A Review of Recent Advances in the Green Synthesis of Azole- and Pyran-based Fused Heterocycles Using MCRs and Sustainable Catalysts

Page: [4 - 39] Pages: 36

  • * (Excluding Mailing and Handling)

Abstract

Nitrogen, oxygen and sulfur-containing fused heterocycles are of great importance because of their exciting and diverse biological activities. The construction of the carbonnitrogen and carbon-oxygen through a multicomponent reaction approach by using ecofriendly reusable heterogeneous catalysts are of significant importance as it opens avenues for the introduction of nitrogen and oxygen in organic molecules. Thus, green methodologies have gained particular significance in this field; today, green chemistry is considered a tool for introducing sustainable concepts at the fundamental level. This review emphasizes and discusses the current progress on the applications of eco-friendly, recyclable heterogeneous catalysts for the synthesis of different heterocyclic fused systems and their green protocols. We paid particular attention to the specific integration of carbon-nitrogen, and carbon-oxygen bond-forming fused heterocycles by a one-pot approach by evaluating the literature between 2012 and the middle of 2020. The efficiency of the catalyst is assessed in terms of reaction time, yield and possible reusability. The MCR and heterogeneous catalyst strategies have demonstrated broader scope, economical and viability for the green and sustainable processes in the field of synthetic organic chemistry.

Keywords: Multicomponent reactions, heterogeneous catalysts, fused-heterocycles, recyclability, one-pot process, green conditions.

Graphical Abstract

[1]
Elwahy, A.H.M.; Shaaban, M.R. Synthesis of heterocycles and fused heterocycles catalysed by nanomaterials. RSC Advances, 2015, 5, 75659-75710.
[http://dx.doi.org/10.1039/C5RA11421G]
[2]
Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem., 2014, 16, 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[3]
Bhaskaruni, S.V.H.S.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on multicomponent green synthesis of N-containing heterocycles using mixed oxides as heterogeneous catalysts. Arab. J. Chem., 2020, 13, 1142-1178.
[http://dx.doi.org/10.1016/j.arabjc.2017.09.016]
[4]
Kerru, N.; Bhaskaruni, S.V.H.S.; Gummidi, L.; Maddila, S.N.; Maddila, S.; Jonnalagadda, S.B. Recent advances in heterogeneous catalysts for the synthesis of imidazole derivatives. Synth. Commun., 2019, 49, 2437-2459.
[http://dx.doi.org/10.1080/00397911.2019.1639755]
[5]
Levi, L.; Müller, T.J.J. Multicomponent syntheses of functional chromophores. Chem. Soc. Rev., 2016, 45(10), 2825-2846.
[http://dx.doi.org/10.1039/C5CS00805K] [PMID: 26898222]
[6]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[7]
Slobbe, P.; Ruijter, E.; Orru, R.V.A. Recent applications of multicomponent reactions in medicinal chemistry. MedChemComm, 2012, 3, 1189-1218.
[http://dx.doi.org/10.1039/c2md20089a]
[8]
Rotstein, B.H.; Zaretsky, S.; Rai, V.; Yudin, A.K. Small heterocycles in multicomponent reactions. Chem. Rev., 2014, 114(16), 8323-8359.
[http://dx.doi.org/10.1021/cr400615v] [PMID: 25032909]
[9]
Afshari, R.; Shaabani, A. Materials functionalisation with multicomponent reactions: state of the art. ACS Comb. Sci., 2018, 20(9), 499-528.
[http://dx.doi.org/10.1021/acscombsci.8b00072] [PMID: 30106275]
[10]
Kaur, R.; Chaudhary, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Recent synthetic and medicinal perspectives of dihydropyrimidinones: a review. Eur. J. Med. Chem., 2017, 132, 108-134.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.025] [PMID: 28342939]
[11]
Bhaskaruni, S.V.H.S.; Gangu, K.K.; Maddila, S.; Jonnalagadda, S.B. Our contributions in synthesis of diverse heterocyclic scaffolds by using mixed oxides as heterogeneous catalysts. Chem. Rec., 2019, 19(9), 1793-1812.
[http://dx.doi.org/10.1002/tcr.201800077] [PMID: 30238597]
[12]
Kerru, N.; Bhaskaruni, S.V.H.S.; Gummidi, L.; Maddila, S.N.; Rana, S.; Singh, P. Jonnalagadda, S.B. Synthesis of novel pyrazole‐based triazolidin‐3‐one derivatives by using ZnO/ZrO2 as a reusable catalyst under green conditions. Appl. Organomet. Chem., 2019, 33e4722
[http://dx.doi.org/10.1002/aoc.4722]
[13]
Kerru, N.; Gummidi, L.; Bhaskaruni, S.V.H.S.; Maddila, S.N.; Jonnalagadda, S.B. One-pot green synthesis of novel 5,10-dihydro-1H-pyrazolo[1,2-b] phthalazine derivatives with eco-friendly biodegradable eggshell powder as efficacious catalyst. Res. Chem. Intermed., 2020, 46, 3067-3083.
[http://dx.doi.org/10.1007/s11164-020-04135-6]
[14]
Kerru, N.; Gummidi, L.; Maddila, S.N.; Gangu, K.K.; Jonnalagadda, S.B. Four-component rapid protocol with nickel oxide loaded on fluorapatite as a sustainable catalyst for the synthesis of novel imidazole analogs. Inorg. Chem. Commun., 2020, 116107935
[http://dx.doi.org/10.1016/j.inoche.2020.107935]
[15]
Hutchings, G.J. Heterogeneous catalysts-discovery and design. J. Mater. Chem., 2009, 19, 1222-1235.
