Focus on MicroRNAs as Biomarker in Pediatric Diseases

Page: [826 - 832] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: MiRNAs are a class of small non-coding RNAs that are involved in the post-transcriptional regulation of gene expression. MiRNAs are considered a class of epigenetic biomarkers. These biomarkers can investigate disease at different stages: diagnosis, therapy or clinical follow-up.

Objective: The aim of this paper is to highlight the innovative use of miRNAs in several childhood diseases.

Methods: We conducted a literature review to search the usage of miRNAs in pediatric clinical routine or experimental trials.

Results: We found a possible key role of miRNAs in different pediatric illnesses (metabolic alterations, coagulation defects, cancer).

Conclusion: The modest literature production denotes that further investigation is needed to assess and validate the promising role of miRNAs as non-invasive biomarkers in pediatric disorders.

Keywords: MicroRNAs, pediatrics, children, biomarker, hemophilia, cancer, autism, metabolic syndrome.

[1]
Piletič K, Kunej T. MicroRNA epigenetic signatures in human disease. Arch Toxicol 2016; 90(10): 2405-19.
[http://dx.doi.org/10.1007/s00204-016-1815-7] [PMID: 27557899]
[2]
Sandoval J, Peiró-Chova L, Pallardó FV, García-Giménez JL. Epigenetic biomarkers in laboratory diagnostics: emerging approaches and opportunities. Expert Rev Mol Diagn 2013; 13(5): 457-71.
[http://dx.doi.org/10.1586/erm.13.37] [PMID: 23782253]
[3]
García-Giménez JL, Sanchis-Gomar F, Lippi G, et al. Epigenetic biomarkers: A new perspective in laboratory diagnostics. Clin Chim Acta 2012; 413(19-20): 1576-82.
[http://dx.doi.org/10.1016/j.cca.2012.05.021] [PMID: 22664147]
[4]
García-Giménez JL, Seco-Cervera M, Tollefsbol TO, et al. Epigenetic biomarkers: Current strategies and future challenges for their use in the clinical laboratory. Crit Rev Clin Lab Sci 2017; 54(7-8): 529-50.
[http://dx.doi.org/10.1080/10408363.2017.1410520] [PMID: 29226748]
[5]
Berdasco M, Esteller M. Clinical epigenetics: seizing opportunities for translation. Nat Rev Genet 2019; 20(2): 109-27.
[http://dx.doi.org/10.1038/s41576-018-0074-2] [PMID: 30479381]
[6]
Wang Y, Liang Y, Lu Q. MicroRNA epigenetic alterations: predicting biomarkers and therapeutic targets in human diseases. Clin Genet 2008; 74(4): 307-15.
[http://dx.doi.org/10.1111/j.1399-0004.2008.01075.x] [PMID: 18713257]
[7]
Ardekani AM, Naeini MM. The Role of MicroRNAs in Human Diseases. Avicenna J Med Biotechnol 2010; 2(4): 161-79.
[PMID: 23407304]
[8]
Coenen-Stass AML, Magen I, Brooks T, et al. Evaluation of methodologies for microRNA biomarker detection by next generation sequencing. RNA Biol 2018; 15(8): 1133-45.
[PMID: 30223713]
[9]
Kim YK. Extracellular microRNAs as Biomarkers in Human Disease. Chonnam Med J 2015; 51(2): 51-7.
[http://dx.doi.org/10.4068/cmj.2015.51.2.51] [PMID: 26306299]
[10]
Wang J, Chen J, Sen S. MicroRNA as Biomarkers and Diagnostics. J Cell Physiol 2016; 231(1): 25-30.
[http://dx.doi.org/10.1002/jcp.25056] [PMID: 26031493]
[11]
Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiol Rev 2016; 96(4): 1297-325.
[http://dx.doi.org/10.1152/physrev.00041.2015] [PMID: 27535639]
[12]
Mohr AM, Mott JL. Overview of microRNA biology. Semin Liver Dis 2015; 35(1): 3-11.
