 2019.
[26]
Zhao X, Yang K, Zhao R, et al. Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy. Biomaterials 2016; 102: 187-97.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.032] [PMID: 27343466]
[27]
Liu C-G, Han Y-H, Kankala RK, Wang S-B, Chen A-Z. Subcellular performance of nanoparticles in cancer therapy. Int J Nanomedicine 2020; 15: 675-704.https://pubmed.ncbi.nlm.nih.gov/32103936
[http://dx.doi.org/10.2147/IJN.S226186] [PMID: 32103936]
[28]
Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol 2019; 71(8): 1185-98.
[http://dx.doi.org/10.1111/jphp.13098] [PMID: 31049986]
[29]
Gong N, Ma X, Ye X, et al. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. Nat Nanotechnol 2019; 14(4): 379-87.
[http://dx.doi.org/10.1038/s41565-019-0373-6] [PMID: 30778211]
[30]
Chen Y, Ai W, Guo X, et al. Mitochondria-Targeted polydopamine nanocomposite with AIE photosensitizer for image-guided photodynamic and photothermal tumor ablation. Small 2019; 15(30)e1902352
[http://dx.doi.org/10.1002/smll.201902352] [PMID: 31183957]
[31]
Huang Y, Li X, Sha H, et al. Tumor-penetrating peptide fused to a pro-apoptotic peptide facilitates effective gastric cancer therapy. Oncol Rep 2017; 37(4): 2063-70.
[http://dx.doi.org/10.3892/or.2017.5440] [PMID: 28260064]
[32]
Zielonka J, Joseph J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, et al. Mitochondria-targeted triphenylphosphonium-based compounds: Syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem Rev 2017; 117(15): 10043-20.https://pubmed.ncbi.nlm.nih.gov/28654243
[33]
Chen Z-P, Li M, Zhang L-J, et al. Mitochondria-targeted drug delivery system for cancer treatment. J Drug Target 2016; 24(6): 492-502.
[http://dx.doi.org/10.3109/1061186X.2015.1108325] [PMID: 26548930]
[34]
Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev 2019; 48(7): 2053-108.
[http://dx.doi.org/10.1039/C8CS00618K] [PMID: 30259015]
[35]
Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics Nat Rev Mater. 2017.https://pubmed.ncbi.nlm.nih.gov/29075517
[http://dx.doi.org/10.1038/natrevmats.2017.24]
[36]
Zhao C-Y, Cheng R, Yang Z, Tian Z-M. Nanotechnology for cancer therapy based on chemotherapy. Molecules 2018; 23(4): 826.https://pubmed.ncbi.nlm. nih.gov/29617302
[http://dx.doi.org/10.3390/molecules23040826] [PMID: 29617302]
[37]
Barenholz Y. Doxil®--the first FDA-approved nano-drug: lessons learned. J Control Release 2012; 160(2): 117-34.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[38]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[39]
García-Pinel B, Porras-Alcalá C, Ortega-Rodríguez A, Sarabia F, Prados J, Melguizo C, et al. .Lipid-based nanoparticles: Application and recent advances in cancer treatment. Nanomater (Basel, Switzerland) 2019; 9(4): 638.. https://pubmed.ncbi.nlm.nih.gov/31010180
[40]
Rajabi M, Mousa SA. Lipid Nanoparticles and their application in nanomedicine. Curr Pharm Biotechnol 2016; 17(8): 662-72.
[http://dx.doi.org/10.2174/1389201017666160415155457] [PMID: 27087491]
[41]
Juang V, Chang C-H, Wang C-S, Wang H-E, Lo Y-L. pH-responsive PEG-shedding and targeting peptide-modified nanoparticles for dual-delivery of irinotecan and microRNA to enhance tumor-specific therapy. Small 2019; 15(49)e1903296
[http://dx.doi.org/10.1002/smll.201903296] [PMID: 31709707]
[42]
Kim CH, Kang TH, Kim BD, et al. Enhanced docetaxel delivery using sterically stabilized RIPL peptide-conjugated nanostructured lipid carriers: In vitro and in vivo antitumor efficacy against SKOV3 ovarian cancer cells. Int J Pharm 2020; 583119393
[http://dx.doi.org/10.1016/j.ijpharm.2020.119393] [PMID: 32376445]
[43]
Singh Y, Meher JG, Raval K, et al. Nanoemulsion: Concepts, development and applications in drug delivery. J Control Release 2017; 252: 28-49.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.008] [PMID: 28279798]
[44]
Shakhwar S, Darwish R, Kamal MM, Nazzal S, Pallerla S, Abu Fayyad A. Development and evaluation of paclitaxel nanoemulsion for cancer therapy. Pharm Dev Technol 2020; 25(4): 510-6.
[http://dx.doi.org/10.1080/10837450.2019.1706564] [PMID: 31858867]
[45]
Salehi F, Jamali T, Kavoosi G, Ardestani SK, Vahdati SN. Stabilization of Zataria essential oil with pectin-based nanoemulsion for enhanced cytotoxicity in monolayer and spheroid drug-resistant breast cancer cell cultures and deciphering its binding mode with gDNA Int J Biol Macromol 2020: S0141-8130(20); 34173-8..
[PMID: 32795576]
[46]
Shanmugapriya K, Kim H, Kang HW. In vitro antitumor potential of astaxanthin nanoemulsion against cancer cells via mitochondrial mediated apoptosis. Int J Pharm 2019; 560: 334-46.