[http://dx.doi.org/10.1039/B812300B]
[16]
Qiu, R.; Chen, Y.; Yin, S.F.; Xu, X.; Au, C.T. A mini-review on air-stable organometallic Lewis acids: synthesis, characterisation, and catalytic application in organic synthesis. RSC Advances, 2012, 2, 10774-10793.
[http://dx.doi.org/10.1039/c2ra21517a]
[17]
Vedrine, J.C. Heterogeneous catalysis on metal oxides. Catalysts, 2017, 7, 341.
[http://dx.doi.org/10.3390/catal7110341]
[18]
Zecchina, A.; Lamberti, C.; Bordiga, S. Surface acidity and basicity: general concepts. Catal. Today, 1998, 41, 169-177.
[http://dx.doi.org/10.1016/S0920-5861(98)00047-9]
[19]
Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H.L.; Norskov, J.K. Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. Chem., 1997, 115, 421-429.
[http://dx.doi.org/10.1016/S1381-1169(96)00348-2]
[20]
Maddila, S.N.; Maddila, S.; Bhaskaruni, S.V.H.S.; Kerru, N.; Jonnalagadda, S.B. MnO2 on hydroxyapatite: a green heterogeneous catalyst and synthesis of pyran-carboxamide derivatives. Inorg. Chem. Commun., 2020, 112107706
[http://dx.doi.org/10.1016/j.inoche.2019.107706]
[21]
Maddila, S.N.; Maddila, S.; Kerru, N.; Bhaskaruni, S.V.H.S.; Jonnalagadda, S.B. Facile one-pot synthesis of arylsulfonyl-4H-pyrans catalysed by Ru loaded fluorapatite. ChemistrySelect, 2020, 5, 1786-1791.
[http://dx.doi.org/10.1002/slct.201901867]
[22]
Sun, J.; Zhu, K.; Gao, F.; Wang, C.; Liu, J.; Peden, C.H.F.; Wang, Y. Direct conversion of bio-ethanol to isobutene on nanosized Zn(x)Zr(y)O(z) mixed oxides with balanced acid-base sites. J. Am. Chem. Soc., 2011, 133(29), 11096-11099.
[http://dx.doi.org/10.1021/ja204235v] [PMID: 21682296]
[23]
Gawande, M.B.; Bonifácio, V.D.B.; Luque, R.; Branco, P.S.; Varma, R.S. Benign by design: catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chem. Soc. Rev., 2013, 42(12), 5522-5551.
[http://dx.doi.org/10.1039/c3cs60025d] [PMID: 23529409]
[24]
Kreuder, A.D.; Knight, T.H.; Whitford, J.; Ponnusamy, E.; Miller, P.; Jesse, N.; Rodenborn, R.; Sayag, S.; Gebel, M.; Aped, I.; Sharfstein, I.; Manaster, E.; Ergaz, I.; Harris, A.; Grice, L.N. A method for assessing greener alternatives between chemical products following the 12 principles of green chemistry. ACS Sustain. Chem.& Eng., 2017, 5, 2927-2935.
[http://dx.doi.org/10.1021/acssuschemeng.6b02399]
[25]
Constable, D.J.C.; Dunn, P.J.; Hayler, J.D.; Humphrey, G.R.; Leazer, J.L.; Linderman, R.J.; Lorenz, K.; Manley, J.; Pearlman, B.A.; Wells, A.; Zaksh, A.; Zhang, T.Y. Key green chemistry research areas-a perspective from pharmaceutical manufacturers. Green Chem., 2007, 9, 411-420.
[http://dx.doi.org/10.1039/B703488C]
[26]
Kerru, N.; Maddila, S.; Jonnalagadda, S.B. Design of carbon-carbon and carbon-heteroatom bond formation reactions under green conditions. Curr. Org. Chem., 2019, 23, 3156-3192.
[http://dx.doi.org/10.2174/1385272823666191202105820 ]
[27]
Clarke, C.J.; Tu, W.C.; Levers, O.; Bröhl, A.; Hallett, J.P. Green and sustainable solvents in chemical processes. Chem. Rev., 2018, 118(2), 747-800.
[http://dx.doi.org/10.1021/acs.chemrev.7b00571] [PMID: 29300087]
[28]
Gu, Y. Multicomponent reactions in unconventional solvents: state of the art. Green Chem., 2012, 14, 2091-2128.
[http://dx.doi.org/10.1039/c2gc35635j]
[29]
Sheldon, R.A. Green solvents for sustainable organic synthesis: state of the art. Green Chem., 2005, 7, 267-278.
[http://dx.doi.org/10.1039/b418069k]
[30]
Yi, W.; Wang, P.F.; Lu, M.; Liu, Q.Q.; Bai, X.; Chen, K.D.; Zhang, J.W.; Liu, G.Q. Environmentally friendly protocol for the oxidative iodofunctionalization of olefins in a green solvent. ACS Sustain. Chem.& Eng., 2019, 7, 16777-16785.
[http://dx.doi.org/10.1021/acssuschemeng.9b04298]
[31]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[32]
Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14(28), 6611-6637.
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396]
[33]
Taylor, R.D.; MacCoss, M.; Lawson, A.D.G. Rings in drugs. J. Med. Chem., 2014, 57(14), 5845-5859.