[http://dx.doi.org/10.1055/s-0034-1397344] [PMID: 25632930]
[13]
Wu Q, Qin H, Zhao Q, He XX. Emerging role of transcription factor-microRNA-target gene feed-forward loops in cancer. Biomed Rep 2015; 3(5): 611-6.
[http://dx.doi.org/10.3892/br.2015.477] [PMID: 26405533]
[14]
Faruq O, Vecchione A. microRNA: Diagnostic Perspective. Front Med 2015; 2: 51.
[http://dx.doi.org/10.3389/fmed.2015.00051] [PMID: 26284247]
[15]
Li Y, Kowdley KV. MicroRNAs in common human diseases. Genomics Proteomics Bioinformatics 2012; 10(5): 246-53.
[http://dx.doi.org/10.1016/j.gpb.2012.07.005] [PMID: 23200134]
[16]
Ha TY. MicroRNAs in Human Diseases: From Cancer to Cardiovascular Disease. Immune Netw 2011; 11(3): 135-54.
[http://dx.doi.org/10.4110/in.2011.11.3.135] [PMID: 21860607]
[17]
Gustafson D, Tyryshkin K, Renwick N. microRNA-guided diagnostics in clinical samples. Best Pract Res Clin Endocrinol Metab 2016; 30(5): 563-75.
[http://dx.doi.org/10.1016/j.beem.2016.07.002] [PMID: 27923451]
[18]
Sun Y, Zhu Z, You ZH, Zeng Z, Huang ZA, Huang YA. FMSM: a novel computational model for predicting potential miRNA biomarkers for various human diseases. BMC Syst Biol 2018; 12(Suppl. 9): 121.
[http://dx.doi.org/10.1186/s12918-018-0664-9] [PMID: 30598090]
[19]
Yu DC, Li QG, Ding XW, Ding YT. Circulating microRNAs: potential biomarkers for cancer. Int J Mol Sci 2011; 12(3): 2055-63.
[http://dx.doi.org/10.3390/ijms12032055] [PMID: 21673939]
[20]
Schwarzenbach H, Nishida N, Calin GA, Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 2014; 11(3): 145-56.
[http://dx.doi.org/10.1038/nrclinonc.2014.5] [PMID: 24492836]
[21]
Giza DE, Vasilescu C, Calin GA. Key principles of miRNA involvement in human diseases. Discov Craiova Rom 2014; 2(4)e34
[http://dx.doi.org/10.15190/d.2014.26] [PMID: 26317116]
[22]
Weiland M, Gao XH, Zhou L, Mi QS. Small RNAs have a large impact: circulating microRNAs as biomarkers for human diseases. RNA Biol 2012; 9(6): 850-9.
[http://dx.doi.org/10.4161/rna.20378] [PMID: 22699556]
[23]
Baldassarre A, Felli C, Prantera G, Masotti A. Circulating microRNAs and Bioinformatics Tools to Discover Novel Diagnostic Biomarkers of Pediatric Diseases. Genes (Basel) 2017; 8(9): 8.
[http://dx.doi.org/10.3390/genes8090234] [PMID: 28925938]
[24]
Gregory JW. Metabolic disorders. Endocr Dev 2009; 15: 59-76.
[http://dx.doi.org/10.1159/000207610] [PMID: 19293604]
[25]
Weiss R, Dziura J, Burgert TS, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med 2004; 350(23): 2362-74.
[http://dx.doi.org/10.1056/NEJMoa031049] [PMID: 15175438]
[26]
Al-Hamad D, Raman V. Metabolic syndrome in children and adolescents. Transl Pediatr 2017; 6(4): 397-407.
[http://dx.doi.org/10.21037/tp.2017.10.02] [PMID: 29184820]
[27]
Barkai L, Paragh G. [Metabolic syndrome in childhood and adolescence Orv Hetil 2006; 147(6): 243-50.