[http://dx.doi.org/10.1016/j.ijpharm.2019.02.015] [PMID: 30797074]
[47]
Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009; 30(11): 592-9.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[48]
Silverman JA, Deitcher SR. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol 2012; 71(3): 555-64.https://pubmed.ncbi.nlm.nih.gov/23212117
[49]
Frampton JE. Liposomal irinotecan: A review in metastatic pancreatic adenocarcinoma Drugs 2020; 80(10): 1007-18.. https://pubmed.ncbi.nlm.nih.gov/32557396
[http://dx.doi.org/10.1007/s40265-020-01336-6] [PMID: 32557396]
[50]
Cheng Y, Ji Y. Mitochondria-targeting nanomedicine self-assembled from GSH-responsive paclitaxel-ss-berberine conjugate for synergetic cancer treatment with enhanced cytotoxicity. J Control Release 2020; 318: 38-49.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.011] [PMID: 31830542]
[51]
Tian Y, Zhang H, Qin Y, et al. Overcoming drug-resistant lung cancer by paclitaxel-loaded hyaluronic acid-coated liposomes targeted to mitochondria. Drug Dev Ind Pharm 2018; 44(12): 2071-82.
[http://dx.doi.org/10.1080/03639045.2018.1512613] [PMID: 30112929]
[52]
Pandey S, Patil S, Ballav N, Basu S. Spatial targeting of Bcl-2 on endoplasmic reticulum and mitochondria in cancer cells by lipid nanoparticles. J Mater Chem B Mater Biol Med 2020; 8(19): 4259-66.
[http://dx.doi.org/10.1039/D0TB00408A] [PMID: 32285907]
[53]
Li J, Zhang B, Chang X, et al. Silver nanoparticles modulate mitochondrial dynamics and biogenesis in HepG2 cells. Environ Pollut 2020; 256113430
[http://dx.doi.org/10.1016/j.envpol.2019.113430] [PMID: 31685329]
[54]
Gurunathan S, Jeyaraj M, La H, et al. Anisotropic platinum nanoparticle-induced cytotoxicity, Apoptosis, inflammatory response, and transcriptomic and molecular pathways in human acute monocytic leukemia cells. Int J Mol Sci 2020; 21(2)E440
[http://dx.doi.org/10.3390/ijms21020440] [PMID: 31936679]
[55]
Babak MV, Zhi Y, Czarny B, et al. Dual-targeting dual-action Platinum (IV) platform for enhanced anticancer activity and reduced nephrotoxicity. Angew Chem Int Ed Engl 2019; 58(24): 8109-14.
[http://dx.doi.org/10.1002/anie.201903112] [PMID: 30945417]
[56]
Kim YJ, Perumalsamy H, Castro-Aceituno V, et al. Photoluminescent and self-assembled hyaluronic acid-zinc oxide-ginsenoside Rh2 nanoparticles and their potential caspase-9 apoptotic mechanism towards cancer cell lines. Int J Nanomedicine 2019; 14: 8195-208.
[http://dx.doi.org/10.2147/IJN.S221328] [PMID: 31632027]
[57]
Wang T, Deng Y, Chen Y, et al. Disordered metabolism and repair mechanism: mitochondria influenced by cationic and neutral nanoparticles. J Biomed Nanotechnol 2019; 15(12): 2428-38.
[http://dx.doi.org/10.1166/jbn.2019.2864] [PMID: 31748022]
[58]
Enea M, Pereira E, de Almeida MP, Araújo AM, de Lourdes Bastos M, Carmo H. Gold nanoparticles induce oxidative stress and apoptosis in human kidney cells. Nanomater (Basel Switzerland) 2020; 10(5): 995.
[59]
Mahalakshmi M, Kumar P. Phloroglucinol-conjugated gold nanoparticles targeting mitochondrial membrane potential of human cervical (HeLa) cancer cell lines. Spectrochim Acta A Mol Biomol Spectrosc 2019; 219: 450-6.
[http://dx.doi.org/10.1016/j.saa.2019.04.060] [PMID: 31063960]
[60]
Adeyemi JA, Machado ART, Ogunjimi AT, Alberici LC, Antunes LMG, Barbosa F Jr. Cytotoxicity, mutagenicity, oxidative stress and mitochondrial impairment in human hepatoma (HepG2) cells exposed to copper oxide, copper-iron oxide and carbon nanoparticles. Ecotoxicol Environ Saf 2020; 189109982
[http://dx.doi.org/10.1016/j.ecoenv.2019.109982] [PMID: 31830603]
[61]
Gao Y, Chen K, Ma J-L, Gao F. Cerium oxide nanoparticles in cancer. OncoTargets Ther 2014; 7: 835-40.https://pubmed.ncbi.nlm.nih.gov/24920925
[http://dx.doi.org/10.2147/OTT.S62057] [PMID: 24920925]
[62]
Gutiérrez-Carcedo P, Navalón S, Simó R, Setoain X, Aparicio-Gómez C, Abasolo I, et al. Alteration of the mitochondrial effects of ceria nanoparticles by gold: An approach for the mitochondrial modulation of cells based on nanomedicine. Nanomater (Basel Switzerland) 2020; 10(4): 744.
[63]
Mittal L, Camarillo IG, Varadarajan GS, Srinivasan H, Aryal UK, Sundararajan R. High-throughput, label-free quantitative proteomic studies of the anticancer effects of electrical pulses with turmeric silver nanoparticles: An in vitro model study. Sci Rep 2020; 10(1): 7258.
