p-Sulfonic Acid Calix[n]arene Catalyzed Synthesis of Bioactive Heterocycles: A Review

Page: [209 - 222] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Metal-free organocatalysts are becoming an important tool for the sustainable development of various bioactive heterocycles. On the other hand, during the last two decades, calix[n]arenes have been gaining considerable attention due to their wide range of applicability in the field of supramolecular chemistry. Recently, sulfonic acid functionalized calix[n] arenes are being employed as an efficient alternative catalyst for the synthesis of various bioactive scaffolds. In this review, we have summarized the catalytic efficiency of p-sulfonic acid calix[n]arenes for the synthesis of diverse, biologically promising scaffolds under various reaction conditions. There is no such review available in the literature showing the catalytic applicability of p-sulfonic acid calix[n]arenes. Therefore, it is strongly believed that this review will surely attract those researchers who are interested in this fascinating organocatalyst.

Keywords: p-Sulfonic acid calix[n]arenes, N-heterocycles, O-heterocycles, organocatalysis, bioactivity, scaffolds.

Graphical Abstract

[1]
Sheldon, R.A. Consider the environmental quotient. Chemtech, 1994, 25, 38-47.
[2]
Brahmachari, G.; Banerjee, B. Facile and one-pot access of 3,3-bis(indol-3-yl)indolin-2-ones and 2,2-bis(indol-3-yl)acenaphthylen-1(2H)-one derivatives via an eco-friendly pseudo-multicomponent reaction at room temperature using sulfamic acid as an organo-catalyst. ACS Sustain. Chem.& Eng., 2014, 2, 2802-2812.
[http://dx.doi.org/10.1021/sc500575h]
[3]
Banerjee, B. Recent developments on nano-ZnO catalyzed synthesis of bioactive heterocycles. J. Nanostructure Chem., 2017, 7, 389-413.
[http://dx.doi.org/10.1007/s40097-017-0247-0]
[4]
Dandia, A.; Parewa, V.; Rathore, K.S. Synthesis and characterization of CdS and Mn doped CdS nanoparticles and their catalytic application for chemoselective synthesis of benzimidazoles and benzothiazoles in aqueous medium. Catal. Commun., 2012, 28, 90-94.
[http://dx.doi.org/10.1016/j.catcom.2012.08.020]
[5]
Dandia, A.; Parewa, V.; Gupta, S.L.; Sharma, A.; Rathore, K.S.; Sharma, A.; Jain, A. Microwave-assisted Fe3O4 nanoparticles catalyzed synthesis of chromeno[1,6]naphthyridines in aqueous media. Catal. Commun., 2015, 61, 88-91.
[http://dx.doi.org/10.1016/j.catcom.2014.12.015]
[6]
Zinatloo-Ajabshir, S.; Salehi, Z.; Amiri, O.; Salavati-Niasari, M. Simple fabrication of Pr2Ce2O7 nanostructures via a new and eco-friendly route; a potential electrochemical hydrogen storage material. J. Alloys Compd., 2019, 791, 792-799.
[http://dx.doi.org/10.1016/j.jallcom.2019.04.005]
[7]
Mortazavi-Derazkola, S.; Zinatloo-Ajabshir, S.; Salavati-Niasari, M. Preparation and characterization of Nd2O3 nanostructures via a new facile solvent-less route. J. Mater. Sci. Mater. Electron., 2015, 26, 5658-5667.
[http://dx.doi.org/10.1007/s10854-015-3116-y]
[8]
Moshtaghi, S.; Zinatloo-Ajabshir, S.; Salavati-Niasari, M. Preparation and characterization of BaSnO3 nanostructures via a new simple surfactant-free route. J. Mater. Sci. Mater. Electron., 2016, 27, 425-435.
[http://dx.doi.org/10.1007/s10854-015-3770-0]
[9]
Sarkar, A.; Roy, S.R.; Parikh, N.; Chakraborti, A.K. Nonsolvent application of ionic liquids: organo-catalysis by 1-alkyl-3-methylimidazolium cation based room-temperature ionic liquids for chemoselective N-tert-butyloxy-carbonylation of amines and the influence of the C-2 hydrogen on catalytic efficiency. J. Org. Chem., 2011, 76(17), 7132-7140.
[http://dx.doi.org/10.1021/jo201102q] [PMID: 21774556]
[10]
Sarkar, A.; Roy, S.R.; Chakraborti, A.K. Ionic liquid catalysed reaction of thiols with α,β-unsaturated carbonyl compounds--remarkable influence of the C-2 hydrogen and the anion. Chem. Commun. (Camb.), 2011, 47(15), 4538-4540.
[http://dx.doi.org/10.1039/c1cc10151j] [PMID: 21387055]
[11]
Kaur, G.; Sharma, A.; Banerjee, B. Ultrasound and ionic liquid: an ideal combination for organic transformations. ChemistrySelect, 2018, 3, 5283-5295.
[http://dx.doi.org/10.1002/slct.201800326]
[12]
Blümel, M.; Crocker, R.D.; Harper, J.B.; Enders, D.; Nguyen, T.V. N-Heterocyclic olefins as efficient phase-transfer catalysts for base-promoted alkylation reactions. Chem. Commun. (Camb.), 2016, 52(51), 7958-7961.
[http://dx.doi.org/10.1039/C6CC03771B] [PMID: 27251600]
[13]
Banerjee, B. Recent developments on ultrasound-assisted synthesis of bioactive N-heterocycles at ambient temperature. Aust. J. Chem., 2017, 70, 872-888.
[http://dx.doi.org/10.1071/CH17080]
[14]
Banerjee, B. Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles. Ultrason. Sonochem., 2017, 35(Pt A), 15-35.
[http://dx.doi.org/10.1016/j.ultsonch.2016.10.010] [PMID: 27771265]
[15]
Banerjee, B. Recent developments on ultrasound assisted catalyst-free organic synthesis. Ultrason. Sonochem., 2017, 35(Pt A), 1-14.
[http://dx.doi.org/10.1016/j.ultsonch.2016.09.023] [PMID: 27771266]
[16]
Banerjee, B. Recent developments on ultrasound-assisted organic synthesis in aqueous medium. J. Serb. Chem. Soc., 2017, 82, 755-790.
[http://dx.doi.org/10.2298/JSC170217057B]
[17]
Banerjee, B. Ultrasound and nano-catalysts: an ideal and sustainable combination to carry out diverse organic transformations. ChemistrySelect, 2019, 4, 2484-2500.
[http://dx.doi.org/10.1002/slct.201803081]
[18]
Banerjee, B.; Tajti, A.; Keglevich, G. Ultrasound-assisted synthesis of organophosphorus compounds.In: Organophosphorus Chemistry. RSC Publishing; 248-263.
[19]
Banerjee, B.; Kaur, G. Microwave assisted catalyst-free synthesis of bioactive heterocycles. Curr. Microw. Chem., 2020, 7, 5-22.
[http://dx.doi.org/10.2174/2213335607666200226102010]
[20]
Egorov, I.N.; Santra, S.; Kopchuk, D.S.; Kovalev, I.S.; Zyryanov, G.V.; Majee, A.; Ranu, B.C. Rusinov, V.L.; Chupakhin, O.N. Ball milling: an efficient and green approach for asymmetric organic syntheses. Green Chem., 2020, 22, 302-315.