[PMID: 16610614]
[28]
Waters E, de Silva-Sanigorski A, Hall BJ, et al. Interventions for preventing obesity in children. Cochrane Database Syst Rev 2011; (12): CD001871
[PMID: 22161367]
[29]
Fischer-Posovszky P, Roos J, Kotnik P, et al. Functional Significance and Predictive Value of MicroRNAs in Pediatric Obesity: Tiny Molecules with Huge Impact? Horm Res Paediatr 2016; 86(1): 3-10.
[http://dx.doi.org/10.1159/000444677] [PMID: 27161162]
[30]
Arner P, Kulyté A. MicroRNA regulatory networks in human adipose tissue and obesity. Nat Rev Endocrinol 2015; 11(5): 276-88.
[http://dx.doi.org/10.1038/nrendo.2015.25] [PMID: 25732520]
[31]
Prats-Puig A, Ortega FJ, Mercader JM, et al. Changes in circulating microRNAs are associated with childhood obesity. J Clin Endocrinol Metab 2013; 98(10): E1655-60.
[http://dx.doi.org/10.1210/jc.2013-1496] [PMID: 23928666]
[32]
Can U, Buyukinan M, Yerlikaya FH. The investigation of circulating microRNAs associated with lipid metabolism in childhood obesity. Pediatr Obes 2016; 11(3): 228-34.
[http://dx.doi.org/10.1111/ijpo.12050] [PMID: 26223376]
[33]
Ouyang S, Tang R, Liu Z, Ma F, Li Y, Wu J. Characterization and predicted role of microRNA expression profiles associated with early childhood obesity. Mol Med Rep 2017; 16(4): 3799-806.
[http://dx.doi.org/10.3892/mmr.2017.7118] [PMID: 28765929]
[34]
Cui X, You L, Zhu L, et al. Change in circulating microRNA profile of obese children indicates future risk of adult diabetes. Metabolism 2018; 78: 95-105.
[http://dx.doi.org/10.1016/j.metabol.2017.09.006] [PMID: 28966078]
[35]
Al-Rawaf HA. Circulating microRNAs and adipokines as markers of metabolic syndrome in adolescents with obesity. Clin Nutr 2019; 38(5): 2231-8.
[http://dx.doi.org/10.1016/j.clnu.2018.09.024] [PMID: 30309709]
[36]
Ziegler AG, Bonifacio E, Powers AC, Todd JA, Harrison LC, Atkinson MA. Type 1 Diabetes Prevention: A Goal Dependent on Accepting a Diagnosis of an Asymptomatic Disease. Diabetes 2016; 65(11): 3233-9.
[http://dx.doi.org/10.2337/db16-0687] [PMID: 27959859]
[37]
Brands AMA, Kessels RPC, de Haan EHF, Kappelle LJ, Biessels GJ. Cerebral dysfunction in type 1 diabetes: effects of insulin, vascular risk factors and blood-glucose levels. Eur J Pharmacol 2004; 490(1-3): 159-68.
[http://dx.doi.org/10.1016/j.ejphar.2004.02.053] [PMID: 15094082]
[38]
Pierce JS, Kozikowski C, Lee JM, Wysocki T. Type 1 diabetes in very young children: a model of parent and child influences on management and outcomes. Pediatr Diabetes 2017; 18(1): 17-25.
[http://dx.doi.org/10.1111/pedi.12351] [PMID: 26712357]
[39]
Omran A, Elimam D, Yin F. MicroRNAs: new insights into chronic childhood diseases. BioMed Res Int 2013; 2013291826
[http://dx.doi.org/10.1155/2013/291826] [PMID: 23878802]
[40]
Nielsen LB, Wang C, Sørensen K, et al. Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res 2012; 2012896362
[PMID: 22829805]
[41]
Osipova J, Fischer DC, Dangwal S, et al. Diabetes-associated microRNAs in pediatric patients with type 1 diabetes mellitus: a cross-sectional cohort study. J Clin Endocrinol Metab 2014; 99(9): E1661-5.