[http://dx.doi.org/10.1038/s41598-020-64128-8] [PMID: 32350346]
[64]
Jahanbani J, Ghotbi M, Shahsavari F, Seydi E, Rahimi S, Pourahmad J. Selective anticancer activity of superparamagnetic iron oxide nanoparticles (SPIONs) against oral tongue cancer using in vitro methods: The key role of oxidative stress on cancerous mitochondria. J Biochem Mol Toxicol 2020; 34(10)e22557
[http://dx.doi.org/10.1002/jbt.22557] [PMID: 32583933]
[65]
Bharti C, Nagaich U, Pal AK, Gulati N. Mesoporous silica nanoparticles in target drug delivery system: A review. Int J Pharm Investig 2015; 5(3): 124-33.https://pubmed.ncbi.nlm.nih.gov/26258053
[http://dx.doi.org/10.4103/2230-973X.160844] [PMID: 26258053]
[66]
Xu C, Lei C, Yu C. Mesoporous silica nanoparticles for protein protection and delivery Front Chem 2019; 7: 290.. https://www.frontiersin.org/article/103389/fchem.2019.00290
[http://dx.doi.org/10.3389/fchem.2019.00290] [PMID: 31119124]
[67]
Gao J, Fan K, Jin Y, et al. PEGylated lipid bilayer coated mesoporous silica nanoparticles co-delivery of paclitaxel and curcumin leads to increased tumor site drug accumulation and reduced tumor burden. Eur J Pharm Sci 2019; 140105070
[http://dx.doi.org/10.1016/j.ejps.2019.105070] [PMID: 31518679]
[68]
Naz S, Wang M, Han Y, et al. Enzyme-responsive mesoporous silica nanoparticles for tumor cells and mitochondria multistage-targeted drug delivery. Int J Nanomedicine 2019; 14: 2533-42.
[http://dx.doi.org/10.2147/IJN.S202210] [PMID: 31114189]
[69]
Wang L, Niu X, Song Q, et al. A two-step precise targeting nanoplatform for tumor therapy via the alkyl radicals activated by the microenvironment of organelles. J Control Release 2020; 318: 197-209.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.017] [PMID: 31672622]
[70]
Wu Y, Ge P, Xu W, et al. Cancer-targeted and intracellular delivery of Bcl-2-converting peptide with functional macroporous silica nanoparticles for biosafe treatment. Mater Sci Eng C 2020; 108110386
[http://dx.doi.org/10.1016/j.msec.2019.110386] [PMID: 31923940]
[71]
Zhao M-X, Zeng E-Z. Application of functional quantum dot nanoparticles as fluorescence probes in cell labeling and tumor diagnostic imaging. Nanoscale Res Lett 2015; 10: 171.https://pubmed.ncbi.nlm.nih. gov/25897311
[http://dx.doi.org/10.1186/s11671-015-0873-8] [PMID: 25897311]
[72]
Gui R, Jin H, Wang Z, Li J. Black phosphorus quantum dots: synthesis, properties, functionalized modification and applications. Chem Soc Rev 2018; 47(17): 6795-823.
[http://dx.doi.org/10.1039/C8CS00387D] [PMID: 30014059]
[73]
Shang Y, Wang Q, Wu B, et al. Platelet-membrane-camouflaged black phosphorus quantum dots enhance anticancer effect mediated by apoptosis and autophagy. ACS Appl Mater Interfaces 2019; 11(31): 28254-66.
[http://dx.doi.org/10.1021/acsami.9b04735] [PMID: 31291079]
[74]
Husseini GA, Pitt WG. Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv Drug Deliv Rev 2008; 60(10): 1137-52.https://pubmed.ncbi.nlm. nih.gov/18486269
[http://dx.doi.org/10.1016/j.addr.2008.03.008]
[75]
Wang H, Zhang F, Wen H, et al. Tumor- and mitochondria-targeted nanoparticles eradicate drug resistant lung cancer through mitochondrial pathway of apoptosis. J Nanobiotechnology 2020; 18(1): 8.
[http://dx.doi.org/10.1186/s12951-019-0562-3] [PMID: 31918714]
[76]
Zhong X-C, Xu W-H, Wang Z-T, et al. Doxorubicin derivative loaded acetal-PEG-PCCL micelles for overcoming multidrug resistance in MCF-7/ADR cells. Drug Dev Ind Pharm 2019; 45(9): 1556-64.
[http://dx.doi.org/10.1080/03639045.2019.1640721] [PMID: 31271317]
[77]
Jia L, Jia N, Gao Y, et al. Multi-modulation of doxorubicin resistance in breast cancer cells by poly (l-histidine)-based multifunctional micelles. Pharmaceutics 2019; 11(8)E385
[http://dx.doi.org/10.3390/pharmaceutics11080385] [PMID: 31382390]
[78]
Fang L, Fan H, Guo C, et al. Novel mitochondrial targeting multifunctional surface charge-reversal polymeric nanoparticles for cancer treatment. J Biomed Nanotechnol 2019; 15(11): 2151-63.
[http://dx.doi.org/10.1166/jbn.2019.2854] [PMID: 31847930]
[79]
Bolhassani A, Javanzad S, Saleh T, Hashemi M, Aghasadeghi MR, Sadat SM. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum Vaccin Immunother 2014; 10(2): 321.https://pubmed.ncbi.nlm. nih.gov/24128651
[http://dx.doi.org/10.4161/hv.26796]
[80]
Nair RR, Piktel D, Hathaway QA, et al. Pyrvinium pamoate use in a B cell acute lymphoblastic leukemia model of the bone tumor microenvironment. Pharm Res 2020; 37(3): 43.
[http://dx.doi.org/10.1007/s11095-020-2767-4] [PMID: 31989336]
[81]
Wang Y, Zhang Y, Ru Z, et al. A ROS-responsive polymeric prodrug nanosystem with self-amplified drug release for PSMA (-) prostate cancer specific therapy. J Nanobiotechnology 2019; 17(1): 91.