[http://dx.doi.org/10.1021/jm4017625] [PMID: 24471928]
[34]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[35]
Kerru, N.; Singh, P.; Koorbanally, N.; Raj, R.; Kumar, V. Recent advances (2015-2016) in anticancer hybrids. Eur. J. Med. Chem., 2017, 142, 179-212.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.033] [PMID: 28760313]
[36]
Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd., 2012, 48, 7-10.
[http://dx.doi.org/10.1007/s10593-012-0960-z]
[37]
Jampilek, J. Heterocycles in medicinal chemistry. Molecules, 2019, 24(21), 3839.
[http://dx.doi.org/10.3390/molecules24213839] [PMID: 31731387]
[38]
Li, N.; Bai, J.; Zheng, X.; Rao, H. Formation of methylene linkage for N-heterocycles: sequential C–H and C–O bond functionalization of methanol with cosolvent water. J. Org. Chem., 2019, 84(11), 6928-6939.
[http://dx.doi.org/10.1021/acs.joc.9b00729] [PMID: 31088076]
[39]
Liu, H.; Khononov, M.; Eisen, M.S. Catalytic 1,2-regioselective dearomatization of N-heteroaromatics via a hydroboration. ACS Catal., 2018, 8, 3673-3677.
[http://dx.doi.org/10.1021/acscatal.8b00074]
[40]
Zhai, M.; Liu, S.; Gao, M.; Wang, L.; Sun, J.; Du, J.; Guan, Q.; Bao, K.; Zuo, D.; Wu, Y.; Zhang, W. 3,5-Diaryl-1H-pyrazolo[3,4-b]pyridines as potent tubulin polymerization inhibitors: rational design, synthesis and biological evaluation. Eur. J. Med. Chem., 2019, 168, 426-435.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.053] [PMID: 30831410]
[41]
Keri, R.S.; Patil, M.R.; Patil, S.A.; Budagumpi, S. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur. J. Med. Chem., 2015, 89, 207-251.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.059] [PMID: 25462241]
[42]
Faisal, M.; Saeed, A.; Shahzad, D.; Fattah, T.A.; Lal, B.; Channar, P.A.; Mahar, J.; Saeed, S.; Mahesar, P.A.; Larik, F.A. Enzyme inhibitory activities an insight into the structure-activity relationship of biscoumarin derivatives. Eur. J. Med. Chem., 2017, 141, 386-403.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.009] [PMID: 29032032]
[43]
Fan, Y.L.; Jin, X.H.; Huang, Z.P.; Yu, H.F.; Zeng, Z.G.; Gao, T.; Feng, L.S. Recent advances of imidazole-containing derivatives as anti-tubercular agents. Eur. J. Med. Chem., 2018, 150, 347-365.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.016] [PMID: 29544148]
[44]
Zhang, J.; Wang, S.; Ba, Y.; Xu, Z. 1,2,4-Triazole-quinoline/quinolone hybrids as potential anti-bacterial agents. Eur. J. Med. Chem., 2019, 174, 1-8.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.033] [PMID: 31015103]
[45]
Ibarra, I.A.; Islas-Jácome, A.; González-Zamora, E. Synthesis of polyheterocycles via multicomponent reactions. Org. Biomol. Chem., 2018, 16(9), 1402-1418.
[http://dx.doi.org/10.1039/C7OB02305G] [PMID: 29238790]
[46]
Raffa, D.; Maggio, B.; Raimondi, M.V.; Cascioferro, S.; Plescia, F.; Cancemi, G.; Daidone, G. Recent advanced in bioactive systems containing pyrazole fused with a five membered heterocycle. Eur. J. Med. Chem., 2015, 97, 732-746.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.023] [PMID: 25549911]
[47]
Khan, M.F.; Alam, M.M.; Verma, G.; Akhtar, W.; Akhter, M.; Shaquiquzzaman, M. The therapeutic voyage of pyrazole and its analogs: a review. Eur. J. Med. Chem., 2016, 120, 170-201.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.077] [PMID: 27191614]
[48]
Ansari, K.F.; Lal, C. Synthesis, physicochemical properties and antimicrobial activity of some new benzimidazole derivatives. Eur. J. Med. Chem., 2009, 44(10), 4028-4033.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.037] [PMID: 19482384]
[49]
Haghighat, M.; Shirini, F.; Golshekan, M. Efficiency of NaHSO4 modified periodic mesoporous organosilica magnetic nanoparticles as a new magnetically separable nanocatalyst in the synthesis of [1,2,4]triazolo quinazolinone/pyrimidine derivatives. J. Mol. Struct., 2018, 1171, 168-178.
[http://dx.doi.org/10.1016/j.molstruc.2018.05.112]
[50]
Seyyedi, N.; Shirini, F.; Safarpoor, M.; Langarudi, N.; Jashnani, S. A simple and convenient synthesis of [1,2,4]triazolo/benzimidazoloquinazolinone and [1,2,4]triazolo[1,5-a]pyrimidine derivatives catalysed by DABCO-based ionic liquids. J. Iran. Chem. Soc, 2017, 14, 1859-1867.
[http://dx.doi.org/10.1007/s13738-017-1125-x]
[51]
Kidwai, M.; Chauhan, R. Nafion-H catalysed efficient one-pot synthesis of triazolo[5,1-b]quinazolinones and triazolo[1,5-a]pyrimidines: a green strategy. J. Mol. Catal. Chem., 2013, 377, 1-6.
[http://dx.doi.org/10.1016/j.molcata.2013.04.014]
[52]
Mousavi, M.R.; Maghsoodlou, M.T. Nano-SiO2: a green, efficient, and reusable heterogeneous catalyst for the synthesis of quinazolinone derivatives. J. Iran. Chem. Soc, 2015, 12, 743-749.