[http://dx.doi.org/10.1210/jc.2013-3868] [PMID: 24937532]
[42]
Marchand L, Jalabert A, Meugnier E, et al. miRNA-375 a Sensor of Glucotoxicity Is Altered in the Serum of Children with Newly Diagnosed Type 1 Diabetes. J Diabetes Res 2016; 20161869082
[http://dx.doi.org/10.1155/2016/1869082] [PMID: 27314045]
[43]
Erener S, Marwaha A, Tan R, Panagiotopoulos C, Kieffer TJ. Profiling of circulating microRNAs in children with recent onset of type 1 diabetes. JCI Insight 2017; 2(4)e89656
[http://dx.doi.org/10.1172/jci.insight.89656] [PMID: 28239651]
[44]
Samandari N, Mirza AH, Kaur S, et al. Influence of Disease Duration on Circulating Levels of miRNAs in Children and Adolescents with New Onset Type 1 Diabetes. Noncoding RNA 2018; 4(4): 4.
[http://dx.doi.org/10.3390/ncrna4040035] [PMID: 30469437]
[45]
Nabih ES, Andrawes NG. The Association Between Circulating Levels of miRNA-181a and Pancreatic Beta Cells Dysfunction via SMAD7 in Type 1 Diabetic Children and Adolescents. J Clin Lab Anal 2016; 30(5): 727-31.
[http://dx.doi.org/10.1002/jcla.21928] [PMID: 26892629]
[46]
Samandari N, Mirza AH, Nielsen LB, et al. Circulating microRNA levels predict residual beta cell function and glycaemic control in children with type 1 diabetes mellitus. Diabetologia 2017; 60(2): 354-63.
[http://dx.doi.org/10.1007/s00125-016-4156-4] [PMID: 27866223]
[47]
Arim RG, Miller AR, Guèvremont A, Lach LM, Brehaut JC, Kohen DE. Children with neurodevelopmental disorders and disabilities: a population-based study of healthcare service utilization using administrative data. Dev Med Child Neurol 2017; 59(12): 1284-90.
[http://dx.doi.org/10.1111/dmcn.13557] [PMID: 28905997]
[48]
Mullin AP, Gokhale A, Moreno-De-Luca A, Sanyal S, Waddington JL, Faundez V. Neurodevelopmental disorders: mechanisms and boundary definitions from genomes, interactomes and proteomes. Transl Psychiatry 2013; 3e329
[http://dx.doi.org/10.1038/tp.2013.108] [PMID: 24301647]
[49]
Thapar A, Cooper M, Rutter M. Neurodevelopmental disorders. Lancet Psychiatry 2017; 4(4): 339-46.
[http://dx.doi.org/10.1016/S2215-0366(16)30376-5] [PMID: 27979720]
[50]
Scandurra V, Emberti Gialloreti L, Barbanera F, Scordo MR, Pierini A, Canitano R. Neurodevelopmental Disorders and Adaptive Functions: A Study of Children With Autism Spectrum Disorders (ASD) and/or Attention Deficit and Hyperactivity Disorder (ADHD). Front Psychiatry 2019; 10: 673.
[http://dx.doi.org/10.3389/fpsyt.2019.00673] [PMID: 31551839]
[51]
Omran A, Elimam D, Shalaby S, Peng J, Yin F. MicroRNAs: a light into the “black box” of neuropediatric diseases? Neuromolecular Med 2012; 14(4): 244-61.
[http://dx.doi.org/10.1007/s12017-012-8193-y] [PMID: 22810393]
[52]
Antshel KM, Russo N. Autism Spectrum Disorders and ADHD: Overlapping Phenomenology, Diagnostic Issues, and Treatment Considerations. Curr Psychiatry Rep 2019; 21(5): 34.
[http://dx.doi.org/10.1007/s11920-019-1020-5] [PMID: 30903299]
[53]
Thibaut F. New perspectives in autism spectrum disorders. Dialogues Clin Neurosci 2017; 19(4): 323.