[http://dx.doi.org/10.1039/C9GC03414E]
[21]
Heidari-Asil, S.A.; Zinatloo-Ajabshir, S.; Amiri, O.; Salavati-Niasari, M. Amino acid assisted-synthesis and characterization of magnetically retrievable ZnCo2O4-Co3O4 nanostructures as high activity visible-light-driven photocatalyst. Int. J. Hydrogen Energy, 2020, 45, 22761-22774.
[http://dx.doi.org/10.1016/j.ijhydene.2020.06.122]
[22]
Zinatloo-Ajabshir, S.; Salehi, Z.; Salavati-Niasari, M. Green synthesis and characterization of Dy2Ce2O7 nanostructures using Ananas comosus with high visible-light photocatalytic activity of organic contaminants. J. Alloys Compd., 2018, 763, 314-321.
[http://dx.doi.org/10.1016/j.jallcom.2018.05.311]
[23]
Zinatloo-Ajabshir, S.; Salehi, Z.; Salavati-Niasari, M. Synthesis and characterization of Dy2Ce2O7 ceramic nanostructures with good photocatalytic properties under visible light for removal of organic dyes in water. J. Clean. Prod., 2018, 192, 678-687.
[http://dx.doi.org/10.1016/j.jclepro.2018.05.042]
[24]
Zinatloo-Ajabshir, S.; Baladi, M.; Amiri, O.; Salavati-Niasari, M. Sonochemical synthesis and characterization of silver tungstate nanostructures as visible-light-driven photocatalyst for waste-water treatment. Separ. Purif. Tech., 2020, 248117062
[http://dx.doi.org/10.1016/j.seppur.2020.117062]
[25]
Razi, F.; Zinatloo-Ajabshir, S.; Salavati-Niasari, M. Preparation, characterization and photocatalytic properties of Ag2ZnI4/AgI nanocomposites via a new simple hydrothermal approach. J. Mol. Liq., 2017, 225, 645-651.
[http://dx.doi.org/10.1016/j.molliq.2016.11.028]
[26]
Zinatloo-Ajabshir, S.; Ghasemian, N.; Salavati-Niasari, M. Green synthesis of Ln2Zr2O7 (Ln = Nd, Pr) ceramic nanostructures using extract of green tea via a facile route and their efficient application on propane-selective catalytic reduction of NOx process. Ceram. Int., 2020, 46, 66-73.
[http://dx.doi.org/10.1016/j.ceramint.2019.08.231]
[27]
Zinatloo-Ajabshir, S.; Morassaei, M.S.; Amiri, O.; Salavati-Niasari, M. Green synthesis of dysprosium stannate nanoparticles using Ficus carica extract as photocatalyst for the degradation of organic pollutants under visible irradiation. Ceram. Int., 2020, 46, 6095-6107.
[http://dx.doi.org/10.1016/j.ceramint.2019.11.072]
[28]
Dalko, P.I.; Moisan, L. Enantioselective organocatalysis. Angew. Chem. Int. Ed. Engl., 2001, 40(20), 3726-3748.
[http://dx.doi.org/10.1002/1521-3773(20011015)40:20<3726:AID-ANIE3726>3.0.CO;2-D] [PMID: 11668532]
[29]
List, B. The direct catalytic asymmetric three-component mannich reaction. J. Am. Chem. Soc., 2000, 122, 9336-9337.
[http://dx.doi.org/10.1021/ja001923x]
[30]
Seayad, J.; List, B. Asymmetric organocatalysis. Org. Biomol. Chem., 2005, 3(5), 719-724.
[http://dx.doi.org/10.1039/b415217b] [PMID: 15731852]
[31]
Kim, J.H.; Čorić, I.; Vellalath, S.; List, B. The catalytic asymmetric acetalization. Angew. Chem. Int. Ed. Engl., 2013, 52(16), 4474-4477.
[http://dx.doi.org/10.1002/anie.201300120] [PMID: 23512823]
[32]
List, B. Asymmetric aminocatalysis. Synlett, 2001, 2001(11), 1675-1686.
[http://dx.doi.org/10.1055/s-2001-18074]
[33]
Cantillo, D.; Gutmann, B.; Kappe, C.O. Mechanistic insights on azide-nitrile cycloadditions: on the dialkyltin oxide-trimethylsilyl azide route and a new Vilsmeier-Haack-type organocatalyst. J. Am. Chem. Soc., 2011, 133(12), 4465-4475.
[http://dx.doi.org/10.1021/ja109700b] [PMID: 21381737]
[34]
Cole, A.C.; Jensen, J.L.; Ntai, I.; Tran, K.L.T.; Weaver, K.J.; Forbes, D.C.; Davis, J.H., Jr Novel Brønsted acidic ionic liquids and their use as dual solvent-catalysts. J. Am. Chem. Soc., 2002, 124(21), 5962-5963.
[http://dx.doi.org/10.1021/ja026290w] [PMID: 12022828]
[35]
Myles, L.; Gathergood, N.; Connon, S.J. The catalytic versatility of low toxicity dialkyltriazolium salts: in situ modification facilitates diametrically opposed catalysis modes in one pot. Chem. Commun. (Camb.), 2013, 49(46), 5316-5318.
[http://dx.doi.org/10.1039/c3cc41588k] [PMID: 23646348]
[36]
Bertelsen, S.; Jørgensen, K.A. Organocatalysis--after the gold rush. Chem. Soc. Rev., 2009, 38(8), 2178-2189.
[http://dx.doi.org/10.1039/b903816g] [PMID: 19623342]
[37]
Gruttadauria, M.; Giacalone, F.; Noto, R. Supported proline and proline-derivatives as recyclable organocatalysts. Chem. Soc. Rev., 2008, 37(8), 1666-1688.
[http://dx.doi.org/10.1039/b800704g] [PMID: 18648689]
[38]
Xu, L.W.; Li, L.; Shi, Z.H. Asymmetric synthesis with silicon-based bulky amino organocatalysts. Adv. Synth. Catal., 2010, 352, 243-279.
[http://dx.doi.org/10.1002/adsc.200900797]
[39]
Manabe, K.; Mori, Y.; Kobayashi, S. Three-component carbon–carbon bond-forming reactions catalyzed by a Brønsted acid-surfactant-combined catalyst in water. Tetrahedron, 2001, 57, 2537-2544.
[http://dx.doi.org/10.1016/S0040-4020(01)00081-3]
[40]
Brahmachari, G.; Banerjee, B. Sulfamic acid-catalyzed carbon-carbon and carbon-heteroatom bond forming reactions: an overview. Curr. Organocatal., 2016, 3, 93-124.
[http://dx.doi.org/10.2174/2213337202666150812230830]
[41]
Kaur, G.; Singh, A.; Bala, K.; Devi, M.; Kumari, A.; Devi, S.; Devi, R.; Gupta, V.K.; Banerjee, B. Naturally occurring organic acid-catalyzed facile diastereoselective synthesis of biologically active (E)-3-(arylimino)indolin-2-one derivatives in water at room temperature. Curr. Org. Chem., 2019, 23, 1778-1788.
