Recent Advances in Electrical & Electronic Engineering

Author(s): Baoquan Liu*, Mengjie Xu and Jingwen Chen

DOI: 10.2174/2352096513999201026225452

Fully-autonomous Operation of an AC Micro-grid with Inherent Seamless Switching

Page: [222 - 232] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Conventional micro-grids operate autonomously in islanded mode but they always rely on the utility grid for BUS voltage support and power balance in the grid-connected mode. This results in non-seamless mode switching, alternating operation strategy and power exchange fluctuation problems.

Methods: An AC/DC/AC converter is utilized as the interface between the micro-grid and the utility grid. This enables the two entities to have different voltages in the grid-connected mode. The microgrid exchanges predefined amount of power with the utility grid in the grid-connected mode. The power amount is estimated based on power forecasting of local generations and loads with the consideration of the Sate of Charge (SOC) of the battery, and is updated and broadcasted every 15 minutes.

Results: A 100kVA AC micro-grid with a rotating generator, battery storage and solar arrays is built on Matlab/Simulink for investigation. Results indicate that the battery can effectively balance the power flow and mode switching hardly causes distortions.

Conclusion: The proposed micro-grid can operate autonomously in both grid-connected and islanded mode without relying on the utility grid. Seamless switching between operation modes can be achieved naturally. Constant power is exchanged with the power grid, which benefits the powerdispatching algorithm of the power system.

Keywords: Fully autonomous, AC micro-grid, AC/DC/AC converter, diesel genset, seamless switching, power forecasting.

Graphical Abstract

[1]
H. Robert, "Microgrid: A conceptual solution In", IEEE 35th Annual Power Electronics Specialists Conference Aachen, Germany, 2004pp. 4285-4290
[2]
L.A. de Souza Ribeiro, O.R. Saavedra, S.L. de Lima, and J. Gomes de Matos, "Isolated micro-grids with renewable hybrid generation: the case of Lençóis island", IEEE Trans. Sustain. Energy, vol. 2, pp. 1-11, 2011.
[3]
H. Shi, F. Zhuo, H. Yi, F. Wang, D. Zhang, and Z. Geng, "A novel real-time voltage and frequency compensation strategy for photovoltaic-based microgrid", IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3545-3556, 2015.
[4]
Y. Tan, and Z. Wang, "Incorporating unbalanced operation constraints of three-phase distributed generation", IEEE Trans. Power Syst., vol. 34, no. 3, pp. 2449-2452, 2019.
[http://dx.doi.org/10.1109/TPWRS.2019.2895559]
[5]
G. Kou, L. Chen, P. VanSant, F. Velez-Cedeno, and Y. Liu, "Fault characteristics of distributed solar generation", IEEE Trans. Power Deliv., vol. 35, no. 2, pp. 1062-1064, 2020.
[http://dx.doi.org/10.1109/TPWRD.2019.2907462]
[6]
Z. Li, Q. Guo, H. Sun, J. Wang, Y. Xu, and M. Fan, "A distributed transmission-distribution-coupled static voltage stability assessment method considering distributed generation", IEEE Trans. Power Syst., vol. 33, no. 3, pp. 2621-2632, 2018.
[http://dx.doi.org/10.1109/TPWRS.2017.2762473]
[7]
C. Wan, J. Lin, W. Guo, and Y. Song, "Maximum uncertainty boundary of volatile distributed generation in active distribution network", IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 2930-2942, 2018.
[http://dx.doi.org/10.1109/TSG.2016.2623760]
[8]
A. Rosato, M. Panella, R. Araneo, and A. Andreotti, "A neural Network Based Prediction System of Distributed Generation for the management of microgrids", IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 7092-7102, 2019.
[http://dx.doi.org/10.1109/TIA.2019.2916758]
[9]
Y. Zhu, F. Zhuo, F. Wang, B. Liu, and Y. Zhao, "A wireless load sharing strategy for islanded microgrid based on feeder current sensing", IEEE Trans. Power Electron., vol. 30, no. 12, pp. 6706-6719, 2015.