[PMID: 29398927]
[54]
Mundalil Vasu M, Anitha A, Thanseem I, et al. Serum microRNA profiles in children with autism. Mol Autism 2014; 5: 40.
[http://dx.doi.org/10.1186/2040-2392-5-40] [PMID: 25126405]
[55]
Huang F, Long Z, Chen Z, et al. Investigation of Gene Regulatory Networks Associated with Autism Spectrum Disorder Based on MiRNA Expression in China. PLoS One 2015; 10(6): e0129052.
[http://dx.doi.org/10.1371/journal.pone.0129052] [PMID: 26061495]
[56]
Hicks SD, Ignacio C, Gentile K, Middleton FA. Salivary miRNA profiles identify children with autism spectrum disorder, correlate with adaptive behavior, and implicate ASD candidate genes involved in neurodevelopment. BMC Pediatr 2016; 16: 52.
[http://dx.doi.org/10.1186/s12887-016-0586-x] [PMID: 27105825]
[57]
Hicks SD, Carpenter RL, Wagner KE, et al. Saliva MicroRNA Differentiates Children With Autism From Peers With Typical and Atypical Development. J Am Acad Child Adolesc Psychiatry 2020; 59(2): 296-308.
[http://dx.doi.org/10.1016/j.jaac.2019.03.017] [PMID: 30926572]
[58]
Thapar A, Cooper M. Attention deficit hyperactivity disorder. Lancet 2016; 387(10024): 1240-50.
[http://dx.doi.org/10.1016/S0140-6736(15)00238-X] [PMID: 26386541]
[59]
Biederman J. Attention-deficit/hyperactivity disorder: a selective overview. Biol Psychiatry 2005; 57(11): 1215-20.
[http://dx.doi.org/10.1016/j.biopsych.2004.10.020] [PMID: 15949990]
[60]
Nuzziello N, Craig F, Simone M, et al. Integrated Analysis of microRNA and mRNA Expression Profiles: An Attempt to Disentangle the Complex Interaction Network in Attention Deficit Hyperactivity Disorder. Brain Sci 2019; 9(10): 9.
[http://dx.doi.org/10.3390/brainsci9100288] [PMID: 31652596]
[61]
Kandemir H, Erdal ME, Selek S, et al. Evaluation of several micro RNA (miRNA) levels in children and adolescents with attention deficit hyperactivity disorder. Neurosci Lett 2014; 580: 158-62.
[http://dx.doi.org/10.1016/j.neulet.2014.07.060] [PMID: 25123444]
[62]
Wang LJ, Li SC, Lee MJ, et al. Blood-Bourne MicroRNA Biomarker Evaluation in Attention-Deficit/Hyperactivity Disorder of Han Chinese Individuals: An Exploratory Study. Front Psychiatry 2018; 9: 227.
[http://dx.doi.org/10.3389/fpsyt.2018.00227] [PMID: 29896131]
[63]
Zadehbagheri F, Hosseini E, Bagheri-Hosseinabadi Z, Rekabdarkolaee HM, Sadeghi I. Profiling of miRNAs in serum of children with attention-deficit hyperactivity disorder shows significant alterations. J Psychiatr Res 2019; 109: 185-92.
[http://dx.doi.org/10.1016/j.jpsychires.2018.12.013] [PMID: 30557705]
[64]
Liguori M, Nuzziello N, Licciulli F, et al. Combined microRNA and mRNA expression analysis in pediatric multiple sclerosis: an integrated approach to uncover novel pathogenic mechanisms of the disease. Hum Mol Genet 2018; 27(1): 66-79.
[http://dx.doi.org/10.1093/hmg/ddx385] [PMID: 29087462]
[65]
Liguori M, Nuzziello N, Simone M, et al. Association between miRNAs expression and cognitive performances of Pediatric Multiple Sclerosis patients: A pilot study. Brain Behav 2019; 9(2)e01199
[http://dx.doi.org/10.1002/brb3.1199] [PMID: 30656857]
[66]
Toulon P. Developmental hemostasis: laboratory and clinical implications. Int J Lab Hematol 2016; 38(Suppl. 1): 66-77.