[http://dx.doi.org/10.2174/1385272822666190924182538]
[42]
Banerjee, B.; Bhardwaj, V.; Kaur, A.; Kaur, G.; Singh, A. Catalytic applications of saccharin and its derivatives in organic synthesis. Curr. Org. Chem., 2019, 23, 3191-3205.
[http://dx.doi.org/10.2174/1385272823666191121144758]
[43]
Kaur, G.; Shamim, M.; Bhardwaj, V.; Gupta, V.K.; Banerjee, B. Mandelic acid catalyzed one-pot three-component synthesis of α-aminonitriles and α-aminophosphonates under solvent-free conditions at room temperature. Synth. Commun., 2020, 50, 1545-1560.
[http://dx.doi.org/10.1080/00397911.2020.1745844]
[44]
Singh, A.; Kaur, G.; Kaur, A.; Gupta, V.K.; Banerjee, B. A general method for the synthesis of 3,3-bis(indol-3-yl)indolin-2-ones, bis(indol-3-yl)(aryl)methanes and tris(indol-3-yl)methanes using naturally occurring mandelic acid as an efficient organo-catalyst in aqueous ethanol at room temperature. Curr. Green Chem., 2020, 7, 128-140.
[http://dx.doi.org/10.2174/2213346107666200228125715]
[45]
Yao, X.; Wang, X.; Jiang, T.; Ma, X.; Tian, H. Bis-p-sulfonatocalix[4]arene-based supramolecular amphiphiles with an emergent lower critical solution temperature behavior in aqueous solution and hydrogel. Langmuir, 2015, 31(51), 13647-13654.
[http://dx.doi.org/10.1021/acs.langmuir.5b04083] [PMID: 26639514]
[46]
Rodler, F.; Schade, B.; Jäger, C.M.; Backes, S.; Hampel, F.; Böttcher, C.; Clark, T.; Hirsch, A. Amphiphilic perylene-calix[4]arene hybrids: synthesis and tunable self-assembly. J. Am. Chem. Soc., 2015, 137(9), 3308-3317.
[http://dx.doi.org/10.1021/ja512048t] [PMID: 25697330]
[47]
Kobayashi, K.; Yamanaka, M. Self-assembled capsules based on tetrafunctionalized calix[4]resorcinarene cavitands. Chem. Soc. Rev., 2015, 44(2), 449-466.
[http://dx.doi.org/10.1039/C4CS00153B] [PMID: 24938592]
[48]
Gutsche, C.D.; Nam, K.C. Calixarenes. 22. Synthesis, properties, and metal complexation of aminocalixarenes. J. Am. Chem. Soc., 1988, 110(18), 6153-6162.
[http://dx.doi.org/10.1021/ja00226a034] [PMID: 22148794]
[49]
Jin, T. Calixarene-based photoresponsive ion carrier for the control of Na+ flux across a lipid bilayer membrane by visible light. Mater. Lett., 2007, 61, 805-808.
[http://dx.doi.org/10.1016/j.matlet.2006.05.064]
[50]
Dalgarno, S.J.; Claudio-Bosque, K.M.; Warren, J.E.; Glass, T.E.; Atwood, J.L. Interpenetrated nano-capsule networks based on the alkali metal assisted assembly of p-carboxylatocalix[4]arene-O-methyl ether. Chem. Commun. (Camb.), 2008, 2008(12), 1410-1412.
[http://dx.doi.org/10.1039/b716777f] [PMID: 18338039]
[51]
Rambo, B.M.; Kim, S.K.; Kim, J.S.; Bielawski, C.W.; Sessler, J.L. A benzocrown-6-calix[4]arene methacrylate copolymer: Selective extraction of caesium ions from a multi-component system. Chem. Sci. (Camb.), 2010, 1, 716-722.
[http://dx.doi.org/10.1039/c0sc00396d]
[52]
Atwood, J.L.; Dalgarno, S.J.; Hardie, M.J.; Raston, C.L. Selective single crystal complexation of L- or D-leucine by p-sulfonatocalix[6]arene. Chem. Commun. (Camb.), 2005, 2005(3), 337-339.
[http://dx.doi.org/10.1039/b413821j] [PMID: 15645029]
[53]
Janke, M.; Rudzevich, Y.; Molokanova, O.; Metzroth, T.; Mey, I.; Diezemann, G.; Marszalek, P.E.; Gauss, J.; Böhmer, V.; Janshoff, A. Mechanically interlocked calix[4]arene dimers display reversible bond breakage under force. Nat. Nanotechnol., 2009, 4(4), 225-229.
[http://dx.doi.org/10.1038/nnano.2008.416] [PMID: 19350031]
[54]
Santos, L.S.; Fernandes, S.A.; Pilli, R.A.; Marsaioli, A.J. A novel asymmetric reduction of dihydro-β-carboline derivatives using calix[6]arene/chiral amine as a host complex. Tetrahedron Asymmetry, 2003, 14, 2515-2519.
[http://dx.doi.org/10.1016/S0957-4166(03)00489-0]
[55]
Zhang, M.; Yan, X.; Huang, F.; Niu, Z.; Gibson, H.W. Stimuli-responsive host-guest systems based on the recognition of cryptands by organic guests. Acc. Chem. Res., 2014, 47(7), 1995-2005.
[http://dx.doi.org/10.1021/ar500046r] [PMID: 24804805]
[56]
Homden, D.M.; Redshaw, C. The use of calixarenes in metal-based catalysis. Chem. Rev., 2008, 108(12), 5086-5130.
[http://dx.doi.org/10.1021/cr8002196] [PMID: 18956902]
[57]
Simoes, J.B.; da Silva, D.L.; de Fatima, A.; Fernandes, S.A. Calix[n]arenes in action: useful host-guest catalysis in organic chemistry. Curr. Org. Chem., 2012, 16, 949-971.
[http://dx.doi.org/10.2174/138527212800194746]
[58]
De Assis, J.V.; Abranches, P.A.S.; Braga, I.B.; Zuñiga, O.M.P.; Sathicq, A.G.; Romanelli, G.P.; Sato, A.G.; Fernandes, S.A. p-Sulfonic acid calix[4]arene-functionalized alkylbridged organosilica in esterification reactions. RSC Advances, 2016, 6, 24285-24289.
[http://dx.doi.org/10.1039/C6RA02908F]
[59]
Fernandes, S.A.; Natalino, R.; Gazolla, P.A.R.; da Silva, M.J.; Jham, G.N. p-Sulfonic acid calix[n]arenes as homogeneous and recyclable organocatalysts for esterification reactions. Tetrahedron Lett., 2012, 53, 1630-1633.
[http://dx.doi.org/10.1016/j.tetlet.2012.01.078]
[60]
Shimizu, S.; Shimada, N.; Sasaki, Y. Mannich-type reactions in water using anionic water-soluble calixarenes as recoverable and reusable catalysts. Green Chem., 2006, 8, 608-614.
[http://dx.doi.org/10.1039/b603962f]
[61]
da Silva, D.L.; Reis, F.S.; Muniz, D.R.; Ruiz, A.L.T.G.; de Carvalho, J.E.; Sabino, A.A.; Modolo, L.V.; de Fátima, A. Free radical scavenging and anti-proliferative properties of Biginelli adducts. Bioorg. Med. Chem., 2012, 20(8), 2645-2650.
