Peptide Shuttle-Mediated Delivery for Brain Gene Therapies

Page: [2945 - 2958] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

The manipulation of an individual’s genetic information to treat a disease has revolutionized the biomedicine field. Despite the promise of gene therapy, this treatment can have long-term sideeffects. Efforts in the field and recent discoveries have already led to several improvements, including efficient gene delivery and transfer, as well as inpatient safety. Several studies to treat a wide range of pathologies-such as cancer or monogenic diseases- are currently being conducted. Here we provide a broad overview of methodologies available for gene therapy, placing a strong emphasis on treatments for central nervous system diseases. Finally, we give a perspective on current delivery strategies to treat such diseases, with a special focus on systems that use peptides as delivery vectors.

Keywords: Gene therapy, Genome editing, CRISPR, Viral vectors, Nanoparticles, Central nervous system, Drug delivery, Peptide shuttles.

Graphical Abstract

[1]
Mulligan, R.C. The basic science of gene therapy. Science, 1993, 260(5110), 926-932.
[http://dx.doi.org/10.1126/science.8493530] [PMID: 8493530]
[2]
Verma, I.M.; Naldini, L.; Kafri, T.; Miyoshi, H.; Takahashi, M.; Blömer, U.; Somia, N.; Wang, L.; Gage, F.H. Gene therapy: promises, problems and prospects. In: Genes and Resistance to Disease; Springer Berlin Heidelberg: Berlin, Heidelberg,, 2000, 389, pp. 147-157.
[3]
Dunbar, C.E.; High, K.A.; Joung, J.K.; Kohn, D.B.; Ozawa, K.; Sadelain, M. Gene therapy comes of age. Science, 2018, 359(6372)eaan4672
[http://dx.doi.org/10.1126/science.aan4672] [PMID: 29326244]
[4]
Naldini, L. Gene therapy returns to centre stage. Nature, 2015, 526(7573), 351-360.
[http://dx.doi.org/10.1038/nature15818] [PMID: 26469046]
[5]
Ginn, S.L.; Amaya, A.K.; Alexander, I.E.; Edelstein, M.; Abedi, M.R. Gene therapy clinical trials worldwide to 2017: An update. J. Gene Med., 2018, 20(5)e3015
[http://dx.doi.org/10.1002/jgm.3015] [PMID: 29575374]
[6]
Khan, S.H. Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Mol. Ther. Nucleic Acids, 2019, 16, 326-334.
[http://dx.doi.org/10.1016/j.omtn.2019.02.027] [PMID: 30965277]
[7]
Gaj, T.; Gersbach, C.A.; Barbas, C.F. III ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol., 2013, 31(7), 397-405.
[http://dx.doi.org/10.1016/j.tibtech.2013.04.004] [PMID: 23664777]
[8]
Yin, H.; Kauffman, K.J.; Anderson, D.G. Delivery technologies for genome editing. Nat. Rev. Drug Discov., 2017, 16(6), 387-399.
[http://dx.doi.org/10.1038/nrd.2016.280] [PMID: 28337020]
[9]
Shim, G.; Kim, D.; Park, G.T.; Jin, H.; Suh, S.K.; Oh, Y.K. Therapeutic gene editing: delivery and regulatory perspectives. Acta Pharmacol. Sin., 2017, 38(6), 738-753.
[http://dx.doi.org/10.1038/aps.2017.2] [PMID: 28392568]
[10]
Yáñez, R.J.; Porter, A.C. Therapeutic gene targeting. Gene Ther., 1998, 5(2), 149-159.
[http://dx.doi.org/10.1038/sj.gt.3300601] [PMID: 9578833]
[11]
Capecchi, M.R. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat. Rev. Genet., 2005, 6(6), 507-512.
[http://dx.doi.org/10.1038/nrg1619] [PMID: 15931173]
[12]
Komiyama, M. Chemical modifications of artificial restriction DNA cutter (ARCUT) to promote its in vivo and in vitro applications. Artif. DNA PNA XNA, 2014, 5(3)e1112457
[http://dx.doi.org/10.1080/1949095X.2015.1112457] [PMID: 26744220]
[13]
Shigi, N.; Sumaoka, J.; Komiyama, M. Applications of pna-based artificial restriction dna cutters. Molecules, 2017, 22(10), 1586.
[http://dx.doi.org/10.3390/molecules22101586] [PMID: 28934140]
[14]
Rajendran, A.; Shigi, N.; Sumaoka, J.; Komiyama, M. Artificial restriction dna cutter using nuclease s1 for site-selective scission of genomic dna. Curr. Protoc. Nucleic Acid Chem., 2019, 76(1)e72
[http://dx.doi.org/10.1002/cpnc.72] [PMID: 30720929]
[15]
Silva, G.; Poirot, L.; Galetto, R.; Smith, J.; Montoya, G.; Duchateau, P.; Pâques, F. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr. Gene Ther., 2011, 11(1), 11-27.
[http://dx.doi.org/10.2174/156652311794520111] [PMID: 21182466]
[16]
Zu, Y.; Tong, X.; Wang, Z.; Liu, D.; Pan, R.; Li, Z.; Hu, Y.; Luo, Z.; Huang, P.; Wu, Q.; Zhu, Z.; Zhang, B.; Lin, S. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat. Methods, 2013, 10(4), 329-331.
[http://dx.doi.org/10.1038/nmeth.2374] [PMID: 23435258]
[17]
Gabriel, R.; Lombardo, A.; Arens, A.; Miller, J.C.; Genovese, P.; Kaeppel, C.; Nowrouzi, A.; Bartholomae, C.C.; Wang, J.; Friedman, G.; Holmes, M.C.; Gregory, P.D.; Glimm, H.; Schmidt, M.; Naldini, L.; von Kalle, C. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat. Biotechnol., 2011, 29(9), 816-823.
[http://dx.doi.org/10.1038/nbt.1948] [PMID: 21822255]
[18]
Li, T.; Yang, B. TAL effector nuclease (TALEN) engineering. Methods Mol. Biol., 2013, 978, 63-72.
[http://dx.doi.org/10.1007/978-1-62703-293-3_5] [PMID: 23423889]
[19]
Xue, H.; Wu, J.; Li, S.; Rao, M.S.; Liu, Y. Genetic modification in human pluripotent stem cells by homologous recombination and crispr/cas9 system.Human Embryonic Stem Cell Protocols; Turksen, K., Ed.; , 2014, Vol. 1370, pp. 173-190.
[http://dx.doi.org/10.1007/7651_2014_73]
[20]
Ishino, Y.; Krupovic, M.; Forterre, P. History of crispr-cas from encounter with a mysterious repeated sequence to genome editing technology. J. Bacteriol., 2018, 200(7), e00580-e17.
[http://dx.doi.org/10.1128/JB.00580-17] [PMID: 29358495]
[21]
Van Craenenbroeck, K.; Vanhoenacker, P.; Haegeman, G. Episomal vectors for gene expression in mammalian cells. Eur. J. Biochem., 2000, 267(18), 5665-5678.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01645.x] [PMID: 10971576]
[22]
Ehrhardt, A.; Haase, R.; Schepers, A.; Deutsch, M.J.; Lipps, H.J.; Baiker, A. Episomal vectors for gene therapy. Curr. Gene Ther., 2008, 8(3), 147-161.
[http://dx.doi.org/10.2174/156652308784746440] [PMID: 18537590]
[23]
Conese, M.; Auriche, C.; Ascenzioni, F. Gene therapy progress and prospects: episomally maintained self-replicating systems. Gene Ther., 2004, 11(24), 1735-1741.
[http://dx.doi.org/10.1038/sj.gt.3302362] [PMID: 15385951]
[24]
Monaco, A.P.; Larin, Z. YACs, BACs, PACs and MACs: artificial chromosomes as research tools. Trends Biotechnol., 1994, 12(7), 280-286.
[http://dx.doi.org/10.1016/0167-7799(94)90140-6] [PMID: 7765076]
[25]
Rui, Y.; Wilson, D.R.; Green, J.J. Non-viral delivery to enable genome editing. Trends Biotechnol., 2019, 37(3), 281-293.