[http://dx.doi.org/10.1109/TPEL.2014.2386851]
[10]
D. Chen, and L. Xu, "Autonomous DC voltage control of a DC Microgrid with multiple slack terminals", IEEE Trans. Power Syst., vol. 27, pp. 1897-1905, 2012.
[http://dx.doi.org/10.1109/TPWRS.2012.2189441]
[11]
X. Liu, M. Shahidehpour, Z. Li, X. Liu, Y. Cao, and Z. Bie, "Microgrids for enhancing the power grid resilience in extreme conditions", IEEE Trans. Smart Grid, vol. 8, no. 2, pp. 589-597, 2017.
[12]
W. Jiang, C. Yang, Z. Liu, M. Liang, P. Li, and G. Zhou, "A hierarchical control structure for distributed energy storage system in DC micro-grid", IEEE Access, vol. 7, pp. 128787-128795, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2939626]
[13]
Y. Yu, Z. Cai, and Y. Huang, "Energy storage arbitrage in grid-connected micro-grids under real-time market price uncertainty: A double-Q learning approach", IEEE Access, vol. 8, pp. 54456-54464, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2981543]
[14]
C. Zhang, Y. Xu, and Z.Y. Dong, "Robustly coordinated operation of a multi-energy micro-grid in grid-connected and islanded modes under uncertainties", IEEE Transact. Sustain. Energ., vol. 11, no. 2, pp. 640-651, 2020.
[http://dx.doi.org/10.1109/TSTE.2019.2900082]
[15]
S. Sun, J. Fu, L. Wei, and A. Li, "Multi-objective optimal dispatching for a grid-connected micro-grid considering wind power forecasting probability", IEEE Access, vol. 8, pp. 46981-46997, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2977921]
[16]
C. Dou, N. Li, D. Yue, and T. Liu, "Hierarchical hybrid control strategy for micro-grid switching stabilization during operating mode conversion", IET Gener. Transm. Distrib., vol. 10, no. 12, pp. 2880-2890, 2016.
[http://dx.doi.org/10.1049/iet-gtd.2015.1256]
[17]
S.S. Thale, and V. Agarwal, "Controller area network assisted grid synchronization of a microgrid with renewable energy sources and storage", IEEE Trans. Smart Grid, vol. 7, no. 3, pp. 1442-1452, 2016.
[http://dx.doi.org/10.1109/TSG.2015.2453157]
[18]
S.M. Malik, X. Ai, Y. Sun, C. Zhengqi, and Z. Shupeng, "Voltage and frequency control strategies of hybrid AC/DC microgrid: A review", IET Gener. Transm. Distrib., vol. 11, no. 2, pp. 303-313, 2017.
[http://dx.doi.org/10.1049/iet-gtd.2016.0791]
[19]
F. Nejabatkhah, and Y.W. Li, "Overview of power management strategies of hybrid AC/DC microgrid", IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7072-7089, 2015.
[http://dx.doi.org/10.1109/TPEL.2014.2384999]
[20]
C. Wang, Y. Mi, Y. Fu, and P. Wang, "Frequency control of an isolated micro-grid using double sliding mode controllers and disturbance observer", IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 923-930, 2018.
[http://dx.doi.org/10.1109/TSG.2016.2571439]
[21]
A. Ahmad, and J.Y. Khan, "Roof-top stand-alone PV micro-grid: A joint real-time BES management, load scheduling and energy procurement from a peaker generator", IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 3895-3909, 2019.
[http://dx.doi.org/10.1109/TSG.2018.2842757]
[22]
Y. Khayat, "Decentralized optimal frequency control in autonomous microgrids", IEEE Trans. Power Syst., vol. 34, no. 3, pp. 2345-2353, 2019.
[http://dx.doi.org/10.1109/TPWRS.2018.2889671]
[23]
A. Micallef, M. Apap, C. Spiteri-Staines, and J.M. Guerrero, "Single-phase microgrid with seamless transition capabilities between modes of operation", IEEE Trans. Smart Grid, vol. 6, no. 6, pp. 2736-2745, 2015.