[http://dx.doi.org/10.1016/j.bmc.2012.02.036] [PMID: 22410248]
[62]
Da Silva, D.L.; Fernandes, S.A.; Sabinoa, A.A.; de Fátima, Â. p-Sulfonic acid calixarenes as efficient and reusable organocatalysts for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones/-thiones. Tetrahedron Lett., 2011, 52, 6328-6330.
[http://dx.doi.org/10.1016/j.tetlet.2011.08.175]
[63]
An, L.; Han, L-L.; Wang, Z-J.; Huang, T-H.; Zhu, H-D. Calix[8]arene sulfonic acid catalyzed three-component reaction for convenient synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones under ultrasonic irradiation. Biol. Pharm. Bull., 2016, 39(2), 267-271.
[http://dx.doi.org/10.1248/bpb.b15-00681] [PMID: 26632211]
[64]
Baghbanian, S.M.; Babajani, Y.; Tashakorian, H.; Khaksar, S.; Farhang, M. p-sulfonic acid calix[4]arene: an efficient reusable organocatalyst for the synthesis of bis(indolyl)methanes derivatives in water and under solvent-free conditions. C. R. Chim., 2013, 16, 129-134.
[http://dx.doi.org/10.1016/j.crci.2012.10.014]
[65]
Sayin, S.; Yilmaz, M. Brønsted acidic magnetic nano-Fe3O4-adorned calix[n]arene sulfonic acids: synthesis and application in the nucleophilic substitution of alcohols. Tetrahedron, 2014, 70, 6669-6676.
[http://dx.doi.org/10.1016/j.tet.2014.06.034]
[66]
Gutsche, C.D.; Iqbal, M. p-tert-butylcalix[4]arene. Org. Synth., 1989, 8, 234-237.
[67]
Gutsche, C.D.; Lin, L.G. Calixarenes 12: the synthesis of functionalized calixarenes. Tetrahedron, 1986, 42, 1633-1640.
[http://dx.doi.org/10.1016/S0040-4020(01)87580-3]
[68]
Shinkai, S.; Mori, S.; Tsubaki, T.; Sone, T.; Manabe, O. New water-soluble host molecules derived from calix[6]arene. Tetrahedron Lett., 1984, 25, 5315-5318.
[http://dx.doi.org/10.1016/S0040-4039(01)81592-6]
[69]
Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14(28), 6611-6637.
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396]
[70]
Singh, A.; Kaur, G.; Banerjee, B. Recent developments on the synthesis of biologically significant bis/tris(indolyl)methanes under various reaction conditions: a review. Curr. Org. Chem., 2020, 24, 583-621.
[http://dx.doi.org/10.2174/1385272824666200228092752]
[71]
Brahmachari, G.; Laskar, S.; Banerjee, B. Eco-friendly, one-pot multicomponent synthesis of pyran annulated heterocyclic scaffolds at room temperature using ammonium or sodium formate as non-toxic catalyst. J. Heterocycl. Chem., 2014, 51, E303-E308.
[http://dx.doi.org/10.1002/jhet.1974]
[72]
Banerjee, B.; Koketsu, M. Recent developments in the synthesis of biologically relevant selenium-containing scaffolds. Coord. Chem. Rev., 2017, 339, 104-127.
[http://dx.doi.org/10.1016/j.ccr.2017.03.008]
[73]
Banerjee, B. Multicomponent synthesis of biologically relevant spiroheterocycles in water.In: Industrial Applications of Green Solvents; Materials Research Foundations, 2019, pp. 269-319.
[74]
Majumdar, K.C.; Chattopadhyay, S.K. Heterocycles in Natural Product Synthesis; Wiley VCH: Germany, 2011.
[http://dx.doi.org/10.1002/9783527634880]
[75]
Brahmachari, G.; Banerjee, B. Facile and one-pot access to diverse and densely functionalized 2-amino-3-cyano-4H-pyrans and pyran-annulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst. ACS Sustain. Chem.& Eng., 2014, 2, 411-422.
[http://dx.doi.org/10.1021/sc400312n]
[76]
Brahmachari, G.; Banerjee, B. Facile and chemically sustainable one-pot synthesis of awide array of fused O-and N-heterocycles catalyzed by trisodium citrate dihydrate under ambient conditions. Asian J. Org. Chem., 2016, 5, 271-286.
[http://dx.doi.org/10.1002/ajoc.201500465]
[77]
Banerjee, B. Sc(OTf)3 catalyzed carbon-carbon and carbon-heteroatom bond forming reactions: a review. ARKIVOC, 2017, 2017, 1-25.
[http://dx.doi.org/10.24820/ark.5550190.p009.868]
[78]
Banerjee, B. Bismuth(III) triflate: An efficient catalyst for the synthesis of diverse biologically relevant heterocyclic. ChemistrySelect, 2017, 2, 6744-6757.
[http://dx.doi.org/10.1002/slct.201701441]
[79]
Banerjee, B. [Bmim]BF4: a versatile ionic liquid for the synthesis of diverse bioactive heterocyclic. ChemistrySelect, 2017, 2, 8362-8376.
[http://dx.doi.org/10.1002/slct.201701700]
[80]
Kaur, G.; Devi, P.; Thakur, S.; Kumar, A.; Chandel, R.; Banerjee, B. Magnetically separable transition metal ferrites: versatile heterogeneous nano-catalysts for the synthesis of diverse bioactive heterocycles. ChemistrySelect, 2019, 4, 2181-2199.
[http://dx.doi.org/10.1002/slct.201803600]
[81]
Kaur, G.; Sharma, A.; Banerjee, B. [Bmim]PF6: an efficient tool for the synthesis of diverse bioactive heterocyclic. J. Serb. Chem. Soc., 2018, 83, 1071-1097.
[http://dx.doi.org/10.2298/JSC180103052K]
[82]
Tale, R.H. Novel synthesis of 2-arylbenzothiazoles mediated by Ceric Ammonium Nitrate (CAN). Org. Lett., 2002, 4(10), 1641-1642.
[http://dx.doi.org/10.1021/ol020027i] [PMID: 12000262]
[83]
Das, P.; Ray, S.; Saha, R.; Mukhopadhyay, C. One-pot synthesis of densely substituted 1,2,3,4-tetrahydro-1,6-naphthyridine mediated by isocyanide-assisted reduction of C−C double bond. ChemistrySelect, 2020, 5, 3581-3585.
[http://dx.doi.org/10.1002/slct.202000441]
[84]
Banerjee, B. Recent developments on nano-ZnO catalyzed synthesis of bioactive heterocycles. J. Nanostruct. Chem., 2017, 7, 389-413.
[http://dx.doi.org/10.1007/s40097-017-0247-0]
[85]
Kaur, G.; Bala, K.; Devi, S.; Banerjee, B. Camphorsulfonic acid (CSA): an efficient organocatalyst for the synthesis or derivatization of heterocycles with biologically promising activities. Curr. Green Chem., 2018, 5, 150-167.
[http://dx.doi.org/10.2174/2213346105666181001113413]
[86]
Banerjee, B. Recent developments on organo-bicyclo-bases catalyzed multicomponent synthesis of biologically relevant heterocycles. Curr. Org. Chem., 2018, 22, 208-233.