[http://dx.doi.org/10.1016/j.tibtech.2018.08.010] [PMID: 30278987]
[26]
Kotterman, M.A.; Chalberg, T.W.; Schaffer, D.V. Viral vectors for gene therapy: translational and clinical outlook. Annu. Rev. Biomed. Eng., 2015, 17(1), 63-89.
[http://dx.doi.org/10.1146/annurev-bioeng-071813-104938] [PMID: 26643018]
[27]
Lundstrom, K. Viral vectors in gene therapy. Diseases, 2018, 6(2), 42.
[http://dx.doi.org/10.3390/diseases6020042] [PMID: 29883422]
[28]
Ramamoorth, M.; Narvekar, A. Non viral vectors in gene therapy- an overview. J. Clin. Diagn. Res., 2015, 9(1), GE01-GE06.
[http://dx.doi.org/10.7860/JCDR/2015/10443.5394] [PMID: 25738007]
[29]
Sinn, P.L.; Sauter, S.L.; McCray, P.B., Jr Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors--design, biosafety, and production. Gene Ther., 2005, 12(14), 1089-1098.
[http://dx.doi.org/10.1038/sj.gt.3302570] [PMID: 16003340]
[30]
Yi, Y.; Hahm, S.H.; Lee, K.H. Retroviral gene therapy: safety issues and possible solutions. Curr. Gene Ther., 2005, 5(1), 25-35.
[http://dx.doi.org/10.2174/1566523052997514] [PMID: 15638709]
[31]
McTaggart, S.; Al-Rubeai, M. Retroviral vectors for human gene delivery. Biotechnol. Adv., 2002, 20(1), 1-31.
[http://dx.doi.org/10.1016/S0734-9750(01)00087-8] [PMID: 14538060]
[32]
Takamiya, Y.; Short, M.P.; Ezzeddine, Z.D.; Moolten, F.L.; Breakefield, X.O.; Martuza, R.L. Gene therapy of malignant brain tumors: a rat glioma line bearing the herpes simplex virus type 1-thymidine kinase gene and wild type retrovirus kills other tumor cells. J. Neurosci. Res., 1992, 33(3), 493-503.
[http://dx.doi.org/10.1002/jnr.490330316] [PMID: 1335091]
[33]
Huber, B.E.; Richards, C.A.; Krenitsky, T.A. Retroviral-mediated gene therapy for the treatment of hepatocellular carcinoma: an innovative approach for cancer therapy. Proc. Natl. Acad. Sci. USA, 1991, 88(18), 8039-8043.
[http://dx.doi.org/10.1073/pnas.88.18.8039] [PMID: 1654555]
[34]
Lai, Y-H.; Lin, C-C.; Chen, S-H.; Tai, C-K. Tumor-specific suicide gene therapy for hepatocellular carcinoma by transcriptionally targeted retroviral replicating vectors. Gene Ther., 2015, 22(2), 155-162.
[http://dx.doi.org/10.1038/gt.2014.98] [PMID: 25354682]
[35]
Rainov, N.G.; Ren, H. Gene therapy for human malignant brain tumors. Cancer J., 2003, 9(3), 180-188.
[http://dx.doi.org/10.1097/00130404-200305000-00006] [PMID: 12952303]
[36]
Escors, D.; Breckpot, K. Lentiviral vectors in gene therapy: their current status and future potential. Arch. Immunol. Ther. Exp. (Warsz.), 2010, 58(2), 107-119.
[http://dx.doi.org/10.1007/s00005-010-0063-4] [PMID: 20143172]
[37]
Philpott, N.J.; Thrasher, A.J. Use of nonintegrating lentiviral vectors for gene therapy. Hum. Gene Ther., 2007, 18(6), 483-489.
[http://dx.doi.org/10.1089/hum.2007.013] [PMID: 17523890]
[38]
Rothe, M.; Modlich, U.; Schambach, A. Biosafety challenges for use of lentiviral vectors in gene therapy. Curr. Gene Ther., 2013, 13(6), 453-468.
[http://dx.doi.org/10.2174/15665232113136660006] [PMID: 24195603]
[39]
Coura, R. S.; Nardi, N.B. The state of the art of adeno-associated virus-based vectors in gene therapy. Virol. J., 2007, 4(1), 99.
[http://dx.doi.org/10.1186/1743-422X-4-99] [PMID: 17939872]
[40]
Daya, S.; Berns, K.I. Gene therapy using adeno-associated virus vectors. Clin. Microbiol. Rev., 2008, 21(4), 583-593.
[http://dx.doi.org/10.1128/CMR.00008-08] [PMID: 18854481]
[41]
Hareendran, S.; Balakrishnan, B.; Sen, D.; Kumar, S.; Srivastava, A.; Jayandharan, G.R. Adeno-associated virus (AAV) vectors in gene therapy: immune challenges and strategies to circumvent them. Rev. Med. Virol., 2013, 23(6), 399-413.
[http://dx.doi.org/10.1002/rmv.1762] [PMID: 24023004]
[42]
Wu, Z.; Asokan, A.; Samulski, R.J. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol. Ther., 2006, 14(3), 316-327.
[http://dx.doi.org/10.1016/j.ymthe.2006.05.009] [PMID: 16824801]
[43]
Rodrigues, G.A.; Shalaev, E.; Karami, T.K.; Cunningham, J.; Slater, N.K.H.; Rivers, H.M. Pharmaceutical development of aav-based gene therapy products for the eye. Pharm. Res., 2018, 36(2), 29.
[http://dx.doi.org/10.1007/s11095-018-2554-7] [PMID: 30591984]
[44]
Lukashchuk, V.; Lewis, K.E.; Coldicott, I.; Grierson, A.J.; Azzouz, M. AAV9-mediated central nervous system-targeted gene delivery via cisterna magna route in mice. Mol. Ther. Methods Clin. Dev., 2016, 3, 15055.
[http://dx.doi.org/10.1038/mtm.2015.55] [PMID: 26942208]
[45]
Gimenez-Cassina, A.; Wade-Martins, R.; Gomez-Sebastian, S.; Corona, J-C.; Lim, F.; Diaz-Nido, J. Infectious delivery and long-term persistence of transgene expression in the brain by a 135-kb iBAC-FXN genomic DNA expression vector. Gene Ther., 2011, 18(10), 1015-1019.
[http://dx.doi.org/10.1038/gt.2011.45] [PMID: 21490681]
[46]
Lim, F.; Palomo, G.M.; Mauritz, C.; Giménez-Cassina, A.; Illana, B.; Wandosell, F.; Díaz-Nido, J. Functional recovery in a Friedreich’s ataxia mouse model by frataxin gene transfer using an HSV-1 amplicon vector. Mol. Ther., 2007, 15(6), 1072-1078.
[http://dx.doi.org/10.1038/sj.mt.6300143] [PMID: 17375064]
[47]
Fraley, R.; Subramani, S.; Berg, P.; Papahadjopoulos, D. Introduction of liposome-encapsulated SV40 DNA into cells. J. Biol. Chem., 1980, 255(21), 10431-10435.
[PMID: 6253474]
[48]
Buck, J.; Grossen, P.; Cullis, P.R.; Huwyler, J.; Witzigmann, D. Lipid-based dna therapeutics: hallmarks of non-viral gene delivery. ACS Nano, 2019, 13(4), 3754-3782.
[http://dx.doi.org/10.1021/acsnano.8b07858] [PMID: 30908008]
[49]
Tros de Ilarduya, C.; Sun, Y.; Düzgüneş, N. Gene delivery by lipoplexes and polyplexes. Eur. J. Pharm. Sci., 2010, 40(3), 159-170.
[http://dx.doi.org/10.1016/j.ejps.2010.03.019] [PMID: 20359532]
[50]
Matsumoto, M.; Kishikawa, R.; Kurosaki, T.; Nakagawa, H.; Ichikawa, N.; Hamamoto, T.; To, H.; Kitahara, T.; Sasaki, H. Hybrid vector including polyethylenimine and cationic lipid, DOTMA, for gene delivery. Int. J. Pharm., 2008, 363(1-2), 58-65.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.010] [PMID: 18687391]
[51]
Gebeyehu, G.; Jessee, J.A.; Ciccarone, V.C.; Hawley-Nelson, P.; Chytil, A. Cationic Lipids U.S. Patent 5,334,761, 1994.