[http://dx.doi.org/10.1111/ijlh.12531] [PMID: 27426861]
[67]
Monagle P, Ignjatovic V, Savoia H. Hemostasis in neonates and children: pitfalls and dilemmas. Blood Rev 2010; 24(2): 63-8.
[http://dx.doi.org/10.1016/j.blre.2009.12.001] [PMID: 20074839]
[68]
van Ommen CH, Peters M. Clinical practice. Eur J Pediatr 2012; 171: 1-10.
[http://dx.doi.org/10.1007/s00431-011-1532-4] [PMID: 21800040]
[69]
Arrieta-Blanco JJ, Oñate-Sánchez R, Martínez-López F, Oñate-Cabrerizo D, Cabrerizo-Merino MD. Inherited, congenital and acquired disorders by hemostasis (vascular, platelet & plasmatic phases) with repercussions in the therapeutic oral sphere. Med Oral Patol Oral Cir Bucal 2014; 19(3): e280-8.
[http://dx.doi.org/10.4317/medoral.19560] [PMID: 24121923]
[70]
Giordano P, Franchini M, Lassandro G, Faienza MF, Valente R, Molinari AC. Issues in pediatric haemophilia care. Ital J Pediatr 2013; 39: 24.
[http://dx.doi.org/10.1186/1824-7288-39-24] [PMID: 23601343]
[71]
Del Vecchio GC, De Santis A, Giordano P, et al. AIEOP ITP Study Group. Management of acute childhood idiopathic thrombocytopenic purpura according to AIEOP consensus guidelines: assessment of Italian experience Acta Haematol 2008; 119(1): 1-7.
[http://dx.doi.org/10.1159/000112837] [PMID: 18176072]
[72]
Giordano P, Lassandro G, di Meo NA, et al. A Narrative Approach to Describe QoL in Children With Chronic ITP. Front Pediatr 2019; 7: 163.
[http://dx.doi.org/10.3389/fped.2019.00163] [PMID: 31134165]
[73]
Lassandro G, Palmieri VV, Palladino V, Accettura D, Valente R, Giordano P. Sport and Children with Immune Thrombocytopenia: Never Give Up. Curr Sports Med Rep 2019; 18(9): 317-8.
[http://dx.doi.org/10.1249/JSR.0000000000000631] [PMID: 31503041]
[74]
Lassandro G, Carriero F, Palmieri V, et al. Serum Vitamin D Levels in Children with Immune Thrombocytopenia. Endocr Metab Immune Disord Drug Targets 2020; 20(2): 221-6.
[http://dx.doi.org/10.2174/1871530319666190614152709] [PMID: 31203812]
[75]
Provan D, Newland AC. Current Management of Primary Immune Thrombocytopenia. Adv Ther 2015; 32(10): 875-87.
[http://dx.doi.org/10.1007/s12325-015-0251-z] [PMID: 26499177]
[76]
Giordano P, Delvecchio M, Lassandro G, et al. Can Anti-Thyroid Antibodies Influence the Outcome of Primary Chronic Immune Thrombocytopenia in Children? Endocr Metab Immune Disord Drug Targets 2020; 20(3): 351-5.
[http://dx.doi.org/10.2174/1871530319666190905161347] [PMID: 31486759]
[77]
Giordano P, Urbano F, Lassandro G, et al. Role of antithyroid autoimmunity as a predictive biomarker of chronic immune thrombocytopenia. Pediatr Blood Cancer 2019; 66(1)e27452
[http://dx.doi.org/10.1002/pbc.27452] [PMID: 30270575]
[78]
Del Vecchio GC, Giordano P, Tesse R, Piacente L, Altomare M, De Mattia D. Clinical significance of serum cytokine levels and thrombopoietic markers in childhood idiopathic thrombocytopenic purpura. Blood Transfus 2012; 10(2): 194-9.