[http://dx.doi.org/10.1007/s13738-014-0533-4]
[53]
Ziarani, G.M.; Badiei, A.; Aslani, Z.; Lashgari, N. Application of sulfonic acid functionalized nanoporous silica (SBA-Pr-SO3H) in the green one-pot synthesis of triazoloquinazolinones and benzimidazoquinazolinones. Arab. J. Chem., 2015, 8, 54-61.
[http://dx.doi.org/10.1016/j.arabjc.2011.06.020]
[54]
Kerru, N.; Gummidi, L.; Maddila, S.N.; Bhaskaruni, S.V.H.S.; Jonnalagadda, S.B. Bi2O3/FAp, a sustainable catalyst for synthesis of dihydro-[1,2,4]triazolo[1,5-a]pyrimidine derivatives through green strategy. Appl. Organomet. Chem., 2020, 34e5590
[http://dx.doi.org/10.1002/aoc.5590]
[55]
Maleki, A.; Niksefat, M.; Rahimi, J.; Azadegan, S. Facile synthesis of tetrazolo[1,5-a]pyrimidine with the aid of an effective gallic acid nanomagnetic catalyst. Polyhedron, 2019, 167, 103-110.
[http://dx.doi.org/10.1016/j.poly.2019.04.015]
[56]
Maleki, A.; Ravaghi, P.; Aghaei, M.; Movahed, H. A novel magnetically recyclable silver-loaded cellulosebased bionanocomposite catalyst for green synthesis of tetrazolo[1,5-a]pyrimidines. Res. Chem. Intermed., 2017, 43, 5485-5494.
[http://dx.doi.org/10.1007/s11164-017-2941-4]
[57]
Maleki, A.; Rahimi, J.; Demchuk, O.M.; Wilczewska, A.Z.; Jasiński, R. Green in water sonochemical synthesis of tetrazolopyrimidine derivatives by a novel core-shell magnetic nanostructure catalyst. Ultrason. Sonochem., 2018, 43, 262-271.
[http://dx.doi.org/10.1016/j.ultsonch.2017.12.047] [PMID: 29555283]
[58]
Basha, S.F.; Prasad, T.N.; Gudise, V.B.; Kumar, V.S.; Mulakayala, N.; Anwar, S. An efficient, multicomponent, green protocol to access 4,7-dihydrotetrazolo[1,5-a] pyrimidines and 5,6,7,9-tetrahydrotetrazolo[5,1-b]quinazolin-8(4H)-ones using PEG-400 under microwave irradiation. Synth. Commun., 2019, 49, 3181-3190.
[http://dx.doi.org/10.1080/00397911.2019.1659973]
[59]
Li, T.J.; Yao, C.S.; Yu, C.X.; Wang, X.S.; Tu, S.J. Ionic liquid–mediated one-pot synthesis of 5-(trifluoromethyl)-4,7-dihydrotetrazolo-[1,5-a]pyrimidine derivatives. Synth. Commun., 2012, 42, 2728-2738.
[http://dx.doi.org/10.1080/00397911.2011.566460]
[60]
Sahu, P.K.; Sahu, P.K.; Gupta, S.K.; Agarwal, D.D. Chitosan: An efficient, reusable, and biodegradable catalyst for green synthesis of heterocycles. Ind. Eng. Chem. Res., 2014, 53, 2085-2091.
[http://dx.doi.org/10.1021/ie402037d]
[61]
Sahu, P.K.; Sahu, P.K.; Jain, R.; Yadav, R.; Agarwal, D.D. Hydrotalcite: recyclable, novel heterogeneous catalyst for facile, environmentally benign and high yielding multicomponent synthesis and mechanistic study under solvent free conditions. Catal. Sci. Technol., 2012, 2, 2465-2475.
[http://dx.doi.org/10.1039/c2cy20067h]
[62]
Atar, A.B.; Jeong, Y.S.; Jeong, Y.T. Iron fluoride: the most efficient catalyst for one-pot synthesis of 4H-pyrimido[2,1-b]benzothiazoles under solvent-free conditions. Tetrahedron, 2014, 70, 5207-5213.
[http://dx.doi.org/10.1016/j.tet.2014.05.094]
[63]
Azad, S.; Mirjalili, B.B.F. Nano-TiCl2/cellulose: an eco-friendly bio-based catalyst for one-pot synthesis of 4H-pyrimido[2,1-b]benzothiazole derivatives. Res. Chem. Intermed., 2017, 43, 1723-1734.
[http://dx.doi.org/10.1007/s11164-016-2725-2]
[64]
Azad, S.; Mirjalili, B.B.F. Fe3O4@nano-cellulose/TiCl: a bio-based and magnetically recoverable nanocatalyst for the synthesis of pyrimido[2,1-b]benzothiazole derivatives. RSC Advances, 2016, 6, 96928-96934.
[http://dx.doi.org/10.1039/C6RA13566H]
[65]
Mirjalili, B.B.F.; Aref, F. Nano-cellulose/BF3/Fe3O4: a magnetic bio-based nanocatalyst for the synthesis of pyrimido[2,1-b]benzothiazoles under solvent-free conditions. Res. Chem. Intermed., 2018, 44, 4519-4531.
[http://dx.doi.org/10.1007/s11164-018-3401-5]
[66]
Mirjalili, B.B.F.; Soltani, R. Nano-kaolin/Ti4+/Fe3O4: a magnetic reusable nanocatalyst for the synthesis of pyrimido[2,1-b] benzothiazoles. RSC Advances, 2019, 9, 18720-18727.