[52]
Cheng, X.; Lee, R.J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv. Drug Deliv. Rev. 2016, 99(Pt A), 129-137.
[http://dx.doi.org/10.1016/j.addr.2016.01.022] [PMID: 26900977]
[53]
Kurosaki, T.; Kitahara, T.; Teshima, M.; Nishida, K.; Nakamura, J.; Nakashima, M.; To, H.; Hukuchi, H.; Hamamoto, T.; Sasaki, H. Exploitation of De Novo helper-lipids for effective gene delivery. J. Pharm. Pharm. Sci., 2008, 11(4), 56-67.
[http://dx.doi.org/10.18433/J31S3B] [PMID: 19183514]
[54]
Chen, H.; Zhang, H.; Thor, D.; Rahimian, R.; Guo, X. Novel pH-sensitive cationic lipids with linear ortho ester linkers for gene delivery. Eur. J. Med. Chem., 2012, 52, 159-172.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.013] [PMID: 22480493]
[55]
Olins, D.E.; Olins, A.L.; Von Hippel, P.H. Model nucleoprotein complexes: studies on the interaction of cationic homopolypeptides with DNA. J. Mol. Biol., 1967, 24(2), 157-176.
[http://dx.doi.org/10.1016/0022-2836(67)90324-5] [PMID: 6030025]
[56]
Wu, G.Y.; Wu, C.H. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J. Biol. Chem., 1987, 262(10), 4429-4432.
[PMID: 3558345]
[57]
Wu, G.Y.; Wu, C.H. Receptor-mediated gene delivery and expression in vivo. J. Biol. Chem., 1988, 263(29), 14621-14624.
[PMID: 3049582]
[58]
Akinc, A.; Langer, R. Measuring the pH environment of DNA delivered using nonviral vectors: implications for lysosomal trafficking. Biotechnol. Bioeng., 2002, 78(5), 503-508.
[http://dx.doi.org/10.1002/bit.20215] [PMID: 12115119]
[59]
Kadlecova, Z.; Baldi, L.; Hacker, D.; Wurm, F.M.; Klok, H-A. Comparative study on the in vitro cytotoxicity of linear, dendritic, and hyperbranched polylysine analogues. Biomacromolecules, 2012, 13(10), 3127-3137.
[http://dx.doi.org/10.1021/bm300930j] [PMID: 22931162]
[60]
Alinejad-Mofrad, E.; Malaekeh-Nikouei, B.; Gholami, L.; Mousavi, S.H.; Sadeghnia, H.R.; Mohajeri, M.; Darroudi, M.; Oskuee, R.K. Evaluation and comparison of cytotoxicity, genotoxicity, and apoptotic effects of poly-l-lysine/plasmid DNA micro- and nanoparticles. Hum. Exp. Toxicol., 2019, 38(8), 983-991.
[http://dx.doi.org/10.1177/0960327119846924] [PMID: 31064220]
[61]
Kim, S.W. Polylysine copolymers for gene delivery.Cold Spring Harb. Protocol; CSHL Press: New York, 2007.
[http://dx.doi.org/10.1101/pdb.ip068619]
[62]
Konstan, M.W.; Davis, P.B.; Wagener, J.S.; Hilliard, K.A.; Stern, R.C.; Milgram, L.J.H.; Kowalczyk, T.H.; Hyatt, S.L.; Fink, T.L.; Gedeon, C.R.; Oette, S.M.; Payne, J.M.; Muhammad, O.; Ziady, A.G.; Moen, R.C.; Cooper, M.J. Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum. Gene Ther., 2004, 15(12), 1255-1269.
[http://dx.doi.org/10.1089/hum.2004.15.1255] [PMID: 15684701]
[63]
Godbey, W.T.; Wu, K.K.; Mikos, A.G. Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc. Natl. Acad. Sci. USA, 1999, 96(9), 5177-5181.
[http://dx.doi.org/10.1073/pnas.96.9.5177] [PMID: 10220439]
[64]
Godbey, W.T.; Wu, K.K.; Mikos, A.G. Poly(ethylenimine) and its role in gene delivery. J. Control. Release, 1999, 60(2-3), 149-160.
[http://dx.doi.org/10.1016/S0168-3659(99)00090-5] [PMID: 10425321]
[65]
Nimesh, S. Polyethylenimine nanoparticles.Gene Therapy; Elsevier: Amsterdam, 2013, pp. 197-223.
[http://dx.doi.org/10.1533/9781908818645.197]
[66]
Godbey, W.T.; Wu, K.K.; Mikos, A.G. Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J. Biomed. Mater. Res., 1999, 45(3), 268-275.
[http://dx.doi.org/10.1002/(SICI)1097-4636(19990605)45:3<268:AID-JBM15>3.0.CO;2-Q] [PMID: 10397985]
[67]
Wightman, L.; Kircheis, R.; Rössler, V.; Carotta, S.; Ruzicka, R.; Kursa, M.; Wagner, E. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene Med., 2001, 3(4), 362-372.
[http://dx.doi.org/10.1002/jgm.187] [PMID: 11529666]
[68]
Choosakoonkriang, S.; Lobo, B.A.; Koe, G.S.; Koe, J.G.; Middaugh, C.R. Biophysical characterization of PEI/DNA complexes. J. Pharm. Sci., 2003, 92(8), 1710-1722.
[http://dx.doi.org/10.1002/jps.10437] [PMID: 12884257]
[69]
Remant Bahadur, K.C.; Uludağ, H. PEI and Its Derivatives for Gene Therapy.Polymers and Nanomaterials for Gene Therapy; Elsevier: Amsterdam, 2016, pp. 29-54.
[http://dx.doi.org/10.1016/B978-0-08-100520-0.00002-3]
[70]
Zakeri, A.; Kouhbanani, M.A.J.; Beheshtkhoo, N.; Beigi, V.; Mousavi, S.M.; Hashemi, S.A.R.; Karimi Zade, A.; Amani, A.M.; Savardashtaki, A.; Mirzaei, E.; Jahandideh, S.; Movahedpour, A. Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon. Nano Rev Exp, 2018, 9(1)1488497
[http://dx.doi.org/10.1080/20022727.2018.1488497] [PMID: 30410712]
[71]
Dufès, C.; Uchegbu, I.F.; Schätzlein, A.G. Dendrimers in gene delivery. Adv. Drug Deliv. Rev., 2005, 57(15), 2177-2202.
[http://dx.doi.org/10.1016/j.addr.2005.09.017] [PMID: 16310284]
[72]
Klencke, B.; Matijevic, M.; Urban, R.G.; Lathey, J.L.; Hedley, M.L.; Berry, M.; Thatcher, J.; Weinberg, V.; Wilson, J.; Darragh, T.; Jay, N.; Da Costa, M.; Palefsky, J.M. Encapsulated plasmid DNA treatment for human papillomavirus 16-associated anal dysplasia: a Phase I study of ZYC101. Clin. Cancer Res., 2002, 8(5), 1028-1037.
[PMID: 12006515]
[73]
Tian, H.; Chen, J.; Chen, X. Nanoparticles for gene delivery. Small, 2013, 9(12), 2034-2044.
[http://dx.doi.org/10.1002/smll.201202485] [PMID: 23630123]
[74]
Hayat, S.M.G.; Farahani, N.; Safdarian, E.; Roointan, A.; Sahebkar, A. Gene delivery using lipoplexes and polyplexes: Principles, limitations and solutions. Crit. Rev. Eukaryot. Gene Expr., 2019, 29(1), 29-36.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2018025132] [PMID: 31002592]
[75]
Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci., 2006, 7(1), 41-53.
[http://dx.doi.org/10.1038/nrn1824] [PMID: 16371949]
[76]
Preston, J.E.; Joan Abbott, N.; Begley, D.J. Chapter Five - Transcytosis of Macromolecules at the Blood-Brain Barrier. In: Pharmacology of the Blood Brain Barrier: Targeting CNS Disorders; Academic Press: London, , 2014; 71, pp. 147-163.