[http://dx.doi.org/10.2174/1385272821666170703123129]
[87]
Wang, L.; Huang, J.; Gong, X.; Wang, J. Highly regioselective organocatalyzed synthesis of pyrazoles from diazoacetates and carbonyl compounds. Chemistry, 2013, 19(23), 7555-7560.
[http://dx.doi.org/10.1002/chem.201300047] [PMID: 23576283]
[88]
Kaur, G.; Thakur, S.; Kaundal, P.; Chandel, K.; Banerjee, B. p-Dodecylbenzenesulfonic acid: an efficient Brønsted acid-surfactant-combined catalyst to carry out diverse organic transformations in aqueous medium. ChemistrySelect, 2018, 3, 12918-12936.
[http://dx.doi.org/10.1002/slct.201802824]
[89]
Gurubrahamam, R.; Nagaraju, K.; Chen, K. Organocatalytic synthesis of densely functionalized oxa-bridged 2,6-epoxybenzo[b][1,5]oxazocine heterocycles. Chem. Commun. (Camb.), 2018, 54(47), 6048-6051.
[http://dx.doi.org/10.1039/C8CC02565G] [PMID: 29799038]
[90]
Banerjee, B.; Brahmachari, G. Room temperature metal-free synthesis of aryl/heteroaryl-substituted bis(6-aminouracil-5-yl)methanes using sulfamic acid (NH2SO3H) as an efficient and eco-friendly organo-catalyst. Curr. Organocatal., 2016, 3, 125-132.
[http://dx.doi.org/10.2174/2213337202666150812231130]
[91]
Roopan, S.M.; Khan, F.R.; Jin, J.S. 3-[(2-chloroquinolin-3-yl)methyl]quina-zolin-4(3H)-ones as potential larvicidal agents. Pak. J. Pharm. Sci., 2013, 26(4), 747-750.
[PMID: 23811452]
[92]
Wang, Z.; Wang, M.; Yao, X.; Li, Y.; Tan, J.; Wang, L.; Qiao, W.; Geng, Y.; Liu, Y.; Wang, Q. Design, synthesis and antiviral activity of novel quinazolinones. Eur. J. Med. Chem., 2012, 53, 275-282.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.010] [PMID: 22546200]
[93]
Gali, R.; Banothu, J.; Porika, M.; Velpula, R.; Hnamte, S.; Bavantula, R.; Abbagani, S.; Busi, S. Indolylmethylene benzo[h]thiazolo[2,3-b]quinazo-linones: synthesis, characterization and evaluation of anticancer and antimicrobial activities. Bioorg. Med. Chem. Lett., 2014, 24(17), 4239-4242.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.030] [PMID: 25096298]
[94]
Murthy, P.V.N.S.; Rambabu, D.; Krishna, G.R.; Reddy, C.M.; Prasad, K.R.S.; Rao, M.V.B.; Pal, M. Amberlyst-15 mediated synthesis of 2-substituted 2,3-dihydroquinazolin-4(1H)-ones and their crystal structure analysis. Tetrahedron Lett., 2012, 53, 863-867.
[http://dx.doi.org/10.1016/j.tetlet.2011.12.023]
[95]
Darvatkar, N.B.; Bhilare, S.V.; Deorukhkar, A.R.; Raut, D.G.; Salunkhe, M.M. [bmim]HSO4: an efficient and reusable catalyst for one-pot three-component synthesis of 2,3-dihydro-4(1H)-quinazolinones. Green Chem. Lett. Rev., 2010, 3, 301-306.
[http://dx.doi.org/10.1080/17518253.2010.485581]
[96]
Rostamizadeh, S.; Amani, A.M.; Mahdavinia, G.H.; Sepehrian, H.; Ebrahimi, S. Synthesis of some novel 2-aryl-substituted 2, 3-dihydroquinazolin-4-(1H)-ones under solvent-free conditions using MCM-41-SO3H as a highly efficient sulfonic acid. Synthesis, 2010, 2010(8), 1356-1360.
[http://dx.doi.org/10.1055/s-0029-1218676]
[97]
Cheng, X.; Vellalath, S.; Goddard, R.; List, B. Direct catalytic asymmetric synthesis of cyclic aminals from aldehydes. J. Am. Chem. Soc., 2008, 130(47), 15786-15787.
[http://dx.doi.org/10.1021/ja8071034] [PMID: 18975905]
[98]
Zhang, Z-H.; Lü, H-Y.; Yang, S-H.; Gao, J-W. Synthesis of 2,3-dihydroquinazolin-4(1H)-ones by three-component coupling of isatoic anhydride, amines, and aldehydes catalyzed by magnetic Fe3O4 nanoparticles in water. J. Comb. Chem., 2010, 12(5), 643-646.
[http://dx.doi.org/10.1021/cc100047j] [PMID: 20684507]
[99]
Salehi, P.; Dabiri, M.; Zolfigol, M.A.; Baghbanzadeh, M. A novel method for the one-pot three-component synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Synlett, 2005, 2005, 1155-1157.
[http://dx.doi.org/10.1055/s-2005-865200]
[100]
Li, F.; Feng, Y.; Meng, Q.; Li, W.; Li, Z.; Wang, Q.; Tao, F. An efficient construction of quinazolin-4(3H)-ones under microwave irradiation. ARKIVOC, 2007, 2007, 40-50.
[http://dx.doi.org/10.3998/ark.5550190.0008.105]
[101]
Desroses, M.; Scobie, M.; Helleday, T. A new concise synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives. New J. Chem., 2013, 37, 3595-3597.
[http://dx.doi.org/10.1039/c3nj00618b]
[102]
Davoodnia, A.; Allameh, S.; Fakhari, A.R. Tavakoli- Hoseini, N. Highly efficient solvent-free synthesis of quinazolin-4(3H)-ones and 2,3-dihydroquinazolin-4(1H)-ones using tetrabutylammonium bromide as novel ionic liquid catalyst. Chin. Chem. Lett., 2010, 21, 550-553.
[http://dx.doi.org/10.1016/j.cclet.2010.01.032]
[103]
Sharma, M.; Pandey, S.; Chauhan, K.; Sharma, D.; Kumar, B.; Chauhan, P.M.S. Cyanuric chloride catalyzed mild protocol for synthesis of biologically active dihydro/spiro quinazolinones and quinazolinone-glycoconjugates. J. Org. Chem., 2012, 77(2), 929-937.
[http://dx.doi.org/10.1021/jo2020856] [PMID: 22181712]
[104]
Wang, M.; Zhang, T.T.; Song, Z.G. Eco-friendly synthesis of 2-substituted-2,3-dihydro-4(1H)-quinazolinones in water. Chin. Chem. Lett., 2011, 22, 427-430.
[http://dx.doi.org/10.1016/j.cclet.2010.10.038]
[105]
Safari, J.; Gandomi-Ravandi, S. Efficient synthesis of 2-aryl-2,3-dihydroquinazolin-4(1H)-ones in the presence of nanocomposites under microwave irradiation. J. Mol. Catal. Chem., 2014, 390, 1-6.
[http://dx.doi.org/10.1016/j.molcata.2014.02.013]
[106]
Ramesh, K.; Karnakar, K.; Satish, G.; Reddy, K.H.V.; Nageswar, Y.V.D. Tandem supramolecular synthesis of substituted 2-aryl-2,3-dihydro-quinazolin-4(1H)-ones in the presence of β-cyclodextrin in water. Tetrahedron Lett., 2012, 53, 6095-6099.