[http://dx.doi.org/10.1039/C9RA01767D]
[67]
Fazeli-Attar, S.A.; Mirjalili, B.B.F. Catalyst for the synthesis of 4H-pyrimido[2,1-b]benzothiazoles. Res. Chem. Intermed., 2018, 44, 6419-6430.
[http://dx.doi.org/10.1007/s11164-018-3498-6]
[68]
Safajoo, N.; Mirjalili, B.B.F.; Bamoniri, A. Fe3O4@nano-cellulose/Cu(II): a bio-based and magnetically recoverable nanocatalyst for the synthesis of 4H-pyrimido[2,1-b]benzothiazole derivatives. RSC Advances, 2019, 9, 1278-1283.
[http://dx.doi.org/10.1039/C8RA09203F]
[69]
Wadhwa, P.; Kaur, T.; Singh, N.; Singh, U.P.; Sharma, A. p-Toluenesulfonic acid-mediated three-component reaction “on-water” protocol for the synthesis of novel thiadiazolo-[2,3-b]quinazolin-6(7H)-ones. Asian J. Org. Chem., 2016, 5, 120-126.
[http://dx.doi.org/10.1002/ajoc.201500397]
[70]
Zhao, B.; Xu, Y.; Deng, Q.G.; Liu, Z.; Wang, L.Y.; Gao, Y. One-pot, three component synthesis of novel 5H-[1,3,4]thiadiazolo[3,2-a]pyrimidine-6-carboxylate derivatives by microwave irradiation. Tetrahedron Lett., 2014, 55, 4521-4524.
[http://dx.doi.org/10.1016/j.tetlet.2014.06.073]
[71]
Raj, T.; Sharma, H.; Mayank, A.; Singh, A.; Aree, T.; Kaur, N.; Singh, N.; Jang, D.O. “Solvent-less” mechanochemical approach to the synthesis of pyrimidine derivatives. ACS Sustain. Chem.& Eng., 2017, 5, 1468-1475.
[http://dx.doi.org/10.1021/acssuschemeng.6b02030]
[72]
Tran, P.H.; Bui, T.P.T.; Lam, X.Q.B.; Nguyen, X.T.T. Synthesis of benzo[4,5]imidazo[1,2-a]pyrimidines and 2,3-dihydroquinazolin-4(1H)-ones under metal-free and solvent-free conditions for minimising waste generation. RSC Advances, 2018, 8, 36392-36399.
[http://dx.doi.org/10.1039/C8RA07256F]
[73]
Basyouni, W.M.; Abbas, S.Y.; Abdelazeem, N.M.; El-Bayouki, K.A.M.; El-Kady, M.Y. Silica sulfuric acid/ethylene glycol as an efficient catalyst for the synthesis of benzo[4,5]imidazo[1,2-a]pyrimidine-3-carbonitrile derivatives. Synth. Commun., 2019, 49, 3112-3120.
[http://dx.doi.org/10.1080/00397911.2019.1652322]
[74]
Jashnani, S.; Seddighi, M.; Langarudi, M.S.N.; Shirini, F. 1,4-Piperazinium hydrogen sulfate [H-pi]HSO4 a novel di-cationic ionic liquid: synthesis, characterisation and its applications as a catalyst in various organic transformations. ChemistrySelect, 2018, 3, 11585-11592.
[http://dx.doi.org/10.1002/slct.201802639]
[75]
Goli-Jolodar, O.; Shirini, F. An efficient and practical synthesis of benzazolo[2,1-b] quinazolinones and triazolo[2,1-b]quinazolinones catalysed by nano-sized NS-C4(DABCO-SO3H)2)•4Cl. J. Iran. Chem. Soc, 2017, 14, 2275-2286.
[http://dx.doi.org/10.1007/s13738-017-1164-3]
[76]
Shirini, F.; Seddighi, M.; Goli-Jolodar, O. Facile and efficient synthesis of pyrimido[1,2-a]benzimidazole and tetrahydrobenzimidazo[2,1-b]quinazolin-1(2H)- one derivatives using Brönsted acidic ionic liquid supported on rice husk ash (RHA-[pmim]HSO4). J. Iran. Chem. Soc, 2016, 13, 2013-2018.
[http://dx.doi.org/10.1007/s13738-016-0918-7]
[77]
Abedini, M.; Shirini, F.; Mousapour, M.; Jolodar, O.G. Poly(vinylpyrro-lidonium) perchlorate catalysed one-pot synthesis of tricyclic dihydropyrimidine derivatives. Res. Chem. Intermed., 2016, 42, 6221-6229.
[http://dx.doi.org/10.1007/s11164-016-2456-4]
[78]
Shaterian, H.R.; Fahimi, N.; Azizi, K. New applications of phosphoric acid supported on alumina (H3PO4–Al2O3) as a reusable heterogeneous catalyst for preparation of 2,3-dihydroquinazoline-4(1H)-ones, 2H-indazolo[2,1-b]phthalazinetriones, and benzo[4,5]imidazo[1,2-a]pyrimidines. Res. Chem. Intermed., 2014, 40, 1879-1898.
[http://dx.doi.org/10.1007/s11164-013-1087-2]
[79]
Pirhayati, M.; Kakanejadifard, A.; Veisi, H. A new nano-Fe3O4-supported organocatalys based on 3,4-dihydroxypyridine: an efficient heterogeneous nanocatalyst for one-pot synthesis of pyrazolo[3,4-b]pyridines and pyrano[2,3-d]pyrimidines. Appl. Organomet. Chem., 2016, 30, 1004-1008.