[77]
Hocquemiller, M.; Giersch, L.; Audrain, M.; Parker, S.; Cartier, N. AAV based gene therapy for CNS diseases. Hum. Gene Ther., 2016, 27(7), 1-39.
[http://dx.doi.org/10.1089/hum.2016.087] [PMID: 27267688]
[78]
Pardieck, J.; Sakiyama-Elbert, S. Genome engineering for CNS injury and disease. Curr. Opin. Biotechnol., 2018, 52, 89-94.
[http://dx.doi.org/10.1016/j.copbio.2018.03.001] [PMID: 29597076]
[79]
Mingozzi, F.; High, A.K. Immune responses to AAV in clinical trials. Curr. Gene Ther., 2011, 11(4), 321-330.
[http://dx.doi.org/10.2174/156652311796150354] [PMID: 21557723]
[80]
Wang, S.; Huang, R. Non-viral nucleic acid delivery to the central nervous system and brain tumors. J. Gene Med., 2019, 21(7)e3091
[http://dx.doi.org/10.1002/jgm.3091] [PMID: 30980444]
[81]
Jayant, R.D.; Sosa, D.; Kaushik, A.; Atluri, V.; Vashist, A.; Tomitaka, A.; Nair, M. Current status of non-viral gene therapy for CNS disorders. Expert Opin. Drug Deliv., 2016, 13(10), 1433-1445.
[http://dx.doi.org/10.1080/17425247.2016.1188802] [PMID: 27249310]
[82]
Katsouri, L.; Lim, Y.M.; Blondrath, K.; Eleftheriadou, I.; Lombardero, L.; Birch, A.M.; Mirzaei, N.; Irvine, E.E.; Mazarakis, N.D.; Sastre, M. PPARγ-coactivator-1α gene transfer reduces neuronal loss and amyloid-β generation by reducing β-secretase in an Alzheimer’s disease model. Proc. Natl. Acad. Sci. USA, 2016, 113(43), 12292-12297.
[http://dx.doi.org/10.1073/pnas.1606171113] [PMID: 27791018]
[83]
Lenman, A.; Liaci, A.M.; Liu, Y.; Frängsmyr, L.; Frank, M.; Blaum, B.S.; Chai, W.; Podgorski, I.I.; Harrach, B.; Benkő, M.; Feizi, T.; Stehle, T.; Arnberg, N. Polysialic acid is a cellular receptor for human adenovirus 52. Proc. Natl. Acad. Sci. USA, 2018, 115(18), E4264-E4273.
[http://dx.doi.org/10.1073/pnas.1716900115] [PMID: 29674446]
[84]
Palfi, S.; Gurruchaga, J.M.; Lepetit, H.; Howard, K.; Ralph, G.S.; Mason, S.; Gouello, G.; Domenech, P.; Buttery, P.C.; Hantraye, P.; Tuckwell, N.J.; Barker, R.A.; Mitrophanous, K.A. Long-term follow-up of a phase i/ii study of prosavin, a lentiviral vector gene therapy for Parkinson’s disease. Hum. Gene Ther. Clin. Dev., 2018, 29(3), 148-155.
[http://dx.doi.org/10.1089/humc.2018.081] [PMID: 30156440]
[85]
Lewis, T.B.; Glasgow, J.N.; Harms, A.S.; Standaert, D.G.; Curiel, D.T. Fiber-modified adenovirus for central nervous system Parkinson’s disease gene therapy. Viruses, 2014, 6(8), 3293-3310.
[http://dx.doi.org/10.3390/v6083293] [PMID: 25196484]
[86]
Mendell, J.R.; Al-Zaidy, S.; Shell, R.; Arnold, W.D.; Rodino-Klapac, L.R.; Prior, T.W.; Lowes, L.; Alfano, L.; Berry, K.; Church, K.; Kissel, J.T.; Nagendran, S.; L’Italien, J.; Sproule, D.M.; Wells, C.; Cardenas, J.A.; Heitzer, M.D.; Kaspar, A.; Corcoran, S.; Braun, L.; Likhite, S.; Miranda, C.; Meyer, K.; Foust, K.D.; Burghes, A.H.M.; Kaspar, B.K. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med., 2017, 377(18), 1713-1722.
[http://dx.doi.org/10.1056/NEJMoa1706198] [PMID: 29091557]
[87]
Massaro, G.; Mattar, C.N.Z.; Wong, A.M.S.; Sirka, E.; Buckley, S.M.K.; Herbert, B.R.; Karlsson, S.; Perocheau, D.P.; Burke, D.; Heales, S.; Richard-Londt, A.; Brandner, S.; Huebecker, M.; Priestman, D.A.; Platt, F.M.; Mills, K.; Biswas, A.; Cooper, J.D.; Chan, J.K.Y.; Cheng, S.H.; Waddington, S.N.; Rahim, A.A. Fetal gene therapy for neurodegenerative disease of infants. Nat. Med., 2018, 24(9), 1317-1323.
[http://dx.doi.org/10.1038/s41591-018-0106-7] [PMID: 30013199]
[88]
Castle, M.J.; Cheng, Y.; Asokan, A.; Tuszynski, M.H. Physical positioning markedly enhances brain transduction after intrathecal AAV9 infusion. Sci. Adv., 2018, 4(11)eaau9859
[http://dx.doi.org/10.1126/sciadv.aau9859] [PMID: 30443600]
[89]
Hordeaux, J.; Yuan, Y.; Clark, P.M.; Wang, Q.; Martino, R.A.; Sims, J.J.; Bell, P.; Raymond, A.; Stanford, W.L.; Wilson, J.M. The gpi-linked protein ly6a drives aav-php.b transport across the blood-brain barrier. Mol. Ther., 2019, 27(5), 912-921.
[http://dx.doi.org/10.1016/j.ymthe.2019.02.013] [PMID: 30819613]
[90]
Cain, J.T.; Likhite, S.; White, K.A.; Timm, D.J.; Davis, S.S.; Johnson, T.B.; Dennys-Rivers, C.N.; Rinaldi, F.; Motti, D.; Corcoran, S.; Morales, P.; Pierson, C.; Hughes, S.M.; Lee, S.Y.; Kaspar, B.K.; Meyer, K.; Weimer, J.M. Gene therapy corrects brain and behavioral pathologies in cln6-batten disease. Mol. Ther., 2019, 27(10), 1836-1847.
[http://dx.doi.org/10.1016/j.ymthe.2019.06.015] [PMID: 31331814]
[91]
Taghian, T.; Marosfoi, M.G.; Puri, A.S.; Cataltepe, O.I.; King, R.M.; Diffie, E.B.; Maguire, A.S.; Martin, D.R.; Fernau, D.; Batista, A.R.; Kuchel, T.; Christou, C.; Perumal, R.; Chandra, S.; Gamlin, P.D.; Bertrand, S.G.; Flotte, T.R.; McKenna-Yasek, D.; Tai, P.W.L.; Aronin, N.; Gounis, M.J.; Sena-Esteves, M.; Gray-Edwards, H.L. A safe and reliable technique for cns delivery of aav vectors in the cisterna magna. Mol. Ther., 2020, 28(2), 411-421.
[http://dx.doi.org/10.1016/j.ymthe.2019.11.012] [PMID: 31813800]
[92]
Rainov, N.G. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum. Gene Ther., 2000, 11(17), 2389-2401.
[http://dx.doi.org/10.1089/104303400750038499] [PMID: 11096443]
[93]
Gomez-Sebastian, S.; Gimenez-Cassina, A.; Diaz-Nido, J.; Lim, F.; Wade-Martins, R. Infectious delivery and expression of a 135kb human frda genomic dna locus complements friedreich’s ataxia deficiency in human cells. Mol. Ther., 2007, 15(2), 248-254.