[http://dx.doi.org/10.1186/s12951-019-0521-z] [PMID: 31451114]
[82]
Yu H, Li J-M, Deng K, et al. Tumor acidity activated triphenylphosphonium-based mitochondrial targeting nanocarriers for overcoming drug resistance of cancer therapy. Theranostics 2019; 9(23): 7033-50.
[http://dx.doi.org/10.7150/thno.35748] [PMID: 31660085]
[83]
Liu Y, Zhou Z, Lin X, et al. Enhanced reactive oxygen species generation by mitochondria targeting of anticancer drug to overcome tumor multidrug resistance. Biomacromolecules 2019; 20(10): 3755-66.
[http://dx.doi.org/10.1021/acs.biomac.9b00800] [PMID: 31465208]
[84]
Song J, Lin C, Yang X, et al. Mitochondrial targeting nanodrugs self-assembled from 9-O-octadecyl substituted berberine derivative for cancer treatment by inducing mitochondrial apoptosis pathways. J Control Release 2019; 294: 27-42.
[http://dx.doi.org/10.1016/j.jconrel.2018.11.014] [PMID: 30445003]
[85]
Cohen-Erez I, Issacson C, Lavi Y, et al. Antitumor effect of lonidamine-polypeptide-peptide nanoparticles in breast cancer models. ACS Appl Mater Interfaces 2019; 11(36): 32670-8.
[http://dx.doi.org/10.1021/acsami.9b09886] [PMID: 31414594]
[86]
Li H-Q, Ye W-L, Huan M-L, et al. Mitochondria and nucleus delivery of active form of 10-hydroxy-camptothecin with dual shell to precisely treat colorectal cancer. Nanomedicine (Lond) 2019; 14(8): 1011-32.
[http://dx.doi.org/10.2217/nnm-2018-0227] [PMID: 30925116]
[87]
Lee SY, Cho H-J. Mitochondria targeting and destabilizing hyaluronic acid derivative-based nanoparticles for the delivery of lapatinib to triple-negative breast cancer. Biomacromolecules 2019; 20(2): 835-45.
[http://dx.doi.org/10.1021/acs.biomac.8b01449] [PMID: 30566834]
[88]
Barcelo-Bovea V, Dominguez-Martinez I, Joaquin-Ovalle F, et al. Optimization and characterization of protein nanoparticles for the targeted and smart delivery of cytochrome c to non-small cell lung carcinoma. Cancers (Basel) 2020; 12(5)E1215
[http://dx.doi.org/10.3390/cancers12051215] [PMID: 32413975]
[89]
Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 2017; 9(4): 53.https://pubmed.ncbi.nlm. nih.gov/29156634
[http://dx.doi.org/10.3390/pharmaceutics9040053] [PMID: 29156634]
[90]
Fang L, Lin H, Wu Z, et al. In vitro/vivo evaluation of novel mitochondrial targeting charge-reversal polysaccharide-based antitumor nanoparticle. Carbohydr Polym 2020; 234115930
[http://dx.doi.org/10.1016/j.carbpol.2020.115930] [PMID: 32070547]
[91]
Mallick S, Song SJ, Bae Y, Choi JS. Self-assembled nanoparticles composed of glycol chitosan-dequalinium for mitochondria-targeted drug delivery. Int J Biol Macromol 2019; 132: 451-60.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.215] [PMID: 30930268]
[92]
Adeyemi SA, Choonara YE, Kumar P, et al. Folate-decorated, endostatin-loaded, nanoparticles for anti-proliferative chemotherapy in esophaegeal squamous cell carcinoma. Biomed Pharmacother 2019; 119109450
[http://dx.doi.org/10.1016/j.biopha.2019.109450] [PMID: 31541853]
[93]
Fang L, Zhang W, Wang Z, et al. Novel mitochondrial targeting charge-reversal polysaccharide hybrid shell/core nanoparticles for prolonged systemic circulation and antitumor drug delivery. Drug Deliv 2019; 26(1): 1125-39.
[http://dx.doi.org/10.1080/10717544.2019.1687614] [PMID: 31736389]
[94]
Xu F, Huang X, Wang Y, Zhou S. A Size-changeable collagenase-modified nanoscavenger for increasing penetration and retention of nanomedicine in deep tumor tissue. Adv Mater 2020; 32(16)e1906745
[http://dx.doi.org/10.1002/adma.201906745] [PMID: 32105374]
[95]
de Araújo RV, Santos S da S. Igne Ferreira E, Giarolla J. New advances in general biomedical applications of PAMAM dendrimers. Molecules 2018; 23(11): 2849.https://pubmed.ncbi.nlm.nih.gov/30400134
[http://dx.doi.org/10.3390/molecules23112849]
[96]
Maghsoudnia N, Baradaran Eftekhari R, Naderi Sohi A, et al. Mitochondrial delivery of microRNA mimic let-7b to NSCLC cells by PAMAM-based nanoparticles. J Drug Target 2020; 28(7-8): 818-30.
[http://dx.doi.org/10.1080/1061186X.2020.1774594] [PMID: 32452217]
[97]
Wu Y, Zhong D, Li Y, et al. Tumor-Oriented telomerase-terminated nanoplatform as versatile strategy for multidrug resistance reversal in cancer treatment. Adv Healthc Mater 2020; 9(7)e1901739
[http://dx.doi.org/10.1002/adhm.201901739] [PMID: 32125789]
[98]
Yamada Y, Fukuda Y, Sasaki D, Maruyama M, Harashima H. Development of a nanoparticle that releases nucleic acids in response to a mitochondrial environment. Mitochondrion 2020; 52: 67-74.