[http://dx.doi.org/10.1109/TSG.2015.2444912]
[24]
M.N. Arafat, A. Elrayyah, and Y. Sozer, "An effective smooth transition control strategy using droop-based synchronization for parallel inverters", IEEE Trans. Ind. Appl., vol. 51, no. 3, pp. 2443-2454, 2015.
[http://dx.doi.org/10.1109/TIA.2014.2369826]
[25]
Y.A.R.I. Mohamed, and A.A. Radwan, "Hierarchical control system for robust microgrid operation and seamless mode transfer in active distribution systems", IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 352-362, 2011.
[http://dx.doi.org/10.1109/TSG.2011.2136362]
[26]
B. Liu, F. Zhuo, Y. Zhu, and H. Yi, "System operation and energy management of a renewable energy-based DC micro-grid for high penetration depth application", IEEE Trans. Smart Grid, vol. 6, no. 3, pp. 1147-1155, 2015.
[http://dx.doi.org/10.1109/TSG.2014.2374163]
[27]
X. Zheng, H. Cao, H. Li, T. Cui, Y. Jiang, and M. Zhang, "Multi-inverters Pre-synchronization VSG control strategy for the microgrid system In", 2019 IEEE 4th International Future Energy Electronics Conference (IFEEC).Singapore, Singapore 2019, pp. 1-5.
[http://dx.doi.org/10.1109/IFEEC47410.2019.9015077]
[28]
A. Mojallal, S. Lotfifard, and S.M. Azimi, "A nonlinear supplementary controller for transient response improvement of distributed generations in micro-grids", IEEE Transact. Sustain. Energ, vol. 11, no. 1, pp. 489-499, 2020.
[http://dx.doi.org/10.1109/TSTE.2019.2895961]
[29]
Z. Zeng, and W. Shao, "Reconnection of micro-grid from islanded mode to grid-connected mode used sliding Goertzel transform based filter", IET Renew. Power Gener., vol. 11, no. 7, pp. 1041-1048, 2017.
[http://dx.doi.org/10.1049/iet-rpg.2016.0932]
[30]
J. Zhang, Q. Wang, C. Hu, and T. Rui, "A new control strategy of seamless transfer between grid-connected and islanding operation for micro-grid In", 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2017pp. 1729-1732
[http://dx.doi.org/10.1109/ICIEA.2017.8283118]
[31]
S. Pelland, D. Turcotte, G. Colgate, and A. Swingler, "Nemiah valley photovoltaic-diesel mini-grid: System performance and fuel saving based on one year of monitored data", IEEE Transact. Sustain. Energ., vol. 3, no. 1, pp. 167-175, 2012.
[http://dx.doi.org/10.1109/TSTE.2011.2170444]
[32]
C.D. Rodríguez-Gallegos, "A siting and sizing optimization approach for PV–battery–diesel hybrid systems", IEEE Trans. Ind. Appl., vol. 54, no. 3, pp. 2637-2645, 2018.
[http://dx.doi.org/10.1109/TIA.2017.2787680]
[33]
I. Das, and C.A. Cañizares, "Renewable energy integration in diesel-based microgrids at the canadian arctic. In", Proc. IEEE, vol. 107, no. 9, pp. 1838-1856, 2019.
[http://dx.doi.org/10.1109/JPROC.2019.2932743]
[34]
F. Dubuisson, M. Rezkallah, A. Chandra, M. Saad, M. Tremblay, and H. Ibrahim, "Control of hybrid wind–diesel standalone microgrid for water treatment system application", IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 6499-6507, 2019.
[http://dx.doi.org/10.1109/TIA.2019.2938727]
[35]
C. Wang, J. Li, and Y. Hu, "Frequency control of isolated wind-diesel microgrid power system by double equivalent-input-disturbance controllers", IEEE Access, vol. 7, pp. 105617-105626, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2932472]
[36]
C. Ahumada, R. Cárdenas, D. Sáez, and J.M. Guerrero, "Secondary control strategies for frequency restoration in islanded microgrids with consideration of communication delays", IEEE Trans. Smart Grid, vol. 7, no. 3, pp. 1430-1441, 2016.