[http://dx.doi.org/10.1038/sj.mt.6300021]
[94]
Falcicchia, C.; Trempat, P.; Binaschi, A.; Perrier-Biollay, C.; Roncon, P.; Soukupova, M.; Berthommé, H.; Simonato, M. Silencing status epilepticus-induced bdnf expression with herpes simplex virus type-1 based amplicon vectors. PLoS One, 2016, 11(3)e0150995
[http://dx.doi.org/10.1371/journal.pone.0150995] [PMID: 26954758]
[95]
Shimizu, N.; Doyal, M.F.; Goins, W.F.; Kadekawa, K.; Wada, N.; Kanai, A.J.; de Groat, W.C.; Hirayama, A.; Uemura, H.; Glorioso, J.C.; Yoshimura, N. Morphological changes in different populations of bladder afferent neurons detected by herpes simplex virus (HSV) vectors with cell-type-specific promoters in mice with spinal cord injury. Neuroscience, 2017, 364, 190-201.
[http://dx.doi.org/10.1016/j.neuroscience.2017.09.024] [PMID: 28942324]
[96]
Janiszewska, J.; Posadas, I.; Játiva, P.; Bugaj-Zarebska, M.; Urbanczyk-Lipkowska, Z.; Ceña, V. Second generation amphiphilic poly-lysine dendrons inhibit glioblastoma cell proliferation without toxicity for neurons or astrocytes. PLoS One, 2016, 11(11)e0165704
[http://dx.doi.org/10.1371/journal.pone.0165704] [PMID: 27832093]
[97]
Sheikh, M.A.; Malik, Y.S.; Xing, Z.; Guo, Z.; Tian, H.; Zhu, X.; Chen, X. Polylysine-modified polyethylenimine (PEI-PLL) mediated VEGF gene delivery protects dopaminergic neurons in cell culture and in rat models of Parkinson’s Disease (PD). Acta Biomater., 2017, 54, 58-68.
[http://dx.doi.org/10.1016/j.actbio.2016.12.048] [PMID: 28025049]
[98]
Hwang, D.W.; Son, S.; Jang, J.; Youn, H.; Lee, S.; Lee, D.; Lee, Y-S.; Jeong, J.M.; Kim, W.J.; Lee, D.S. A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA. Biomaterials, 2011, 32(21), 4968-4975.
[PMID: 21489620]
[99]
Park, T-E.; Singh, B.; Li, H.; Lee, J-Y.; Kang, S-K.; Choi, Y-J.; Cho, C-S. Enhanced BBB permeability of osmotically active poly(mannitol-co-PEI) modified with rabies virus glycoprotein via selective stimulation of caveolar endocytosis for RNAi therapeutics in Alzheimer’s disease. Biomaterials, 2015, 38, 61-71.
[PMID: 25457984]
[100]
Pulford, B.; Reim, N.; Bell, A.; Veatch, J.; Forster, G.; Bender, H.; Meyerett, C.; Hafeman, S.; Michel, B.; Johnson, T.; Wyckoff, A.C.; Miele, G.; Julius, C.; Kranich, J.; Schenkel, A.; Dow, S.; Zabel, M.D. Liposome-siRNA-peptide complexes cross the blood-brain barrier and significantly decrease PrP on neuronal cells and PrP in infected cell cultures. PLoS One, 2010, 5(6)e11085
[PMID: 20559428]
[101]
Yue, P.J.; He, L.; Qiu, S.W.; Li, Y.; Liao, Y.J.; Li, X.P.; Xie, D.; Peng, Y. OX26/CTX-conjugated PEGylated liposome as a dual-targeting gene delivery system for brain glioma. Mol. Cancer, 2014, 13(1), 191.
[PMID: 25128329]
[102]
Conceição, M.; Mendonça, L.; Nóbrega, C.; Gomes, C.; Costa, P.; Hirai, H.; Moreira, J.N.; Lima, M.C.; Manjunath, N.; Pereira de Almeida, L. Intravenous administration of brain-targeted stable nucleic acid lipid particles alleviates Machado-Joseph disease neurological phenotype. Biomaterials, 2016, 82, 124-137.
[http://dx.doi.org/10.1016/j.biomaterials.2015.12.021] [PMID: 26757259]
[103]
Huang, R.Q.; Qu, Y.H.; Ke, W.L.; Zhu, J.H.; Pei, Y.Y.; Jiang, C. Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. FASEB J., 2007, 21(4), 1117-1125.
[http://dx.doi.org/10.1096/fj.06-7380com] [PMID: 17218540]
[104]
Liu, Y.; Huang, R.; Han, L.; Ke, W.; Shao, K.; Ye, L.; Lou, J.; Jiang, C. Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles. Biomaterials, 2009, 30(25), 4195-4202.
[http://dx.doi.org/10.1016/j.biomaterials.2009.02.051] [PMID: 19467700]
[105]
Ke, W.; Shao, K.; Huang, R.; Han, L.; Liu, Y.; Li, J.; Kuang, Y.; Ye, L.; Lou, J.; Jiang, C. Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamido-amine dendrimer. Biomaterials, 2009, 30(36), 6976-6985.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.049] [PMID: 19765819]
[106]
Wang, L.; Hao, Y.; Li, H.; Zhao, Y.; Meng, D.; Li, D.; Shi, J.; Zhang, H.; Zhang, Z.; Zhang, Y. Co-delivery of doxorubicin and siRNA for glioma therapy by a brain targeting system: angiopep-2-modified poly(lactic-co-glycolic acid) nanoparticles. J. Drug Target., 2015, 23(9), 832-846.
[http://dx.doi.org/10.3109/1061186X.2015.1025077] [PMID: 25856302]
[107]
Doolaanea, A.A.; Mansor, N.; Mohd Nor, N.H.; Mohamed, F. Co-encapsulation of Nigella sativa oil and plasmid DNA for enhanced gene therapy of Alzheimer’s disease. J. Microencapsul., 2016, 33(2), 114-126.
[http://dx.doi.org/10.3109/02652048.2015.1134689] [PMID: 26982435]
[108]
Moradian, H.; Keshvari, H.; Fasehee, H.; Dinarvand, R.; Faghihi, S. Combining NT3-overexpressing MSCs and PLGA microcarriers for brain tissue engineering: A potential tool for treatment of Parkinson’s disease. Mater. Sci. Eng. C, 2017, 76, 934-943.
[http://dx.doi.org/10.1016/j.msec.2017.02.178] [PMID: 28482609]
[109]
Bishop, C.J.; Tzeng, S.Y.; Green, J.J. Degradable polymer-coated gold nanoparticles for co-delivery of DNA and siRNA. Acta Biomater., 2015, 11, 393-403.
[http://dx.doi.org/10.1016/j.actbio.2014.09.020] [PMID: 25246314]
[110]
Niu, S.; Zhang, L.K.; Zhang, L.; Zhuang, S.; Zhan, X.; Chen, W.Y.; Du, S.; Yin, L.; You, R.; Li, C.H.; Guan, Y.Q. Inhibition by multifunctional magnetic nanoparticles loaded with alpha-synuclein rnai plasmid in a parkinson’s disease Model. Theranostics, 2017, 7(2), 344-356.
[http://dx.doi.org/10.7150/thno.16562] [PMID: 28042339]
[111]
Kimura, Y.; Hisano, Y.; Kawahara, A.; Higashijima, S. Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Sci. Rep., 2014, 4, 6545.
[http://dx.doi.org/10.1038/srep06545] [PMID: 25293390]
[112]
Zuckermann, M.; Hovestadt, V.; Knobbe-Thomsen, C.B.; Zapatka, M.; Northcott, P.A.; Schramm, K.; Belic, J.; Jones, D.T.W.; Tschida, B.; Moriarity, B.; Largaespada, D.; Roussel, M.F.; Korshunov, A.; Reifenberger, G.; Pfister, S.M.; Lichter, P.; Kawauchi, D.; Gronych, J. Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat. Commun., 2015, 6(1), 7391.
[http://dx.doi.org/10.1038/ncomms8391] [PMID: 26067104]
[113]
Staahl, B.T.; Benekareddy, M.; Coulon-Bainier, C.; Banfal, A.A.; Floor, S.N.; Sabo, J.K.; Urnes, C.; Munares, G.A.; Ghosh, A.; Doudna, J.A. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat. Biotechnol., 2017, 35(5), 431-434.