[http://dx.doi.org/10.1016/j.mito.2020.02.009] [PMID: 32097722]
[99]
Czupiel P, Delplace V, Shoichet M. Nanoparticle delivery of a pH-sensitive prodrug of doxorubicin and a mitochondrial targeting VES-H8R8 synergistically kill multi-drug resistant breast cancer cells. Sci Rep 2020; 10(1): 8726.
[http://dx.doi.org/10.1038/s41598-020-65450-x] [PMID: 32457422]
[100]
Priwitaningrum DL, Jentsch J, Bansal R, et al. Apoptosis-inducing peptide loaded in PLGA nanoparticles induces anti-tumor effects in vivo. Int J Pharm 2020; 585119535
[http://dx.doi.org/10.1016/j.ijpharm.2020.119535] [PMID: 32534162]
[101]
He H, Lin X, Guo J, Wang J, Xu B. Perimitochondrial enzymatic self-assembly for selective targeting the mitochondria of cancer cells. ACS Nano 2020; 14(6): 6947-55.
[http://dx.doi.org/10.1021/acsnano.0c01388] [PMID: 32383849]
[102]
Hosseinifar N, Goodarzi N, Sharif AAM, Amini M, Esfandyari-Manesh M, Dinarvand R. .Preparation and characterization of albumin nanoparticles of paclitaxel-triphenylphosphonium conjugates: New approach to subcellular targeting. Drug Res (Stuttg) 2020; 70(2-03): 71-9..
[103]
Kunjiappan S, Govindaraj S, Parasuraman P, et al. Design, in silico modelling and functionality theory of folate-receptor-targeted myricetin-loaded bovine serum albumin nanoparticle formulation for cancer treatment. Nanotechnology 2020; 31(15)155102
[http://dx.doi.org/10.1088/1361-6528/ab5c56] [PMID: 31775133]
[104]
Zhu X-J, Li R-F, Xu L, et al. A Novel self-assembled mitochondria-targeting protein nanoparticle acting as theranostic platform for cancer. Small 2019; 15(2)e1803428
[http://dx.doi.org/10.1002/smll.201803428] [PMID: 30450734]
[105]
Zhan Y, Ma W, Zhang Y, et al. DNA-Based nanomedicine with targeting and enhancement of therapeutic efficacy of breast cancer cells. ACS Appl Mater Interfaces 2019; 11(17): 15354-65.
[http://dx.doi.org/10.1021/acsami.9b03449] [PMID: 30924334]
[106]
Yan Y, Li X-Q, Duan J-L, et al. Nanosized functional miRNA liposomes and application in the treatment of TNBC by silencing Slug gene. Int J Nanomedicine 2019; 14: 3645-67.
[http://dx.doi.org/10.2147/IJN.S207837] [PMID: 31190817]
[107]
D’Almeida O, Mothar O, Bondzie EA, et al. Encapsulated miR-200c and Nkx2.1 in a nuclear/mitochondria transcriptional regulatory network of non-metastatic and metastatic lung cancer cells. BMC Cancer 2019; 19(1): 136.
[http://dx.doi.org/10.1186/s12885-019-5337-6] [PMID: 30744585]
[108]
Yan J, Chen J, Zhang N, et al. Mitochondria-targeted tetrahedral DNA nanostructures for doxorubicin delivery and enhancement of apoptosis. J Mater Chem B Mater Biol Med 2020; 8(3): 492-503.
[http://dx.doi.org/10.1039/C9TB02266J] [PMID: 31840727]
[109]
Zhao B, Zhao P, Jin Z, Fan M, Meng J, He Q. Programmed ROS/CO-releasing nanomedicine for synergetic chemodynamic-gas therapy of cancer. J Nanobiotechnology 2019; 17(1): 75.
[http://dx.doi.org/10.1186/s12951-019-0507-x] [PMID: 31196217]
[110]
Meng J, Jin Z, Zhao P, Zhao B, Fan M, He Q. A multistage assembly/disassembly strategy for tumor-targeted CO delivery. Sci Adv 2020; 6(20)eaba1362
[http://dx.doi.org/10.1126/sciadv.aba1362] [PMID: 32440551]
[111]
Smith BR, Gambhir SS. Nanomaterials for in vivo imaging. Chem Rev 2017; 117(3): 901-86.
[http://dx.doi.org/10.1021/acs.chemrev.6b00073] [PMID: 28045253]
[112]
Frangioni JV. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 2003; 7(5): 626-34.http://www.sciencedirect.com/science/article/pii/S1367593103001091
[http://dx.doi.org/10.1016/j.cbpa.2003.08.007] [PMID: 14580568]
[113]
Yi G, Hong SH, Son J, et al. Recent advances in nanoparticle carriers for photodynamic therapy. Quant Imaging Med Surg 2018; 8(4): 433-43.https:// pubmed.ncbi.nlm.nih.gov/29928608
[http://dx.doi.org/10.21037/qims.2018.05.04] [PMID: 29928608]
[114]
Sivasubramanian M, Chuang YC, Lo L-W. Evolution of nanoparticle-mediated photodynamic therapy: From superficial to deep-seated cancers. Molecules 2019; 24(3): 520. https://pubmed.ncbi.nlm.nih.gov/30709030.
[http://dx.doi.org/10.3390/molecules24030520] [PMID: 30709030]
[115]
Yang G, Chen C, Zhu Y, et al. GSH-Activatable NIR nanoplatform with mitochondria targeting for enhancing tumor-specific therapy. ACS Appl Mater Interfaces 2019; 11(48): 44961-9.
[http://dx.doi.org/10.1021/acsami.9b15996] [PMID: 31692323]
[116]
Zhang J, Fang F, Liu B, et al. Intrinsically cancer-mitochondria-targeted thermally activated delayed fluorescence nanoparticles for two-photon-activated fluorescence imaging and photodynamic therapy. ACS Appl Mater Interfaces 2019; 11(44): 41051-61.