[http://dx.doi.org/10.1016/j.tetlet.2012.08.141]
[107]
Huang, D.; Li, X.; Xu, F.; Li, L.; Lin, X. Highly enantioselective synthesis of dihydroquinazolinones catalyzed by SPINOL-Phosphoric acids. ACS Catal., 2013, 3, 2244-2247.
[http://dx.doi.org/10.1021/cs400591u]
[108]
Santra, S.; Rahman, M.; Roy, A.; Majee, A.; Hajra, A. Nano-indium oxide: an efficient catalyst for one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones with a greener prospect. Catal. Commun., 2014, 49, 52-57.
[http://dx.doi.org/10.1016/j.catcom.2014.01.032]
[109]
Zheng, Y.; Bian, M.; Deng, X-Q.; Wang, S-B.; Quan, Z-S. Synthesis and anticonvulsant activity evaluation of 5-phenyl-[1,2,4]triazolo[4,3-c]quina-zolin-3-amines. Arch. Pharm. (Weinheim), 2013, 346(2), 119-126.
[http://dx.doi.org/10.1002/ardp.201200376] [PMID: 23255333]
[110]
Abdollahi-Alibeik, M.; Shabani, E. Nanocrystalline sulfated zirconia as an efficient solid acid catalyst for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. J. Iranian Chem. Soc., 2014, 11, 351-359.
[http://dx.doi.org/10.1007/s13738-013-0306-5]
[111]
Vasudhevan, S.; Karunakaran, R.J. Synthesis, characterisation of 2,3-Dihydroquinazolinone derivatives and their antimicrobial studies. Int. J. Chemtech Res., 2013, 5, 2844-2853.
[112]
Wang, J.; Zong, Y.; Fu, R.; Niu, Y.; Yue, G.; Quan, Z.; Wang, X.; Pan, Y. Poly(4-vinylpyridine) supported acidic ionic liquid: a novel solid catalyst for the efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones under ultrasonic irradiation. Ultrason. Sonochem., 2014, 21(1), 29-34.
[http://dx.doi.org/10.1016/j.ultsonch.2013.05.009] [PMID: 23751459]
[113]
Labade, V.B.; Shinde, P.V.; Shingare, M.S. A facile and rapid access towards the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Tetrahedron Lett., 2013, 54, 5778-5780.
[http://dx.doi.org/10.1016/j.tetlet.2013.08.037]
[114]
Durgareddy, G.A.N.K.; Ravikumar, R.; Ravi, S.; Adapa, S.R.A. Cu (NO3)2.3H2O catalysed facile synthesis of substituted 4(3H)-quinazolinones and benzimidazoles. J. Chem. Sci., 2013, 125, 175-182.
[115]
Liu, X.; Hu, D-H.; Shen, H. Efficient and mild synthesis of 2-aryl-substituted 2,3- dihydroquinazolin-4(1H)-ones catalyzed by NaHSO4. Asian J. Chem., 2012, 24, 1365-1367.
[116]
Rahman, M.; Ling, I.; Abdullah, N.; Hashim, R.; Hajra, A. Organocatalysis by p-sulfonic acid calix[4]arene: a convenient and efficient route to 2,3-dihydroquinazolin-4(1H)-ones in water. RSC Advances, 2015, 5, 7755-7760.
[117]
Sathicq, A.G.; Liberto, N.A.; Fernandes, S.A.; Romanelli, G.P. Solvent-free multicomponent synthesis of 2-arylpyridines using p-sulfonic acid calix[6]arene as a reusable catalyst. C. R. Chim., 2015, 18, 374-378.
[http://dx.doi.org/10.1016/j.crci.2014.08.006]
[118]
Shinkai, S.; Araki, K.; Tsubaki, T.; Arimura, T.; Manabe, O. New syntheses of calixarene-p-sulphonates and p-nitrocalixarenes. J. Chem. Soc., Perkin Trans. 1, 1987, 1987, 2297-2299.
[http://dx.doi.org/10.1039/p19870002297]
[119]
Fournet, A.; Vagneur, B.P.; Bruneton, J. Aryl-2 et alkyl-2 quinolkines nouvelles isolkes d’une Rutacke bolivienne. Galipealongiflora. Can. J. Chem., 1989, 67, 2116-2118.
[http://dx.doi.org/10.1139/v89-329]
[120]
Rossiter, S.; Péron, J.M.; Whitfield, P.J.; Jones, K. Synthesis and anthelmintic properties of arylquinolines with activity against drug-resistant nematodes. Bioorg. Med. Chem. Lett., 2005, 15(21), 4806-4808.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.044] [PMID: 16165359]
[121]
Sandelier, M.J.; DeShong, P. Reductive cyclization of o-nitrophenyl propargyl alcohols: facile synthesis of substituted quinolines. Org. Lett., 2007, 9(17), 3209-3212.
[http://dx.doi.org/10.1021/ol0710921] [PMID: 17645347]
[122]
Korivi, R.P.; Cheng, C.H. Nickel-catalyzed cyclization of 2-iodoanilines with aroylalkynes: an efficient route for quinoline derivatives. J. Org. Chem., 2006, 71(18), 7079-7082.
[http://dx.doi.org/10.1021/jo060800d] [PMID: 16930069]
[123]
Baltork, I.M.; Tangestaninejad, S.; Moghadam, M.; Mirkhani, V.; Anvar, S.; Mirjafari, A. Microwave-promoted alkynylation-cyclization of 2-aminoaryl ketones: a green strategy for the synthesis of 2,4-disubstituted quinolines. Synlett, 2010, 2010, 3104-3112.
[http://dx.doi.org/10.1055/s-0030-1259065]
[124]
Arcadia, A.; Marinelli, F.; Rossi, E. Synthesis of functionalised quinolines through tandem addition/annulation reactions of β-(2-aminophenyl)-α, β-ynones. Tetrahedron, 1999, 55, 13233-13250.
[http://dx.doi.org/10.1016/S0040-4020(99)00814-5]
[125]
Kobayashi, K.; Yoneda, K.; Miyamoto, K.; Morikawa, O.; Konishi, H. A convenient synthesis of quinolines by reactions of o-isocyano-β-methoxystyrenes with nucleophiles. Tetrahedron, 2004, 60, 11639-11645.
[http://dx.doi.org/10.1016/j.tet.2004.09.069]
[126]
Cabarrocas, G.; Ventura, M.; Maestro, M.; Mah’ıa, J.; Villalgordo, J.M. Synthesis of novel optically pure quinolyl-β-amino alcohol derivatives from 2-amino thiophenol and chiral α-acetylenic ketones and their IBX-mediated oxidative cleavage to N-Boc quinolyl carboxamides. Tetrahedron Asymmetry, 2001, 12, 1851-1863.
[http://dx.doi.org/10.1016/S0957-4166(01)00308-1]
[127]
Devakaram, R.; Black, D.S.; Kumar, N. An efficient synthesis of novel 2,4-disubstituted tetrahydroquinolines and quinolines. Tetrahedron Lett., 2012, 53, 2269-2272.