[http://dx.doi.org/10.1038/nbt.3806] [PMID: 28191903]
[114]
Yang, S.; Chang, R.; Yang, H.; Zhao, T.; Hong, Y.; Kong, H.E.; Sun, X.; Qin, Z.; Jin, P.; Li, S.; Li, X.J. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J. Clin. Invest., 2017, 127(7), 2719-2724.
[http://dx.doi.org/10.1172/JCI92087] [PMID: 28628038]
[115]
Merienne, N.; Vachey, G.; de Longprez, L.; Meunier, C.; Zimmer, V.; Perriard, G.; Canales, M.; Mathias, A.; Herrgott, L.; Beltraminelli, T.; Maulet, A.; Dequesne, T.; Pythoud, C.; Rey, M.; Pellerin, L.; Brouillet, E.; Perrier, A.L.; du Pasquier, R.; Déglon, N. The Self-Inactivating kamicas9 System for the Editing of CNS Disease Genes. Cell Rep., 2017, 20(12), 2980-2991.
[http://dx.doi.org/10.1016/j.celrep.2017.08.075] [PMID: 28930690]
[116]
Ooi, J.; Langley, S.R.; Xu, X.; Utami, K.H.; Sim, B.; Huang, Y.; Harmston, N.P.; Tay, Y.L.; Ziaei, A.; Zeng, R.; Low, D.; Aminkeng, F.; Sobota, R.M.; Ginhoux, F.; Petretto, E.; Pouladi, M.A. Unbiased profiling of isogenic huntington disease hpsc-derived cns and peripheral cells reveals strong cell-type specificity of cag length effects. Cell Rep., 2019, 26(9), 2494-2508.e7.
[http://dx.doi.org/10.1016/j.celrep.2019.02.008] [PMID: 30811996]
[117]
Zahur, M.; Tolö, J.; Bähr, M.; Kügler, S. Long-term assessment of AAV-mediated zinc finger nuclease expression in the mouse brain. Front. Mol. Neurosci., 2017, 10, 142.
[http://dx.doi.org/10.3389/fnmol.2017.00142] [PMID: 28588449]
[118]
Stevenazzi, A.; Marchini, M.; Sandrone, G.; Vergani, B.; Lattanzio, M. Amino acidic scaffolds bearing unnatural side chains: an old idea generates new and versatile tools for the life sciences. Bioorg. Med. Chem. Lett., 2014, 24(23), 5349-5356.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.016] [PMID: 25455481]
[119]
Hartrampf, N.; Saebi, A.; Poskus, M.; Gates, Z.P.; Callahan, A.J.; Cowfer, A.E.; Hanna, S.; Antilla, S.; Schissel, C.K.; Quartararo, A.J.; Ye, X.; Mijalis, A.J.; Simon, M.D.; Loas, A.; Liu, S.; Jessen, C.; Nielsen, T.E.; Pentelute, B.L. Synthesis of proteins by automated flow chemistry. Science, 2020, 368(6494), 980-987.
[http://dx.doi.org/10.1126/science.abb2491] [PMID: 32467387]
[120]
Li, F.; Mahato, R.I. Bioconjugate therapeutics: current progress and future perspective. Mol. Pharm., 2017, 14(5), 1321-1324.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00263] [PMID: 28457140]
[121]
Oller-Salvia, B.; Sánchez-Navarro, M.; Giralt, E.; Teixidó, M. Blood-brain barrier shuttle peptides: an emerging paradigm for brain delivery. Chem. Soc. Rev., 2016, 45(17), 4690-4707.
[http://dx.doi.org/10.1039/C6CS00076B] [PMID: 27188322]
[122]
Schwarze, S.R.; Ho, A.; Vocero-Akbani, A.; Dowdy, S.F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science, 1999, 285(5433), 1569-1572.
[http://dx.doi.org/10.1126/science.285.5433.1569] [PMID: 10477521]
[123]
Zhang, X.; He, T.; Chai, Z.; Samulski, R.J.; Li, C. Blood-brain barrier shuttle peptides enhance AAV transduction in the brain after systemic administration. Biomaterials, 2018, 176, 71-83.
[http://dx.doi.org/10.1016/j.biomaterials.2018.05.041] [PMID: 29860139]
[124]
Zou, L-L.; Ma, J-L.; Wang, T.; Yang, T-B.; Liu, C-B. Cell-penetrating Peptide-mediated therapeutic molecule delivery into the central nervous system. Curr. Neuropharmacol., 2013, 11(2), 197-208.
[http://dx.doi.org/10.2174/1570159X11311020006] [PMID: 23997754]
[125]
Gupta, B.; Levchenko, T.S.; Torchilin, V.P. TAT peptide-modified liposomes provide enhanced gene delivery to intracranial human brain tumor xenografts in nude mice. Oncol. Res., 2007, 16(8), 351-359.
[http://dx.doi.org/10.3727/000000006783980946] [PMID: 17913043]
[126]
Dos Santos Rodrigues, B.; Lakkadwala, S.; Kanekiyo, T.; Singh, J. Development and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene delivery properties. Int. J. Nanomedicine, 2019, 14, 6497-6517.
[http://dx.doi.org/10.2147/IJN.S215941] [PMID: 31616141]
[127]
Dos Santos Rodrigues, B.; Oue, H.; Banerjee, A.; Kanekiyo, T.; Singh, J. Dual functionalized liposome-mediated gene delivery across triple co-culture blood brain barrier model and specific in vivo neuronal transfection. J. Control. Release, 2018, 286, 264-278.
[http://dx.doi.org/10.1016/j.jconrel.2018.07.043] [PMID: 30071253]
[128]
Qian, Z.M.; Li, H.; Sun, H.; Ho, K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol. Rev., 2002, 54(4), 561-587.
[http://dx.doi.org/10.1124/pr.54.4.561] [PMID: 12429868]
[129]
Dos Santos Rodrigues, B.; Banerjee, A.; Kanekiyo, T.; Singh, J. Functionalized liposomal nanoparticles for efficient gene delivery system to neuronal cell transfection. Int. J. Pharm., 2019, 566, 717-730.
[http://dx.doi.org/10.1016/j.ijpharm.2019.06.026] [PMID: 31202901]
[130]
Dos Santos Rodrigues, B.; Kanekiyo, T.; Singh, J. ApoE-2 brain-targeted gene therapy through transferrin and penetratin tagged liposomal nanoparticles. Pharm. Res., 2019, 36(11), 161.
[http://dx.doi.org/10.1007/s11095-019-2691-7] [PMID: 31529284]
[131]
Arukuusk, P.; Pärnaste, L.; Hällbrink, M.; Langel, Ü. PepFects and nickfects for the intracellular delivery of nucleic acids.Cell-Penetrating Peptides; Langel, Ü., Ed.; Springer: Berlin, 2015, Vol. 1324, pp. 303-315.
[http://dx.doi.org/10.1007/978-1-4939-2806-4_19]
[132]
Yandek, L.E.; Pokorny, A.; Florén, A.; Knoelke, K.; Langel, U.; Almeida, P.F.F. Mechanism of the cell-penetrating peptide transportan 10 permeation of lipid bilayers. Biophys. J., 2007, 92(7), 2434-2444.
[http://dx.doi.org/10.1529/biophysj.106.100198] [PMID: 17218466]
[133]
Freimann, K.; Arukuusk, P.; Kurrikoff, K.; Vasconcelos, L.D.F.; Veiman, K-L.; Uusna, J.; Margus, H.; Garcia-Sosa, A.T.; Pooga, M.; Langel, Ü. Optimization of in vivo DNA delivery with NickFect peptide vectors. J. Control. Release, 2016, 241, 135-143.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.022] [PMID: 27664329]
[134]
Freimann, K.; Arukuusk, P.; Kurrikoff, K.; Pärnaste, L.; Raid, R.; Piirsoo, A.; Pooga, M.; Langel, Ü. Formulation of stable and homogeneous cell-penetrating peptide nf55 nanoparticles for efficient gene delivery in vivo. Mol. Ther. Nucleic Acids, 2018, 10, 28-35.
[http://dx.doi.org/10.1016/j.omtn.2017.10.011] [PMID: 29499941]
[135]
Bagchi, S.; Chhibber, T.; Lahooti, B.; Verma, A.; Borse, V.; Jayant, R.D. In-vitro blood-brain barrier models for drug screening and permeation studies: an overview. Drug Des. Devel. Ther., 2019, 13, 3591-3605.