[http://dx.doi.org/10.1002/aoc.3534]
[80]
Mamaghani, M.; Shirini, F.; Mahmoodi, N.O.; Roshan, A.A.; Hashemlou, H. A green, efficient and recyclable Fe+3@K10 catalyst for the synthesis of bioactive pyrazolo[3,4-b]pyridin-6(7H)-ones under “ on water” conditions. J. Mol. Struct., 2013, 1051, 169-176.
[http://dx.doi.org/10.1016/j.molstruc.2013.07.060]
[81]
De, K.; Bhaumik, A.; Banerjee, B.; Mukhopadhyay, C. An expeditious and efficient synthesis of spiro-pyrazolo[3,4-b]pyridines catalysed by recyclable mesoporous aluminosilicate nanoparticles in aqueous-ethanol. Tetrahedron Lett., 2015, 56, 1614-1618.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.163]
[82]
Reddy, M.V.; Jeong, Y.T. Copper (II) oxide nanoparticles: as a highly active and reusable heterogeneous catalyst for the construction of phenyl-1H-pyrazolo[3,4-b]pyridine derivatives under solvent-free conditions. RSC Advances, 2016, 6, 103838-103842.
[http://dx.doi.org/10.1039/C6RA22445H]
[83]
Gunasekaran, P.; Indumathi, S.; Perumal, S. L-Proline-catalyzed three-component domino reactions in the regioselective synthesis of novel densely functionalised pyrazolo[3,4-b]pyridines. RSC Advances, 2013, 3, 8318-8325.
[http://dx.doi.org/10.1039/c3ra00136a]
[84]
Gunasekaran, P.; Prasanna, P.; Perumal, S. L-Proline-catalyzed three-component domino reactions for the synthesis of highly functionalised pyrazolo[3,4-b]pyridines. Tetrahedron Lett., 2014, 55, 329-332.
[http://dx.doi.org/10.1016/j.tetlet.2013.11.016]
[85]
Afsar, J.; Zolfigol, M.A.; Khazaei, A.; Alonso, D.A.; Khoshnood, A.; Bayat, Y.; Asgari, A. Synthesis and application of a novel nanomagnetic catalyst with Cl[DABCO-NO2]C(NO2)3 tags in the preparation of pyrazolo[3,4-b]pyridines via anomeric based oxidation. Res. Chem. Intermed., 2018, 44, 7595-7618.
[http://dx.doi.org/10.1007/s11164-018-3576-9]
[86]
Afsar, J.; Zolfigol, M.A.; Khazaei, A.; Zarei, M.; Gu, Y.; Alonso, D.A.; Khoshnood, A. Synthesis and application of melamine-based nano catalyst with phosphonic acid tags in the synthesis of (3´-indolyl)pyrazolo[3,4-b]pyridines via vinylogous anomeric based oxidation. Mol. Catal, 2020, 482, 11066.
[http://dx.doi.org/10.1016/j.mcat.2019.110666]
[87]
Veisi, H.; Mohammadi, P.; Ozturk, T. Design, synthesis, characterisation, and catalytic properties of g-C3N4-SO3H as an efficient nanosheet ionic liquid for one-pot synthesis of pyrazolo[3,4-b]pyridines and bis(indolyl)methanes. J. Mol. Liq., 2020, 303112625
[http://dx.doi.org/10.1016/j.molliq.2020.112625]
[88]
Zhong, X.; Dou, G.; Wang, D. Polyethylene glycol (PEG-400): an efficient and recyclable reaction medium for the synthesis of pyrazolo[3,4-b]pyridin-6(7H)-one derivatives. Molecules, 2013, 18(11), 13139-13147.
[http://dx.doi.org/10.3390/molecules181113139] [PMID: 24284481]
[89]
Bhattacharjee, D.; Kshiar, B.; Myrboh, B. L-Proline as an efficient enantioinduction organo-catalyst in th solvent-free synthesis of pyrazolo[3,4-b]quinoline derivatives via one-pot multicomponent reaction. RSC Advances, 2016, 6, 95944-95950.
[http://dx.doi.org/10.1039/C6RA22429F]
[90]
Zahedifar, M.; Shojaei, R.; Sheibani, H. Convenient regioselective reaction in presence of H3PW12O40: synthesis and characterisation of pyrazolo[3,4-b]quinoline-3,5-diones. Res. Chem. Intermed., 2018, 44, 873-882.
[http://dx.doi.org/10.1007/s11164-017-3141-y]
[91]
Ghorbani-Choghamarani, A.; Moradi, P.; Tahmasbi, B. Modification of boehmite nanoparticles with Adenine for the immobilization of Cu(II) as organic–inorganic hybrid nanocatalyst in organic reactions. Polyhedron, 2019, 163, 98-107.
[http://dx.doi.org/10.1016/j.poly.2019.02.004]
[92]
Ghorbani-Choghamarani, A.; Moradi, P.; Tahmasbi, B. Nickel(II) immobilized on dithizone–boehmite nanoparticles:as a highly efficient and recyclable nanocatalyst for the synthesis of polyhydroquinolines and sulfoxidation reaction. J. Iran. Chem. Soc, 2019, 16, 511-521.