[http://dx.doi.org/10.1021/acsami.9b14552] [PMID: 31602976]
[117]
Qi T, Chen B, Wang Z, et al. A pH-Activatable nanoparticle for dual-stage precisely mitochondria-targeted photodynamic anticancer therapy. Biomaterials 2019; 213119219
[http://dx.doi.org/10.1016/j.biomaterials.2019.05.030] [PMID: 31132647]
[118]
Gao Y, Zheng QC, Xu S, et al. Theranostic nanodots with aggregation-induced emission characteristic for targeted and image-guided photodynamic therapy of hepatocellular carcinoma. Theranostics 2019; 9(5): 1264-79.
[http://dx.doi.org/10.7150/thno.29101] [PMID: 30867829]
[119]
Chen H, He C, Chen T, Xue X. New strategy for precise cancer therapy: tumor-specific delivery of mitochondria-targeting photodynamic therapy agents and in situ O(2)-generation in hypoxic tumors. Biomater Sci 2020; 8: 3994-4002.
[http://dx.doi.org/10.1039/D0BM00500B]
[120]
Xie R, Lian S, Peng H, et al. Mitochondria and nuclei dual-targeted hollow carbon nanospheres for cancer chemophotodynamic synergistic therapy. Mol Pharm 2019; 16(5): 2235-48.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00259] [PMID: 30896172]
[121]
Purushothaman B, Choi J, Park S, et al. Biotin-conjugated PEGylated porphyrin self-assembled nanoparticles co-targeting mitochondria and lysosomes for advanced chemo-photodynamic combination therapy. J Mater Chem B Mater Biol Med 2019; 7(1): 65-79.
[http://dx.doi.org/10.1039/C8TB01923A] [PMID: 32254951]
[122]
Kou J, Dou D, Yang L. Porphyrin photosensitizers in photodynamic therapy and its applications. Oncotarget 2017; 8(46): 81591-603.https://pubmed.ncbi.nlm. nih.gov/29113417
[http://dx.doi.org/10.18632/oncotarget.20189] [PMID: 29113417]
[123]
Mozhi A, Sunil V, Zhan W, Ghode PB, Thakor NV, Wang C-H. Enhanced penetration of pro-apoptotic and anti-angiogenic micellar nanoprobe in 3D multicellular spheroids for chemophototherapy. J Control Release 2020; 323: 502-18.
[http://dx.doi.org/10.1016/j.jconrel.2020.05.005] [PMID: 32387550]
[124]
Cheng H, Zheng R-R, Fan G-L, et al. Mitochondria and plasma membrane dual-targeted chimeric peptide for single-agent synergistic photodynamic therapy. Biomaterials 2019; 188: 1-11.
[http://dx.doi.org/10.1016/j.biomaterials.2018.10.005] [PMID: 30312907]
[125]
Hou H, Huang X, Wei G, Xu F, Wang Y, Zhou S. Fenton reaction-assisted photodynamic therapy for cancer with multifunctional magnetic nanoparticles. ACS Appl Mater Interfaces 2019; 11(33): 29579-92.
[http://dx.doi.org/10.1021/acsami.9b09671] [PMID: 31359756]
[126]
Chen C, Ni X, Jia S, et al. Massively evoking immunogenic cell death by focused mitochondrial oxidative stress using an aie luminogen with a twisted molecular structure. Adv Mater 2019; 31(52)e1904914
[http://dx.doi.org/10.1002/adma.201904914] [PMID: 31696981]
[127]
Yang C, Fu Y, Huang C, et al. Chlorin e6 and CRISPR-Cas9 dual-loading system with deep penetration for a synergistic tumoral photodynamic-immunotherapy. Biomaterials 2020; 255120194
[http://dx.doi.org/10.1016/j.biomaterials.2020.120194] [PMID: 32569867]
[128]
Huo D, Zhu J, Chen G, et al. Eradication of unresectable liver metastasis through induction of tumour specific energy depletion. Nat Commun 2019; 10(1): 3051.
[http://dx.doi.org/10.1038/s41467-019-11082-3] [PMID: 31296864]
[129]
Lu H, Jiang X, Chen Y, et al. Cyclometalated iridium(iii) complex nanoparticles for mitochondria-targeted photodynamic therapy. Nanoscale 2020; 12(26): 14061-7.
[http://dx.doi.org/10.1039/D0NR03398G] [PMID: 32582896]
[130]
Alves CG, Lima-Sousa R, de Melo-Diogo D, Louro RO, Correia IJ. IR780 based nanomaterials for cancer imaging and photothermal, photodynamic and combinatorial therapies. Int J Pharm 2018; 542(1-2): 164-75.http://www.sciencedirect.com/science/article/pii/S0378517318301674
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.020] [PMID: 29549013]
[131]
Yang Z, Wang J, Liu S, et al. Defeating relapsed and refractory malignancies through a nano-enabled mitochondria-mediated respiratory inhibition and damage pathway. Biomaterials 2020; 229119580
[http://dx.doi.org/10.1016/j.biomaterials.2019.119580] [PMID: 31707296]
[132]
Qu J, Teng D, Sui G, et al. A photothermal-hypoxia sequentially activatable phase-change nanoagent for mitochondria-targeting tumor synergistic therapy. Biomater Sci 2020; 8(11): 3116-29.
[http://dx.doi.org/10.1039/D0BM00003E] [PMID: 32352102]
[133]
Ma B, Sheng J, Wang P, Jiang Z, Borrathybay E. Combinational phototherapy and hypoxia-activated chemotherapy favoring antitumor immune responses. Int J Nanomedicine 2019; 14: 4541-58.