[http://dx.doi.org/10.2147/DDDT.S218708] [PMID: 31695329]
[136]
Arranz-Gibert, P.; Guixer, B.; Prades, R.; Ciudad, S.; Giralt, E.; Teixidó, M. A MALDI-TOF-based method for studying the transport of bbb shuttles-enhancing sensitivity and versatility of cell-based in vitro transport models. Sci. Rep., 2019, 9(1), 4875.
[http://dx.doi.org/10.1038/s41598-019-40973-0] [PMID: 30890722]
[137]
Srimanee, A.; Regberg, J.; Hallbrink, M.; Kurrikoff, K.; Veiman, K.L.; Vajragupta, O.; Langel, Ü. Peptide-based delivery of oligonucleotides across blood-brain barrier model. Int. J. Pept. Res. Ther., 2014, 20(2), 169-178.
[http://dx.doi.org/10.1007/s10989-013-9378-4]
[138]
Veiman, K-L.; Mäger, I.; Ezzat, K.; Margus, H.; Lehto, T.; Langel, K.; Kurrikoff, K.; Arukuusk, P.; Suhorutšenko, J.; Padari, K.; Pooga, M.; Lehto, T.; Langel, Ü. PepFect14 peptide vector for efficient gene delivery in cell cultures. Mol. Pharm., 2013, 10(1), 199-210.
[http://dx.doi.org/10.1021/mp3003557] [PMID: 23186360]
[139]
Rinaldi, C.; Wood, M.J.A. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat. Rev. Neurol., 2018, 14(1), 9-21.
[http://dx.doi.org/10.1038/nrneurol.2017.148] [PMID: 29192260]
[140]
Hoy, S.M. Nusinersen: first global approval. Drugs, 2017, 77(4), 473-479.
[http://dx.doi.org/10.1007/s40265-017-0711-7] [PMID: 28229309]
[141]
Mercuri, E.; Darras, B.T.; Chiriboga, C.A.; Day, J.W.; Campbell, C.; Connolly, A.M.; Iannaccone, S.T.; Kirschner, J.; Kuntz, N.L.; Saito, K.; Shieh, P.B.; Tulinius, M.; Mazzone, E.S.; Montes, J.; Bishop, K.M.; Yang, Q.; Foster, R.; Gheuens, S.; Bennett, C.F.; Farwell, W.; Schneider, E.; De Vivo, D.C.; Finkel, R.S. CHERISH study group. nusinersen versus sham control in later-onset spinal muscular atrophy. N. Engl. J. Med., 2018, 378(7), 625-635.
[http://dx.doi.org/10.1056/NEJMoa1710504] [PMID: 29443664]
[142]
Aartsma-Rus, A.; Krieg, A.M. FDA approves eteplirsen for duchenne muscular dystrophy: the next chapter in the eteplirsen saga. Nucleic Acid Ther., 2017, 27(1), 1-3.
[http://dx.doi.org/10.1089/nat.2016.0657] [PMID: 27929755]
[143]
Davidson, T.J.; Harel, S.; Arboleda, V.A.; Prunell, G.F.; Shelanski, M.L.; Greene, L.A.; Troy, C.M. Highly efficient small interfering RNA delivery to primary mammalian neurons induces MicroRNA-like effects before mRNA degradation. J. Neurosci., 2004, 24(45), 10040-10046.
[http://dx.doi.org/10.1523/JNEUROSCI.3643-04.2004] [PMID: 15537872]
[144]
Mathupala, S.P. Delivery of small-interfering RNA (siRNA) to the brain. Expert Opin. Ther. Pat., 2009, 19(2), 137-140.
[http://dx.doi.org/10.1517/13543770802680195] [PMID: 19441914]
[145]
Youn, P.; Chen, Y.; Furgeson, D.Y. A myristoylated cell-penetrating peptide bearing a transferrin receptor-targeting sequence for neuro-targeted siRNA delivery. Mol. Pharm., 2014, 11(2), 486-495.
[http://dx.doi.org/10.1021/mp400446v] [PMID: 24387132]
[146]
Hammond, S.M.; Hazell, G.; Shabanpoor, F.; Saleh, A.F.; Bowerman, M.; Sleigh, J.N.; Meijboom, K.E.; Zhou, H.; Muntoni, F.; Talbot, K.; Gait, M.J.; Wood, M.J. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc. Natl. Acad. Sci. USA, 2016, 113(39), 10962-10967.
[http://dx.doi.org/10.1073/pnas.1605731113] [PMID: 27621445]
[147]
Prades, R.; Oller-Salvia, B.; Schwarzmaier, S.M.; Selva, J.; Moros, M.; Balbi, M.; Grazú, V.; de La Fuente, J.M.; Egea, G.; Plesnila, N.; Teixidó, M.; Giralt, E. Applying the retro-enantio approach to obtain a peptide capable of overcoming the blood-brain barrier. Angew. Chem. Int. Ed. Engl., 2015, 54(13), 3967-3972.
[http://dx.doi.org/10.1002/anie.201411408] [PMID: 25650865]
[148]
Arranz-Gibert, P.; Prades, R.; Guixer, B.; Guerrero, S.; Araya, E.; Ciudad, S.; Kogan, M.J.; Giralt, E.; Teixidó, M. HAI peptide and backbone analogs-validation and enhancement of biostability and bioactivity of bbb shuttles. Sci. Rep., 2018, 8(1), 17932.
[http://dx.doi.org/10.1038/s41598-018-35938-8] [PMID: 30560894]
[149]
Arranz-Gibert, P.; Ciudad, S.; Seco, J.; García, J.; Giralt, E.; Teixidó, M. Immunosilencing peptides by stereochemical inversion and sequence reversal: retro-D-peptides. Sci. Rep., 2018, 8(1), 6446.
[http://dx.doi.org/10.1038/s41598-018-24517-6] [PMID: 29691418]
[150]
Oller-Salvia, B.; Sánchez-Navarro, M.; Ciudad, S.; Guiu, M.; Arranz-Gibert, P.; Garcia, C.; Gomis, R.R.; Cecchelli, R.; García, J.; Giralt, E.; Teixidó, M. MiniAp-4: a venom-inspired peptidomimetic for brain delivery. Angew. Chem. Int. Ed. Engl., 2016, 55(2), 572-575.
[http://dx.doi.org/10.1002/anie.201508445] [PMID: 26492861]
[151]
Sánchez-Navarro, M.; Giralt, E.; Teixidó, M. Blood-brain barrier peptide shuttles. Curr. Opin. Chem. Biol., 2017, 38, 134-140.
[http://dx.doi.org/10.1016/j.cbpa.2017.04.019] [PMID: 28558293]
[152]
Srimanee, A.; Regberg, J.; Hallbrink, M.; Kurrikoff, K.; Veiman, K-L.; Vajragupta, O.; Langel, Ü. Peptide-based delivery of oligonucleotides across blood-brain barrier model. Int. J. Pept. Res. Ther., 2014, 20(2), 169-178.
[http://dx.doi.org/10.1007/s10989-013-9378-4]
[153]
Urich, E.; Schmucki, R.; Ruderisch, N.; Kitas, E.; Certa, U.; Jacobsen, H.; Schweitzer, C.; Bergadano, A.; Ebeling, M.; Loetscher, H.; Freskgård, P.O. Cargo delivery into the brain by in vivo identified transport peptides. Sci. Rep., 2015, 5(1), 14104.
[http://dx.doi.org/10.1038/srep14104] [PMID: 26411801]
[154]
Díaz-Perlas, C.; Sánchez-Navarro, M.; Oller-Salvia, B.; Moreno, M.; Teixidó, M.; Giralt, E. Phage display as a tool to discover blood-brain barrier (BBB)-shuttle peptides: panning against a human BBB cellular model. Biopolymers, 2017, 108(1)e22928
[http://dx.doi.org/10.1002/bip.22928] [PMID: 27486695]
[155]
Majerova, P.; Hanes, J.; Olesova, D.; Sinsky, J.; Pilipcinec, E.; Kovac, A. Novel blood-brain barrier shuttle peptides discovered through the phage display method. Molecules, 2020, 25(4), 874.