[http://dx.doi.org/10.1016/j.tetlet.2012.02.043]
[128]
Simoes, J.B.; de Fatima, A.; Sabino, A.A.; Barbosa, L.C.A.; Fernandes, S.A. Efficient synthesis of 2,4-disubstituted quinolines: calix[n]arene-catalyzed Povarov-hydrogen transfer reaction cascade. RSC Advances, 2014, 4, 18612-18615.
[http://dx.doi.org/10.1039/C4RA02036G]
[129]
Kaur, G.; Devi, M.; Kumari, A.; Devi, R.; Banerjee, B. One-pot pseudo five component synthesis of biologically relevant 1,2,6-triaryl-4-arylamino-piperidine-3-ene-3-carboxylates: a decade update. ChemistrySelect, 2018, 3, 9892-9910.
[http://dx.doi.org/10.1002/slct.201801887]
[130]
Palermo, V.; Sathicq, A.; Liberto, N.; Fernandes, S.; Langer, P.; Jios, J.; Romanelli, G. Calix[n]arenes: active organocatalysts for the synthesis of densely functionalized piperidines by one-pot multicomponent procedure. Tetrahedron Lett., 2016, 57, 2049-2054.
[http://dx.doi.org/10.1016/j.tetlet.2016.03.090]
[131]
Langer, S.Z.; Arbilla, S.; Benavides, J.; Scatton, B. Zolpidem and alpidem: two imidazopyridines with selectivity for omega 1- and omega 3-receptor subtypes. Adv. Biochem. Psychopharmacol., 1990, 46, 61-72.
[PMID: 1981304]
[132]
Almirante, L.; Polo, L.; Mugnaini, A.; Provinciali, E.; Rugarli, P.; Biancotti, A.; Gamba, A.; Murmann, W. Derivatives of Imidazole. I. Synthesis and reactions of imidazo[1,2-a]pyridines with analgesic, antiinflammatory, antipyretic, and anticonvulsant activity. J. Med. Chem., 1965, 8, 305-312.
[http://dx.doi.org/10.1021/jm00327a007] [PMID: 14329509]
[133]
Kaminski, J.J.; Wallmark, B.; Briving, C.; Andersson, B.M. Antiulcer agents. 5. Inhibition of gastric H+/K(+)-ATPase by substituted imidazo[1,2-a]pyridines and related analogues and its implication in modeling the high affinity potassium ion binding site of the gastric proton pump enzyme. J. Med. Chem., 1991, 34(2), 533-541.
[http://dx.doi.org/10.1021/jm00106a008] [PMID: 1847427]
[134]
Swainston Harrison, T.; Keating, G.M. Zolpidem: a review of its use in the management of insomnia. CNS Drugs, 2005, 19(1), 65-89.
[http://dx.doi.org/10.2165/00023210-200519010-00008] [PMID: 15651908]
[135]
Groebke, K.; Weber, L.; Mehlin, F. Synthesis of imidazo[1,2-a] annulated pyridines, pyrazines and pyrimidines by a novel three-component condensation. Synlett, 1998, 1998, 661-663.
[http://dx.doi.org/10.1055/s-1998-1721]
[136]
Blackburn, C.; Guan, B.; Fleming, P.; Shiosaki, K.; Tsai, S. Parallel synthesis of 3-aminoimidazo[1,2-a]pyridines and pyrazines by a new three-component condensation. Tetrahedron Lett., 1998, 39, 3635-3638.
[http://dx.doi.org/10.1016/S0040-4039(98)00653-4]
[137]
Bienaymé, H.; Bouzid, K. A new heterocyclic multicomponent reaction for the combinatorial synthesis of fused 3‐aminoimidazoles. Angew. Chem. Int. Ed. Engl., 1998, 37(16), 2234-2237.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980904)37:16<2234:AID-ANIE2234>3.0.CO;2-R] [PMID: 29711433]
[138]
Shaabani, A.; Maleki, A.; Moghimi Rad, J.; Soleimani, E. Cellulose sulfuric acid catalyzed one-pot three-component synthesis of imidazoazines. Chem. Pharm. Bull. (Tokyo), 2007, 55(6), 957-958.
[http://dx.doi.org/10.1248/cpb.55.957] [PMID: 17541205]
[139]
Odell, L.R.; Nilsson, M.T.; Gising, J.; Lagerlund, O.; Muthas, D.; Nordqvist, A.; Karlén, A.; Larhed, M. Functionalized 3-amino-imidazo[1,2-a]pyridines: a novel class of drug-like Mycobacterium tuberculosis glutamine synthetase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(16), 4790-4793.
[http://dx.doi.org/10.1016/j.bmcl.2009.06.045] [PMID: 19560924]
[140]
Rostamnia, S.; Hassankhani, A. RuCl3-catalyzed solvent-free Ugi-type Groebke-Blackburn synthesis of aminoimidazole heterocycles. RSC Advances, 2013, 3, 18626-18629.
[http://dx.doi.org/10.1039/c3ra42752h]
[141]
Guchhait, S.K.; Maadan, C. An Efficient, Regioselective, versatile synthesis of N-fused 2- and 3-aminoimidazoles via Ugi-type multicomponent reaction mediated by zirconium(iv) chloride in polyethylene glycol-400. Synlett, 2009, 2009, 628-632.
[http://dx.doi.org/10.1055/s-0028-1087915]
[142]
Shinde, A.H.; Srilaxmi, M.; Satpathi, B.; Sharada, D.S. A highly efficient synthesis of imidazo-fused polyheterocycles via Groebke-Blackburn-Bienaymè reaction catalyzed by LaCl3‧7H2O. Tetrahedron Lett., 2014, 55, 5915-5920.
[http://dx.doi.org/10.1016/j.tetlet.2014.08.126]
[143]
Blackburn, C. A three-component solid-phase synthesis of 3-aminoimidazo[1,2-a]azines. Tetrahedron Lett., 1998, 39, 5469-5472.
[http://dx.doi.org/10.1016/S0040-4039(98)01113-7]
[144]
Rostami, M.E.; Gorji, B.; Zadmard, R. Green synthesis of imidazo[1,2-a]pyridines using calix[6]arene-SO3H surfactant in water. Tetrahedron Lett., 2018, 59, 2393-2398.
[http://dx.doi.org/10.1016/j.tetlet.2018.04.075]
[145]
Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type--a literature survey. Eur. J. Med. Chem., 2000, 35(12), 1043-1052.
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403]
[146]
Ashok, M.; Holla, B.S.; Kumari, N.S. Convenient one pot synthesis of some novel derivatives of thiazolo[2,3-b]dihydropyrimidinone possessing 4-methylthiophenyl moiety and evaluation of their antibacterial and antifungal activities. Eur. J. Med. Chem., 2007, 42(3), 380-385.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.003] [PMID: 17070617]
[147]
Prashantha Kumar, B.R.; Sankar, G.; Nasir Baig, R.B.; Chandrashekaran, S. Novel Biginelli dihydropyrimidines with potential anticancer activity: a parallel synthesis and CoMSIA study. Eur. J. Med. Chem., 2009, 44(10), 4192-4198.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.014] [PMID: 19525040]
[148]
Azizian, J.; Mohammadi, M.K.; Firuzi, O.; Mirza, B.; Miri, R. Microwave-assisted solvent-free synthesis of Bis(dihydropyrimidinone)benzenes and evaluation of their cytotoxic activity. Chem. Biol. Drug Des., 2010, 75(4), 375-380.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00937.x] [PMID: 20102370]
[149]
Patil, A.D.; Kumar, N.V.; Kokke, W.C.; Bean, M.F.; Freyer, A.J.; Brosse, C.; Mai, S.; Truneh, A.; Faulkner, D.J.; Carte, B.; Breen, A.L.; Hertzberg, R.P.; Johnson, R.K.; Westley, J.W.; Potts, B.C.M. Novel alkaloids from the sponge Batzella sp.: inhibitors of HIV GP120-human CD4 binding. J. Org. Chem., 1995, 60, 1182-1188.