[PMID: 22153687]
[79]
Paniccia R, Priora R, Liotta AA, Abbate R. Platelet function tests: a comparative review. Vasc Health Risk Manag 2015; 11: 133-48.
[http://dx.doi.org/10.2147/VHRM.S44469] [PMID: 25733843]
[80]
De Los Reyes-García AM, Arroyo AB, Teruel-Montoya R, et al. MicroRNAs as potential regulators of platelet function and bleeding diatheses. Platelets 2019; 30(7): 803-8.
[http://dx.doi.org/10.1080/09537104.2018.1475635] [PMID: 29787683]
[81]
Bay A, Coskun E, Oztuzcu S, Ergun S, Yilmaz F, Aktekin E. Plasma microRNA profiling of pediatric patients with immune thrombocytopenic purpura. Blood Coagul Fibrinolysis 2014; 25(4): 379-83.
[http://dx.doi.org/10.1097/MBC.0000000000000069] [PMID: 24418947]
[82]
Giordano P, Lassandro G, Valente M, Molinari AC, Ieranò P, Coppola A. Current management of the hemophilic child: a demanding interlocutor. Quality of life and adequate cost-efficacy analysis. Pediatr Hematol Oncol 2014; 31(8): 687-702.
[http://dx.doi.org/10.3109/08880018.2014.930768] [PMID: 25006797]
[83]
Jankowska KI, McGill J, Pezeshkpoor B, Oldenburg J, Atreya CD, Sauna ZE. Clinical manifestation of hemophilia A in the absence of mutations in the F8 gene that encodes FVIII: role of microRNAs. Transfusion 2020; 60(2): 401-13.
[http://dx.doi.org/10.1111/trf.15605] [PMID: 31785023]
[84]
Lee JA. Solid Tumors in Children and Adolescents. J Korean Med Sci 2018; 33(41): e269.
[http://dx.doi.org/10.3346/jkms.2018.33.e269] [PMID: 30288160]
[85]
de Carvalho INSR, de Freitas RM, Vargas FR. Translating microRNAs into biomarkers: What is new for pediatric cancer? Med Oncol 2016; 33(5): 49.
[http://dx.doi.org/10.1007/s12032-016-0766-4] [PMID: 27085875]
[86]
Kline NE, Sevier N. Solid tumors in children. J Pediatr Nurs 2003; 18(2): 96-102.
[http://dx.doi.org/10.1053/jpdn.2003.12] [PMID: 12720206]
[87]
Murray MJ, Raby KL, Saini HK, et al. Solid tumors of childhood display specific serum microRNA profiles. Cancer Epidemiol Biomarkers Prev 2015; 24(2): 350-60.
[http://dx.doi.org/10.1158/1055-9965.EPI-14-0669] [PMID: 25416717]
[88]
Miyachi M, Tsuchiya K, Yoshida H, et al. Circulating muscle-specific microRNA, miR-206, as a potential diagnostic marker for rhabdomyosarcoma. Biochem Biophys Res Commun 2010; 400(1): 89-93.
[http://dx.doi.org/10.1016/j.bbrc.2010.08.015] [PMID: 20696132]
[89]
Santoro N, Colombini A, Silvestri D, et al. Screening for coagulopathy and identification of children with acute lymphoblastic leukemia at a higher risk of symptomatic venous thrombosis: an AIEOP experience. J Pediatr Hematol Oncol 2013; 35(5): 348-55.
[http://dx.doi.org/10.1097/MPH.0b013e31828dc614] [PMID: 23619106]
[90]
Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther 2016; 1: 15004.
[http://dx.doi.org/10.1038/sigtrans.2015.4] [PMID: 29263891]
[91]
Zhang S, Zhou Y, Wang Y, et al. The mechanistic, diagnostic and therapeutic novel nucleic acids for hepatocellular carcinoma emerging in past score years. Brief Bioinform 2020.bbaa023
[http://dx.doi.org/10.1093/bib/bbaa023] [PMID: 32249290]
[92]
Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol 2014; 9: 287-314.