[http://dx.doi.org/10.1109/TSG.2015.2461190]
[37]
D.I. Brandao, T. Caldognetto, F.P. Marafão, M.G. Simões, J.A. Pomilio, and P. Tenti, "Centralized control of distributed single-phase inverters arbitrarily connected to three-phase four-wire microgrids", IEEE Trans. Smart Grid, vol. 8, no. 1, pp. 437-446, 2017.
[http://dx.doi.org/10.1109/TSG.2016.2586744]
[38]
H. Han, X. Hou, J. Yang, J. Wu, M. Su, and J.M. Guerrero, "Review of power sharing control strategies for islanding operation of AC microgrids", IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 200-215, 2016.
[http://dx.doi.org/10.1109/TSG.2015.2434849]
[39]
X. Meng, J. Liu, and Z. Liu, "A generalized droop control for grid-supporting inverter based on comparison between traditional droop control and virtual synchronous generator control", IEEE Trans. Power Electron., vol. 34, no. 6, pp. 5416-5438, 2019.
[http://dx.doi.org/10.1109/TPEL.2018.2868722]
[40]
M. Mokhtar, M.I. Marei, and A.A. El-Sattar, "An adaptive droop control scheme for DC microgrids integrating sliding mode voltage and current controlled boost converters", IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 1685-1693, 2019.
[http://dx.doi.org/10.1109/TSG.2017.2776281]
[41]
Z. Li, C. Zang, P. Zeng, H. Yu, and S. Li, "Fully distributed hierarchical control of parallel grid-supporting inverters in islanded AC microgrids", IEEE Trans. Industr. Inform., vol. 14, no. 2, pp. 679-690, 2018.
[http://dx.doi.org/10.1109/TII.2017.2749424]
[42]
C.X. Rosero, M. Velasco, P. Martí, A. Camacho, J. Miret, and M. Castilla, "Active power sharing and frequency regulation in droop-free control for islanded microgrids under electrical and communication failures", IEEE Trans. Ind. Electron., vol. 67, no. 8, pp. 6461-6472, 2020.
[http://dx.doi.org/10.1109/TIE.2019.2939959]
[43]
G.H. Ang, G. Chong, and Yun. Li, "PID control system analysis, design, and technology", IEEE Trans. Contr. Syst. Technol., vol. 13, no. 4, pp. 559-576, 2005.
[http://dx.doi.org/10.1109/TCST.2005.847331]
[44]
N. Merayo, "PID controller based on a self-adaptive neural network to ensure Qos bandwidth requirements in passive optical networks", IEEE J. Optic. Commun. Netw., vol. 9, no. 5, pp. 433-445, 2017.
[http://dx.doi.org/10.1364/JOCN.9.000433]
[45]
Z. Pan, F. Dong, J. Zhao, L. Wang, H. Wang, and Y. Feng, "Combined resonant controller and two-degree-of-freedom PID controller for PMSLM current harmonics suppression", IEEE Trans. Ind. Electron., vol. 65, no. 9, pp. 7558-7568, 2018.
[http://dx.doi.org/10.1109/TIE.2018.2793232]
[46]
J.Z. Shi, "A fractional order general type-2 fuzzy PID controller design algorithm", IEEE Access, vol. 8, pp. 52151-52172, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2980686]
[47]
B. Verma, and P.K. Padhy, "Robust fine tuning of optimal PID controller with guaranteed robustness", IEEE Trans. Ind. Electron., vol. 67, no. 6, pp. 4911-4920, 2020.
[http://dx.doi.org/10.1109/TIE.2019.2924603]
[48]
H. Ren, B. Hou, G. Zhou, L. Shen, C. Wei, and Q. Li, "Variable pitch active disturbance rejection control of wind turbines based on BP neural network PID", IEEE Access, vol. 8, pp. 71782-71797, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2987912]
[49]
A. Bag, B. Subudhi, and P.K. Ray, "A combined reinforcement learning and sliding mode control scheme for grid integration of a PV system", CSEE J. Power Energ. Syst., vol. 5, no. 4, pp. 498-506, 2019.