[http://dx.doi.org/10.2147/IJN.S203383] [PMID: 31417257]
[134]
Yang Z, Wang J, Ai S, Sun J, Mai X, Guan W. Self-generating oxygen enhanced mitochondrion-targeted photodynamic therapy for tumor treatment with hypoxia scavenging. Theranostics 2019; 9(23): 6809-23.
[http://dx.doi.org/10.7150/thno.36988] [PMID: 31660070]
[135]
Zhang J, Zhang D, Li Q, et al. Task-specific design of immune-augmented nanoplatform to enable high-efficiency tumor immunotherapy. ACS Appl Mater Interfaces 2019; 11(46): 42904-16.
[http://dx.doi.org/10.1021/acsami.9b13556] [PMID: 31657540]
[136]
Chaudhuri K, Keck RW, Selman SH. Morphological changes of tumor microvasculature following hematoporphyrin derivative sensitized photodynamic therapy. Photochem Photobiol 1987; 46(5): 823-7.
[http://dx.doi.org/10.1111/j.1751-1097.1987.tb04854.x] [PMID: 3441505]
[137]
Fernandez JM, Bilgin MD, Grossweiner LI. Singlet oxygen generation by photodynamic agents. J Photochem Photobiol B 1997; 37(1): 131-40.http://www.sciencedirect.com/science/article/pii/S1011134496073496
[http://dx.doi.org/10.1016/S1011-1344(96)07349-6]
[138]
Kang JH, Ko YT. Dual-selective photodynamic therapy with a mitochondria-targeted photosensitizer and fiber optic cannula for malignant brain tumors. Biomater Sci 2019; 7(7): 2812-25.
[http://dx.doi.org/10.1039/C9BM00403C] [PMID: 31066391]
[139]
Yu W, He X, Yang Z, et al. Sequentially responsive biomimetic nanoparticles with optimal size in combination with checkpoint blockade for cascade synergetic treatment of breast cancer and lung metastasis. Biomaterials 2019; 217119309
[http://dx.doi.org/10.1016/j.biomaterials.2019.119309] [PMID: 31271855]
[140]
Hong T, Jiang Y, Yue Z, Song X, Wang Z, Zhang S. Construction of multicolor upconversion nanotheranostic agent for in-situ cooperative photodynamic therapy for deep-seated malignant tumors. Front Chem 2020; 8: 52.
[http://dx.doi.org/10.3389/fchem.2020.00052] [PMID: 32117878]
[141]
Liang S, Sun C, Yang P, et al. Core-shell structured upconversion nanocrystal-dendrimer composite as a carrier for mitochondria targeting and catalase enhanced anti-cancer photodynamic therapy. Biomaterials 2020; 240119850
[http://dx.doi.org/10.1016/j.biomaterials.2020.119850] [PMID: 32092593]
[142]
Liu C, Liu B, Zhao J, et al. Nd3+ -sensitized upconversion metal-organic frameworks for mitochondria-targeted amplified photodynamic therapy. Angew Chem Int Ed Engl 2020; 59(7): 2634-8.
[http://dx.doi.org/10.1002/anie.201911508] [PMID: 31750975]
[143]
Song X, Yue Z, Hong T, Wang Z, Zhang S. Sandwich-structured upconversion nanoprobes coated with a thin silica layer for mitochondria-targeted cooperative photodynamic therapy for solid malignant tumors. Anal Chem 2019; 91(13): 8549-57.
[http://dx.doi.org/10.1021/acs.analchem.9b01805] [PMID: 31247732]
[144]
Deng W, McKelvey KJ, Guller A, et al. Application of mitochondrially targeted nanoconstructs to neoadjuvant x-ray-induced photodynamic therapy for rectal cancer. ACS Cent Sci 2020; 6(5): 715-26.
[http://dx.doi.org/10.1021/acscentsci.9b01121] [PMID: 32490188]
[145]
Gu X, Shen C, Li H, Goldys EM, Deng W. X-ray induced photodynamic therapy (PDT) with a mitochondria-targeted liposome delivery system. J Nanobiotechnology 2020; 18(1): 87.
[http://dx.doi.org/10.1186/s12951-020-00644-z] [PMID: 32522291]
[146]
Yang R, Fang X-L, Zhen Q, Chen Q-Y, Feng C. Mitochondrial targeting nano-curcumin for attenuation on PKM2 and FASN. Colloids Surf B Biointerfaces 2019; 182110405
[http://dx.doi.org/10.1016/j.colsurfb.2019.110405] [PMID: 31377611]
[147]
Wang Q, Sui G, Wu X, et al. A sequential targeting nanoplatform for anaplastic thyroid carcinoma theranostics. Acta Biomater 2020; 102: 367-83.
[http://dx.doi.org/10.1016/j.actbio.2019.11.043] [PMID: 31778831]
[148]
Wang M, Ruan L, Zheng T, et al. A surface convertible nanoplatform with enhanced mitochondrial targeting for tumor photothermal therapy. Colloids Surf B Biointerfaces 2020; 1891: 10854.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110854] [PMID: 32086023]
[149]
Wang Q, Xu J, Geng R, et al. High performance one-for-all phototheranostics: NIR-II fluorescence imaging guided mitochondria-targeting phototherapy with a single-dose injection and 808 nm laser irradiation. Biomaterials 2020; 231119671
[http://dx.doi.org/10.1016/j.biomaterials.2019.119671] [PMID: 31855624]
[150]
Xu J, Shamul JG, Wang H, et al. Targeted heating of mitochondria greatly augments nanoparticle-mediated cancer chemotherapy. Adv Healthc Mater 2020; 9(14)e2000181
[http://dx.doi.org/10.1002/adhm.202000181] [PMID: 32548935]
[151]
Xing Y, Cai Z, Xu M, et al. Raman observation of a molecular signaling pathway of apoptotic cells induced by photothermal therapy. Chem Sci (Camb) 2019; 10(47): 10900-10.