[http://dx.doi.org/10.1007/s13738-018-1526-5]
[93]
Ghorbani-Choghamarani, A.; Seydyosefi, Z.; Tahmasbi, B. Tribromide ion supported on boehmite nanoparticles as a reusable catalyst for organic reactions. C. R. Chim., 2018, 21, 1011-1022.
[http://dx.doi.org/10.1016/j.crci.2018.09.001]
[94]
Sandhu, S.; Bansal, Y.; Silakari, O.; Bansal, G. Coumarin hybrids as novel therapeutic agents. Bioorg. Med. Chem., 2014, 22(15), 3806-3814.
[http://dx.doi.org/10.1016/j.bmc.2014.05.032] [PMID: 24934993]
[95]
Bhavanarushi, S.; Kanakaiah, V.; Yakaiah, E.; Saddanapu, V.; Addlagatta, A.; Rani, J.V. Synthesis, cytotoxic, and DNA binding studies of novel fluorinated condensed pyrano pyrazoles. Med. Chem. Res., 2013, 22, 2446-2454.
[http://dx.doi.org/10.1007/s00044-012-0239-z]
[96]
Su, S.; Yin, P.; Li, J.; Chen, G.; Wang, Y.; Qu, D.; Li, Z.; Xue, X.; Luo, X.; Li, M. In vitro and in vivo anti-biofilm activity of pyran derivative against Staphylococcus aureus and Pseudomonas aeruginosa. J. Infect. Public Health, 2020, 13(5), 791-799.
[http://dx.doi.org/10.1016/j.jiph.2019.10.010] [PMID: 31813834]
[97]
Bihani, M.; Bora, P.P.; Bez, G.; Askari, H. Amberlyst A21 catalysed chromatography-free method for multicomponent synthesis of dihydropyrano[2,3-c]pyrazoles in ethanol. ACS Sustain. Chem.& Eng., 2013, 1, 440-447.
[http://dx.doi.org/10.1021/sc300173z]
[98]
Vaghei, R.G.; Mahmoodi, J.; Shahriari, A.; Maghbooli, Y. Synthesis of pyrano[2,3-c]pyrazole derivatives using Fe3O4@SiO2@piperidinium benzene-1,3-disulfonate (Fe3O4@SiO2 nanoparticle-supported IL) as a novel, green and heterogeneous catalyst. Appl. Organomet. Chem., 2017, 31e3816
[http://dx.doi.org/10.1002/aoc.3816]
[99]
Ali, E.; Naimi-Jamal, M.R.; Ghahramanzadeh, R. One-pot multicomponent synthesis of pyrano[2,3-c]pyrazole derivatives using CMCSO3H as a green catalyst. ChemistrySelect, 2019, 4, 9033-9039.
[http://dx.doi.org/10.1002/slct.201901676]
[100]
Maleki, A.; Eskandarpour, V. Design and development of a new functionalised cellulose-based magnetic nanocomposite: preparation, characterisation, and catalytic application in the synthesis of diverse pyrano[2,3-c]pyrazole derivatives. J. Iran. Chem. Soc., 2019, 16, 1459-1472.
[http://dx.doi.org/10.1007/s13738-019-01610-9]
[101]
Liu, T.; Lai, Y.H.; Yu, Y.Q.; Xu, D.Z. A facile and efficient procedure for one-pot four-component synthesis of polysubstituted spiro pyrano[2,3-c]pyrazole and spiro 1,4-dihydropyridine catalysed by DABCO-based ionic liquid under mild condition. New J. Chem., 2018, 42, 1046-1051.
[http://dx.doi.org/10.1039/C7NJ03967K]
[102]
Shahbazi, S.; Ghasemzadeh, M.A.; Shakib, P.; Zolfaghari, M.R.; Bahmani, M. Synthesis and antimicrobial study of 1,4-dihydropyrano[2,3-c]pyrazole derivatives in the presence of amino-functionalised silica-coated cobalt oxide nanostructures as catalyst. Polyhedron, 2019, 170, 172-179.
[http://dx.doi.org/10.1016/j.poly.2019.04.063]
[103]
Patel, K.G.; Misra, N.M.; Vekariya, R.H.; Shettigar, R.R. One-pot multicomponent synthesis in aqueous medium of 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile and derivatives using a green and reusable nano-SiO2 catalyst from agricultural waste. Res. Chem. Intermed., 2018, 44, 289-304.
[http://dx.doi.org/10.1007/s11164-017-3104-3]
[104]
Gholtash, J.E.; Farahi, M. Tungstic acid-functionalised Fe3O4@TiO2: preparation, characterisation and its application for the synthesis of pyrano[2,3-c]pyrazole derivatives as a reusable magnetic nanocatalyst. RSC Advances, 2018, 8, 40962-40967.
[http://dx.doi.org/10.1039/C8RA06886K]
[105]
Chate, A.V.; Shaikh, B.A.; Bondle, G.M.; Sangle, S.M. Efficient atom-economic one-pot multicomponent synthesis of benzylpyrazolyl coumarins and novel pyrano[2,3-c]pyrazoles catalysed by 2-aminoethanesulfonic acid (taurine) as a bioorganic catalyst. Synth. Commun., 2019, 49, 2244-2257.
[http://dx.doi.org/10.1080/00397911.2019.1619772]
[106]
Kerru, N.; Gummidi, L.; Gangu, K.K.; Maddila, S.; Jonnalagadda, S.B. Synthesis of novel furo[3,2-c]coumarin derivatives through multicomponent [4+1] cycloaddition reaction using ZnO/FAp as a sustainable catalyst. ChemistrySelect, 2020, 5, 4104-4110.