[50]
B. Bandyopadhyay, P.S. Gandhi, and S. Kurode, "Sliding mode observer based sliding mode controller for slosh-free motion through PID scheme", IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3432-3442, 2009.
[http://dx.doi.org/10.1109/TIE.2009.2026380]
[51]
K.V. Vidyanandan, and N. Senroy, "“Frequency regulation in a wind-diesel powered microgrid using flywheels and fuel cells”, IET Gener", Transm. Distribut., vol. 10, no. 3, pp. 780-788, 2016.
[http://dx.doi.org/10.1049/iet-gtd.2015.0449]
[52]
A. Madhukar, and B.S. Rajanikanth, "Augmenting NOx reduction in diesel exhaust by combined plasma/ozone injection technique: A laboratory investigation", High Voltage, vol. 3, no. 1, pp. 60-66, 2018.
[53]
K. Kant, C. Jain, and B. Singh, "A hybrid diesel-wind PV-based energy generation system with brushless generators", IEEE Trans. Industr. Inform., vol. 13, no. 4, pp. 1714-1722, 2017.
[http://dx.doi.org/10.1109/TII.2017.2677462]
[54]
A.J.A. dos Santos Costa, D. Valério, and P.J. da Costa Branco, "“Predictive control model to manage power flow on a hybrid wind-photovoltaic and diesel microgeneration power plant with additional storage capacity”, IET Cyber-Physical Syst", Theory Appl., vol. 3, no. 4, pp. 206-211, 2018.
[http://dx.doi.org/10.1049/iet-cps.2018.5037]
[55]
S. Mohapatro, and S. Allamsetty, "NOX abatement from filtered diesel engine exhaust using battery-powered high-voltage pulse power supply", High Voltage, vol. 2, no. 2, pp. 69-77, 2017.
[56]
T. Adefarati, R.C. Bansal, and J. John Justo, "Techno-economic analysis of a PV–wind–battery–diesel standalone power system in a remote area", J. Eng. (Stevenage), vol. 2017, no. 13, pp. 740-744 2017, 2017.
[http://dx.doi.org/10.1049/joe.2017.0429]
[57]
I.P. Panapakidis, and G.C. Christoforidis, "A hybrid ANN/GA/ANFIS model for very short-term PV power forecasting In", 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG) Cadiz, Spain, 2017pp. 412-417
[http://dx.doi.org/10.1109/CPE.2017.7915207]
[58]
J. Tian, Z. Liu, J. Shu, J. Liu, and J. Tang, "Base on the ultra-short term power prediction and feed-forward control of energy management for microgrid system applied in industrial park", IET Gener. Transm. Distrib., vol. 10, no. 9, pp. 2259-2266, 2016.
[http://dx.doi.org/10.1049/iet-gtd.2016.0135]
[59]
A. Bracale, G. Carpinelli, and P. De Falco, "A probabilistic competitive ensemble method for short-term photovoltaic power forecasting", IEEE Transact. Sustain. Energ., vol. 8, no. 2, pp. 551-560, 2017.
[http://dx.doi.org/10.1109/TSTE.2016.2610523]
[60]
D.S. Kumar, G.M. Yagli, M. Kashyap, and D. Srinivasan, "Solar irradiance resource and forecasting: a comprehensive review", IET Renew. Power Gener., vol. 14, no. 10, pp. 1641-1656, 2020.
[http://dx.doi.org/10.1049/iet-rpg.2019.1227]
[61]
H. Eom, Y. Son, and S. Choi, "Feature-selective ensemble learning-based long-term regional PV generation forecasting", IEEE Access, vol. 8, pp. 54620-54630, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2981819]
[62]
X. Zhang, Y. Li, S. Lu, H.F. Hamann, B. Hodge, and B. Lehman, "A solar time based analog ensemble method for regional solar power forecasting", IEEE Transact. Sustain. Energ, vol. 10, no. 1, pp. 268-279, 2019.