[http://dx.doi.org/10.1146/annurev-pathol-012513-104715] [PMID: 24079833]
[93]
Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 2010; 101(10): 2087-92.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01650.x] [PMID: 20624164]
[94]
Ouyang L, Liu P, Yang S, Ye S, Xu W, Liu X. A three-plasma miRNA signature serves as novel biomarkers for osteosarcoma. Med Oncol 2013; 30(1): 340.
[http://dx.doi.org/10.1007/s12032-012-0340-7] [PMID: 23269581]
[95]
Tian Q, Jia J, Ling S, Liu Y, Yang S, Shao Z. A causal role for circulating miR-34b in osteosarcoma. Eur J Surg Oncol 2014; 40(1): 67-72.
[http://dx.doi.org/10.1016/j.ejso.2013.08.024] [PMID: 24063968]
[96]
Lian F, Cui Y, Zhou C, Gao K, Wu L. Identification of a plasma four-microRNA panel as potential noninvasive biomarker for osteosarcoma. PLoS One 2015; 10(3): e0121499.
[http://dx.doi.org/10.1371/journal.pone.0121499] [PMID: 25775010]
[97]
Nakka M, Allen-Rhoades W, Li Y, et al. TARGET osteosarcoma consortium. Biomarker significance of plasma and tumor miR-21, miR-221, and miR-106a in osteosarcoma. Oncotarget 2017; 8(57): 96738-52.
[http://dx.doi.org/10.18632/oncotarget.18236] [PMID: 29228567]
[98]
Li H, Zhang K, Liu LH, et al. MicroRNA screening identifies circulating microRNAs as potential biomarkers for osteosarcoma. Oncol Lett 2015; 10(3): 1662-8.
[http://dx.doi.org/10.3892/ol.2015.3378] [PMID: 26622728]
[99]
Nie CL, Ren WH, Ma Y, Xi JS, Han B. Circulating miR-125b as a biomarker of Ewing’s sarcoma in Chinese children. Genet Mol Res 2015; 14(4): 19049-56.
[http://dx.doi.org/10.4238/2015.December.29.12] [PMID: 26782555]
[100]
Beta M, Venkatesan N, Vasudevan M, Vetrivel U, Khetan V, Krishnakumar S. Identification and Insilico Analysis of Retinoblastoma Serum microRNA Profile and Gene Targets Towards Prediction of Novel Serum Biomarkers. Bioinform Biol Insights 2013; 7: 21-34.
[http://dx.doi.org/10.4137/BBI.S10501] [PMID: 23400111]
[101]
Liu SS, Wang YS, Sun YF, et al. Plasma microRNA-320, microRNA-let-7e and microRNA-21 as novel potential biomarkers for the detection of retinoblastoma. Biomed Rep 2014; 2(3): 424-8.
[http://dx.doi.org/10.3892/br.2014.246] [PMID: 24748987]
[102]
Schmitt J, Backes C, Nourkami-Tutdibi N, et al. Treatment-independent miRNA signature in blood of Wilms tumor patients. BMC Genomics 2012; 13: 379.
[http://dx.doi.org/10.1186/1471-2164-13-379] [PMID: 22871070]
[103]
Ludwig N, Nourkami-Tutdibi N, Backes C, et al. Circulating serum miRNAs as potential biomarkers for nephroblastoma. Pediatr Blood Cancer 2015; 62(8): 1360-7.
[http://dx.doi.org/10.1002/pbc.25481] [PMID: 25787821]
[104]
Zeka F, Decock A, Van Goethem A, et al. Circulating microRNA biomarkers for metastatic disease in neuroblastoma patients. JCI Insight 2018; 3(23): e97021.
[http://dx.doi.org/10.1172/jci.insight.97021] [PMID: 30518699]