[http://dx.doi.org/10.1002/slct.202000796]
[107]
Bhaskaruni, S.V.H.S.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. An efficient and green approach for the synthesis of 2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylates using Bi2O3/ZrO2 as a reusable catalyst. RSC Advances, 2018, 8, 16336-16343.
[http://dx.doi.org/10.1039/C8RA01994K]
[108]
Maddila, S.N.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. Swift and green protocol for one-pot synthesis of pyrano[2,3-c]pyrazole-3-carboxylates with RuCaHAp as catalyst. Curr. Org. Chem., 2016, 20, 2125-2133.
[http://dx.doi.org/10.2174/1385272820666160530104140]
[109]
Maddila, S.N.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. Mn doped ZrO2 as a green, efficient and reusable heterogeneous catalyst for the multicomponent synthesis of pyrano[2,3-d]-pyrimidine derivatives. RSC Advances, 2015, 5, 37360-37366.
[http://dx.doi.org/10.1039/C5RA06373F]
[110]
Maddila, S.N.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. Ce-V/SiO2 catalysed cascade for C-C and C-O bond activation: green one-pot synthesis of 2-amino-3-cyano-4H-pyrans. ChemistryOpen, 2015, 5(1), 38-42.
[http://dx.doi.org/10.1002/open.201500159] [PMID: 27308209]
[111]
Ganja, H.; Robert, A.R.; Lavanya, P.; Chinnam, S.; Maddila, S.; Jonnalagadda, S.B. Y2O3/HAp, a sustainable catalyst for novel synthesis of furo[3,4-b]chromene derivatives via green strategy. Inorg. Chem. Commun., 2020, 114107807
[http://dx.doi.org/10.1016/j.inoche.2020.107807]
[112]
Pagadala, R.; Maddila, S.; Rana, S.; Jonnalagadda, S.B. Ce-Zr/SiO2: a versatile reusable heterogeneous catalyst for threecomponent synthesis and solvent free oxidation of benzyl alcohol. RSC Advances, 2014, 4, 6602-6607.
[http://dx.doi.org/10.1039/c3ra47145d]
[113]
Maddila, S.; Gangu, K.K.; Maddila, S.N.; Jonnalagadda, S.B. A facile, efficient, and sustainable chitosan/CaHAp catalyst and one-pot synthesis of novel 2,6-diamino-pyran-3,5-dicarbonitriles. Mol. Divers., 2017, 21(1), 247-255.
[http://dx.doi.org/10.1007/s11030-016-9708-5] [PMID: 27853977]
[114]
Gangu, K.K.; Maddila, S.; Mukkamala, S.B.; Jonnalagadda, S.B. Synthesis, structure and properties of new Mg(II)-metal-organic framework and its prowess as catalyst in the production of 4H-pyrans. Ind. Eng. Chem. Res., 2017, 56, 2917-2924.
[http://dx.doi.org/10.1021/acs.iecr.6b04795]
[115]
Rana, S.; Maddila, S.; Yalagala, K.; Maddila, S.; Jonnalagadda, S.B. Covalent modification of organo-functionalized graphene oxide and its scope as catalyst for one-pot pyrazolo-pyranopyrimidine derivatives. ChemistryOpen, 2015, 4(6), 703-707.
[http://dx.doi.org/10.1002/open.201500121] [PMID: 27308195]
[116]
Gangu, K.K.; Maddila, S.; Maddila, S.N.; Jonnalagadda, S.B. Novel iron doped calcium oxalates as promising heterogeneous catalysts for one-pot multicomponent synthesis of pyranopyrazoles. RSC Advances, 2017, 7, 423-432.
[http://dx.doi.org/10.1039/C6RA25372E]
[117]
Gangu, K.K.; Maddila, S.; Mukkamala, S.B.; Jonnalagadda, S.B. Synthesis, characterisation and catalytic activity of 4, 5-imidazoledicarboxylate ligated Co(II) and Cd(II) metal-organic coordination complexes. J. Mol. Struct., 2017, 1143, 153-163.
[http://dx.doi.org/10.1016/j.molstruc.2017.04.083]
[118]
Maddila, S.N.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. Ru-hydroxyapatite: an efficient and reusable catalyst for the multicomponent synthesis of pyranopyrazoles under facile green conditions. Curr. Org. Synth., 2016, 13, 893-900.
[http://dx.doi.org/10.2174/1570179413666151218202439]
[119]
Maddila, S.N.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. CeO2/ZrO2 as Green catalyst for the one-pot synthesis of novel pyrano[2,3-c]-pyrazoles. Res. Chem. Intermed., 2017, 43, 4313-4325.
[http://dx.doi.org/10.1007/s11164-017-2878-7]
[120]
Safaei-Ghomi, J.; Babaei, P.; Shahbazi-Alavi, H.; Zahedi, S. Diastereoselective synthesis of trans-2,3-dihydrofuro[3,2-c]coumarins by MgO nanoparticles under ultrasonic irradiation. J. Saudi Chem. Soc., 2017, 21, 929-937.
[http://dx.doi.org/10.1016/j.jscs.2016.01.003]
[121]
Nikoorazm, M.; Tahmasbi, B.; Gholami, S.; Moradi, P. Copper and nickel immobilized on cytosine@MCM-41: as highly efficient, reusable and organic–inorganic hybrid nanocatalysts for the homoselective synthesis of tetrazoles and pyranopyrazoles. Appl. Organomet. Chem., 2020, 2020e5919
[http://dx.doi.org/10.1002/aoc.5919]