[http://dx.doi.org/10.1109/TSTE.2018.2832634]
[63]
M.J. Sanjari, H.B. Gooi, and N.C. Nair, "Power generation forecast of hybrid PV–wind system", IEEE Transact. Sustain. Energ., vol. 11, no. 2, pp. 703-712, 2020.
[http://dx.doi.org/10.1109/TSTE.2019.2903900]
[64]
J. Shi, W.J. Lee, Y. Liu, Y. Yang, and P. Wang, "Forecasting power output of photovoltaic systems based on weather classification and support vector machines", IEEE Trans. Ind. Appl., vol. 48, no. 3, pp. 1064-1069, 2012.
[http://dx.doi.org/10.1109/TIA.2012.2190816]
[65]
M.G. De Giorgi, P.M. Congedo, and M. Malvoni, "Photovoltaic power forecasting using statistical methods: Impact of weather data", IET Sci. Measur. Technol., vol. 8, no. 3, pp. 90-97, 2014.
[http://dx.doi.org/10.1049/iet-smt.2013.0135]
[66]
B. Li, J. Zhang, Y. He, and Y. Wang, "Short-term load-forecasting method based on wavelet decomposition with second-order gray neural network model combined with ADF test", IEEE Access, vol. 5, pp. 16324-16331, 2017.
[http://dx.doi.org/10.1109/ACCESS.2017.2738029]
[67]
J. Yan, K. Li, E. Bai, J. Deng, and A.M. Foley, "Hybrid probabilistic wind power forecasting using temporally local Gaussian process", IEEE Transact. Sustain. Energ., vol. 7, no. 1, pp. 87-95, 2016.
[http://dx.doi.org/10.1109/TSTE.2015.2472963]
[68]
G.W. Chang, and H. Lu, "Integrating gray data preprocessor and deep belief network for day-ahead PV power output forecast", IEEE Transact. Sustain. Energ, vol. 11, no. 1, pp. 185-194, 2020.
[http://dx.doi.org/10.1109/TSTE.2018.2888548]
[69]
E. Oh, and H. Wang, "Reinforcement-learning-based energy storage system operation strategies to manage wind power forecast uncertainty", IEEE Access, vol. 8, pp. 20965-20976, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2968841]
[70]
H. Lee, N. Kim, J. Lee, and B. Lee, "Uncertainty-aware forecast interval for hourly PV power output", IET Renew. Power Gener., vol. 13, no. 14, pp. 2656-2664, 2019.
[http://dx.doi.org/10.1049/iet-rpg.2019.0300]
[71]
S. Wen, Y. Wang, Y. Tang, Y. Xu, and P. Li, "Proactive frequency control based on ultra-short-term power fluctuation forecasting for high renewables penetrated power systems", IET Renew. Power Gener., vol. 13, no. 12, pp. 2166-2173, 2019.
[http://dx.doi.org/10.1049/iet-rpg.2019.0234]
[72]
Y. Hong, J.J.F. Martinez, and A.C. Fajardo, "Day-ahead solar irradiation forecasting utilizing Gramian angular field and convolutional long short-term memory", IEEE Access, vol. 8, pp. 18741-18753, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2967900]
[73]
A. Xu, T. Yang, J. Ji, Y. Gao, and C. Gu, "Application of cluster analysis in short-term wind power forecasting model", J. Eng., vol. 9, pp. 5423-5426, 2019.
[http://dx.doi.org/10.1049/joe.2018.5488]
[74]
L. Micheli, E.F. Fernández, M. Muller, and F. Almonacid, "Extracting and generating PV soiling profiles for analysis, forecasting, and cleaning optimization", IEEE J. Photovolt., vol. 10, no. 1, pp. 197-205, 2020.
[http://dx.doi.org/10.1109/JPHOTOV.2019.2943706]
[75]
D. van der Meer, G.R.C. Mouli, G.M.-E. Mouli, L.R. Elizondo, and P. Bauer, "Energy management system with PV power forecast to optimally charge EVs at the workplace", IEEE Trans. Industr. Inform., vol. 14, no. 1, pp. 311-320 2018.
[http://dx.doi.org/10.1109/TII.2016.2634624]