[http://dx.doi.org/10.3390/molecules25040874] [PMID: 32079185]
[156]
Díaz-Perlas, C.; Varese, M.; Guardiola, S.; García, J.; Sánchez-Navarro, M.; Giralt, E.; Teixidó, M. From venoms to BBB-shuttles. MiniCTX3: a molecular vector derived from scorpion venom. Chem. Commun. (Camb.), 2018, 54(90), 12738-12741.
[http://dx.doi.org/10.1039/C8CC06725B] [PMID: 30357254]
[157]
Kumar, P.; Wu, H.; McBride, J.L.; Jung, K.E.; Kim, M.H.; Davidson, B.L.; Lee, S.K.; Shankar, P.; Manjunath, N. Transvascular delivery of small interfering RNA to the central nervous system. Nature, 2007, 448(7149), 39-43.
[http://dx.doi.org/10.1038/nature05901] [PMID: 17572664]
[158]
Huo, H.; Gao, Y.; Wang, Y.; Zhang, J.; Wang, Z.Y.; Jiang, T.; Wang, S. Polyion complex micelles composed of pegylated polyasparthydrazide derivatives for siRNA delivery to the brain. J. Colloid Interface Sci., 2015, 447, 8-15.
[http://dx.doi.org/10.1016/j.jcis.2015.01.043] [PMID: 25689522]
[159]
Ren, X.; Zhao, Y.; Xue, F.; Zheng, Y.; Huang, H.; Wang, W.; Chang, Y.; Yang, H.; Zhang, J. Exosomal dna aptamer targeting α-synuclein aggregates reduced neuropathological deficits in a mouse parkinson’s disease model. Mol. Ther. Nucleic Acids, 2019, 17, 726-740.
[http://dx.doi.org/10.1016/j.omtn.2019.07.008] [PMID: 31437653]
[160]
Oswald, M.; Geissler, S.; Goepferich, A. Targeting the central nervous system (CNS): a review of rabies virus-targeting strategies. Mol. Pharm., 2017, 14(7), 2177-2196.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00158] [PMID: 28514853]
[161]
Javed, H.; Menon, S.A.; Al-Mansoori, K.M.; Al-Wandi, A.; Majbour, N.K.; Ardah, M.T.; Varghese, S.; Vaikath, N.N.; Haque, M.E.; Azzouz, M.; El-Agnaf, O.M. Development of nonviral vectors targeting the brain as a therapeutic approach for Parkinson’s disease and other brain disorders. Mol. Ther., 2016, 24(4), 746-758.
[http://dx.doi.org/10.1038/mt.2015.232] [PMID: 26700614]
[162]
Demeule, M.; Régina, A.; Ché, C.; Poirier, J.; Nguyen, T.; Gabathuler, R.; Castaigne, J-P.; Béliveau, R. Identification and design of peptides as a new drug delivery system for the brain. J. Pharmacol. Exp. Ther., 2008, 324(3), 1064-1072.
[http://dx.doi.org/10.1124/jpet.107.131318] [PMID: 18156463]
[163]
McCully, M.; Sanchez-Navarro, M.; Teixido, M.; Giralt, E. Peptide mediated brain delivery of nano- and submicroparticles: a synergistic approach. Curr. Pharm. Des., 2018, 24(13), 1366-1376.
[http://dx.doi.org/10.2174/1381612824666171201115126] [PMID: 29205110]
[164]
Mousazadeh, M.; Palizban, A.; Salehi, R.; Salehi, M. Gene delivery to brain cells with apoprotein E derived peptide conjugated to polylysine (apoEdp-PLL). J. Drug Target., 2007, 15(3), 226-230.
[http://dx.doi.org/10.1080/10611860601148908] [PMID: 17454360]
[165]
Huang, J-L.; Jiang, G.; Song, Q-X.; Gu, X.; Hu, M.; Wang, X-L.; Song, H-H.; Chen, L-P.; Lin, Y-Y.; Jiang, D.; Chen, J.; Feng, J.F.; Qiu, Y.M.; Jiang, J.Y.; Jiang, X.G.; Chen, H.Z.; Gao, X.L. Lipoprotein-biomimetic nanostructure enables efficient targeting delivery of siRNA to Ras-activated glioblastoma cells via macropinocytosis. Nat. Commun., 2017, 8(1), 15144.
[http://dx.doi.org/10.1038/ncomms15144] [PMID: 28489075]
[166]
Zhang, H.; Gerson, T.; Varney, M.L.; Singh, R.K.; Vinogradov, S.V. Multifunctional peptide-PEG intercalating conjugates: programmatic of gene delivery to the blood-brain barrier. Pharm. Res., 2010, 27(12), 2528-2543.
[http://dx.doi.org/10.1007/s11095-010-0256-x] [PMID: 20824308]
[167]
Gomes, M.J.; Kennedy, P.J.; Martins, S.; Sarmento, B. Delivery of siRNA silencing P-gp in peptide-functionalized nanoparticles causes efflux modulation at the blood-brain barrier. Nanomedicine (Lond.), 2017, 12(12), 1385-1399.
[http://dx.doi.org/10.2217/nnm-2017-0023] [PMID: 28524759]
[168]
Prades, R.; Guerrero, S.; Araya, E.; Molina, C.; Salas, E.; Zurita, E.; Selva, J.; Egea, G.; López-Iglesias, C.; Teixidó, M.; Kogan, M.J.; Giralt, E. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials, 2012, 33(29), 7194-7205.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.063] [PMID: 22795856]
[169]
Schwarz, B.; Merkel, O.M. Nose-to-brain delivery of biologics. Ther. Deliv., 2019, 10(4), 207-210.
[http://dx.doi.org/10.4155/tde-2019-0013] [PMID: 30991920]
[170]
Rassu, G.; Soddu, E.; Posadino, A.M.; Pintus, G.; Sarmento, B.; Giunchedi, P.; Gavini, E. Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy. Colloids Surf. B Biointerfaces, 2017, 152, 296-301.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.031] [PMID: 28126681]
[171]
Samaridou, E.; Walgrave, H.; Salta, E.; Álvarez, D.M.; Castro-López, V.; Loza, M.; Alonso, M.J. Nose-to-brain delivery of enveloped RNA - cell permeating peptide nanocomplexes for the treatment of neurodegenerative diseases. Biomaterials, 2020, 230119657
[http://dx.doi.org/10.1016/j.biomaterials.2019.119657] [PMID: 31837821]
[172]
Stalmans, S.; Bracke, N.; Wynendaele, E.; Gevaert, B.; Peremans, K.; Burvenich, C.; Polis, I.; De Spiegeleer, B. Cell-penetrating peptides selectively cross the blood-brain barrier in vivo. PLoS One, 2015, 10(10)e0139652
[http://dx.doi.org/10.1371/journal.pone.0139652] [PMID: 26465925]
[173]
Guixer, B.; Arroyo, X.; Belda, I.; Sabidó, E.; Teixidó, M.; Giralt, E. Chemically synthesized peptide libraries as a new source of BBB shuttles. Use of mass spectrometry for peptide identification. J. Pept. Sci., 2016, 22(9), 577-591.
[http://dx.doi.org/10.1002/psc.2900] [PMID: 27440580]
[174]
Sellers, D.L.; Tan, J.Y.; Pineda, J.M.B.; Peeler, D.J.; Porubsky, V.L.; Olden, B.R.; Salipante, S.J.; Pun, S.H. Targeting ligands deliver model drug cargo into the central nervous system along autonomic neurons. ACS Nano, 2019, 13(10), 10961-10971.
[http://dx.doi.org/10.1021/acsnano.9b01515] [PMID: 31589023]
[175]
Mäger, I.; Meyer, A.H.; Li, J.; Lenter, M.; Hildebrandt, T.; Leparc, G.; Wood, M.J.A. Targeting blood-brain-barrier transcytosis - perspectives for drug delivery. Neuropharmacology, 2017, 120, 4-7.
[http://dx.doi.org/10.1016/j.neuropharm.2016.08.025] [PMID: 27561970]