[http://dx.doi.org/10.1039/C9SC04389F] [PMID: 32190245]
[152]
Wang W, Liu J, Feng W, et al. Targeting mitochondria with Au-Ag@Polydopamine nanoparticles for papillary thyroid cancer therapy. Biomater Sci 2019; 7(3): 1052-63.
[http://dx.doi.org/10.1039/C8BM01414K] [PMID: 30628592]
[153]
Denora N, Lee C, Iacobazzi RM, et al. TSPO-targeted NIR-fluorescent ultra-small iron oxide nanoparticles for glioblastoma imaging. Eur J Pharm Sci 2019; 139105047
[http://dx.doi.org/10.1016/j.ejps.2019.105047] [PMID: 31422171]
[154]
Li C, Zhang W, Liu S, Hu X, Xie Z. Mitochondria-targeting organic nanoparticles for enhanced photodynamic/photothermal therapy. ACS Appl Mater Interfaces 2020; 12(27): 30077-84.
[http://dx.doi.org/10.1021/acsami.0c06144] [PMID: 32551483]
[155]
Shi C-E, You C-Q, Pan L. Facile formulation of near-infrared light-triggered hollow mesoporous silica nanoparticles based on mitochondria targeting for on-demand chemo/photothermal/photodynamic therapy. Nanotechnology 2019; 30(32)325102
[http://dx.doi.org/10.1088/1361-6528/ab1367] [PMID: 30913541]
[156]
Huang H, Dong Y, Zhang Y, et al. GSH-sensitive Pt(IV) prodrug-loaded phase-transitional nanoparticles with a hybrid lipid-polymer shell for precise theranostics against ovarian cancer. Theranostics 2019; 9(4): 1047-65.
[http://dx.doi.org/10.7150/thno.29820] [PMID: 30867815]
[157]
Zhang L, Yi H, Song J, et al. Mitochondria-targeted and ultrasound-activated nanodroplets for enhanced deep-penetration sonodynamic cancer therapy. ACS Appl Mater Interfaces 2019; 11(9): 9355-66.
[http://dx.doi.org/10.1021/acsami.8b21968] [PMID: 30734551]
[158]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[159]
Tran S, DeGiovanni P-J, Piel B, Rai P. Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med 2017; 6(1): 44.https://pubmed.ncbi. nlm.nih.gov/29230567
[http://dx.doi.org/10.1186/s40169-017-0175-0] [PMID: 29230567]
[160]
Anselmo AC, Mitragotri S. Nanoparticles in the clinic: An update. Bioeng Transl Med 2019; 4(3): e10143-3.https://pubmed.ncbi.nlm.nih.gov/31572799
[http://dx.doi.org/10.1002/btm2.10143] [PMID: 31572799]
[161]
FDA approves liposomal vincristine (Marqibo) for rare leukemia. Oncology (Williston Park) 2012; 26(9): 841.
[PMID: 23061340]
[162]
Krauss AC, Gao X, Li L, et al. FDA approval summary: (daunorubicin and cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia. Clin Cancer Res 2019; 25(9): 2685-90.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2990] [PMID: 30541745]
[163]
Batist G, Barton J, Chaikin P, Swenson C, Welles L. Myocet (liposome-encapsulated doxorubicin citrate): a new approach in breast cancer therapy. Expert Opin Pharmacother 2002; 3(12): 1739-51.
[http://dx.doi.org/10.1517/14656566.3.12.1739] [PMID: 12472371]
[164]
Bernabeu E, Cagel M, Lagomarsino E, Moretton M, Chiappetta DA. Paclitaxel: What has been done and the challenges remain ahead. Int J Pharm 2017; 526(1-2): 474-95.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.016] [PMID: 28501439]
[165]
Jimmy R, Stern C, Lisy K, White S. Effectiveness of mifamurtide in addition to standard chemotherapy for high-grade osteosarcoma: a systematic review. JBI Database Syst Rev Implement Reports 2017; 15(8): 2113-52.
[http://dx.doi.org/10.11124/JBISRIR-2016-003105] [PMID: 28800058]
[166]
Tan YY, Yap PK, Xin Lim GL, et al. Perspectives and advancements in the design of nanomaterials for targeted cancer theranostics. Chem Biol Interact 2020; 329109221http://www.sciencedirect.com/ science/article/pii/S0009279720310231
[http://dx.doi.org/10.1016/j.cbi.2020.109221] [PMID: 32768398]
[167]
Li Q, Huang Y. Mitochondrial targeted strategies and their application for cancer and other diseases treatment. J Pharm Investig 2020; 50(3): 271-93.
[http://dx.doi.org/10.1007/s40005-020-00481-0]
[168]
Golombek SK, May J-N, Theek B, Appold L, Drude N, Kiessling F, et al. Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Deliv Rev 2018; 130: 17-38.https://pubmed.ncbi.nlm.nih. gov/30009886
[169]
Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater 2016; 1(5): 16014.
[http://dx.doi.org/10.1038/natrevmats.2016.14]
[170]
Hua S, de Matos MBC, Metselaar JM, Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front Pharmacol 2018; 9: 790.https://pubmed.ncbi. nlm.nih.gov/30065653
[http://dx.doi.org/10.3389/fphar.2018.00790] [PMID: 30065653]