[http://dx.doi.org/10.1021/jo00110a021]
[150]
Mayer, T.U.; Kapoor, T.M.; Haggarty, S.J.; King, R.W.; Schreiber, S.L.; Mitchison, T.J. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science, 1999, 286(5441), 971-974.
[http://dx.doi.org/10.1126/science.286.5441.971] [PMID: 10542155]
[151]
Biginelli, P.; Gazz, P. Synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Chim. Ital., 1893, 23, 360-416.
[152]
Cbe, S.A.; Sandhu, J.S. Past, present and future of the Biginelli reaction: a critical perspective. ARKIVOC, 2012, 2012, 66-133.
[http://dx.doi.org/10.3998/ark.5550190.0013.103]]
[153]
Zacchi, C.H.C.; Vieira, S.S.; Ardisson, J.D.; Araujo, M.H.; de Fatima, A. Synthesis of environmentally friendly, magnetic acid-type calix[4]arene catalyst for obtaining Biginelli adducts. J. Saudi Chem. Soc., 2019, 23, 1060-1069.
[http://dx.doi.org/10.1016/j.jscs.2019.05.005]
[154]
Rego, Y.F.; da Silva, C.M.; da Silva, D.L.; da Silva, J.G. Ruiz, A.L.T.G.; de Carvalho, J.E.; Fernandes, S.A.; de Fatima, A. Phthalazine-triones: Calix[4]arene-assisted synthesis using green solvents and their anticancer activities against human cancer cells. J. Chem., 2019, 12, 4065-4073.
[155]
Vejdelek, Z.; Protiva, M. Potential antidepressants and tranquillizers: Synthesis of some 9-(aminoalkoxy)-2,3,6,7-tetrahydro-1H,5H-benzo[ij] quinolizines and 1-(substituted amino)-3-(1-naphthoxy)-2-propanols. Collect. Czech. Chem. Commun., 1990, 55, 1290-1296.
[http://dx.doi.org/10.1135/cccc19901290]
[156]
Simões, J.B.; de Fátima, Â.; Sabino, A.A.; de Aquino, F.J.T.; da Silva, D.L.; Barbosa, L.C.A.; Fernandes, S.A. Organocatalysis in the three-component Povarov reaction and investigation by mass spectrometry. Org. Biomol. Chem., 2013, 11(31), 5069-5073.
[http://dx.doi.org/10.1039/c3ob40927a] [PMID: 23820767]
[157]
Pereira; S.P.S; Varejão, J.O.S.; de Fátima, Â.; Fernandes, S.A. p-Sulfonic acid calix[4]arene: a highly efficient organocatalyst for dehydration of fructose to 5-hydroxymethylfurfural. Ind. Crops Prod., 2019, 138111492
[http://dx.doi.org/10.1016/j.indcrop.2019.111492]
[158]
Gouda, M.A.; Hussein, B.H.M.; El-Demerdash, A.; Ibrahim, M.E.; Salem, M.A.; Helal, M.H.; Hamama, W.S. A review: Synthesis and medicinal importance of coumarins and their analogues (Part II). Curr. Bioact. Compd., 2020, 16(7), 993-1008.
[http://dx.doi.org/10.2174/1573407215666191111120604]
[159]
Musa, M.A.; Cooperwood, J.S.; Khan, M.O.F. A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr. Med. Chem., 2008, 15(26), 2664-2679.
[http://dx.doi.org/10.2174/092986708786242877] [PMID: 18991629]
[160]
Pereira, T.M.; Franco, D.P.; Vitorio, F.; Kummerle, A.E. Coumarin compounds in medicinal chemistry: some important examples from the last years. Curr. Top. Med. Chem., 2018, 18(2), 124-148.
[http://dx.doi.org/10.2174/1568026618666180329115523] [PMID: 29595110]
[161]
Pechmann, H.V. Neue bildungsweise der cumarine. Synthese des daphnetins. I. Eur. J. Inorg. Chem., 1884, 17, 929-936.
[162]
Tashakkorian, H.; Lakouraj, M.M.; Rouhi, M. p-Sulfonic acid calix[4]arene as an efficient catalyst for one-pot synthesis of pharmaceutically significant coumarin derivatives under solvent-free condition. Int. J. Med. Chem., 2015, 2015738202
[http://dx.doi.org/10.1155/2015/738202] [PMID: 26798517]
[163]
Lin, C.N.; Chung, M.I.; Liou, S.J.; Lee, T.H.; Wang, J.P. Synthesis and anti-inflammatory effects of xanthone derivatives. J. Pharm. Pharmacol., 1996, 48(5), 532-538.
[PMID: 8799882]
[164]
Kumar, A.; Sharma, S.; Maurya, R.A.; Sarkar, J. Diversity oriented synthesis of benzoxanthene and benzochromene libraries via one-pot, three-component reactions and their anti-proliferative activity. J. Comb. Chem., 2010, 12(1), 20-24.
[PMID: 19954208]
[165]
Banerjee, B.; Brahmachari, G. Ammonium chloride catalysed one-pot multicomponent synthesis of 1,8-dioxo-octahydroxanthenes and N-aryl-1,8-dioxodecahydroacridines under solvent free conditions. J. Chem. Res., 2014, 38, 745-750.
[http://dx.doi.org/10.3184/174751914X14177132210020]
[166]
da Silva, D.L.; Silva Terra, B.; Ribeiro Lage, M.; Ruiz, A.L.T.G.; Capeletti da Silva, C.; de Carvalho, J.E.; Walkimar de Mesquita Carneiro, J.; Terra Martins, F.; Fernades, S.A.; de Fátima, Â. Xanthenones: calixarenes-catalyzed syntheses, anticancer activity and QSAR studies. Org. Biomol. Chem., 2015, 13(11), 3280-3287.
[http://dx.doi.org/10.1039/C4OB02611J] [PMID: 25645628]
[167]
Poupelin, J.P.; Saint-Rut, G.; Fussard-Blanpin, O.; Narcisse, G.; Uchida-Ernouf, G.; Lakroix, G.R. Synthesis and antiinflammatory properties of bis(2-hydroxy-1-naphthyl) methane derivatives. I. Monosubstituted derivatives. Eur. J. Med. Chem., 1978, 13, 67-71.
[168]
Ion, R.M.; Planner, A.; Wiktorowicz, K.; Frackowiak, D. The incorporation of various porphyrins into blood cells measured via flow cytometry, absorption and emission spectroscopy. Acta Biochim. Pol., 1998, 45(3), 833-845.
[http://dx.doi.org/10.18388/abp.1998_4279] [PMID: 9918512]
[169]
Lambert, R.W.; Martin, J.A.; Merrett, J.H.; Parkes, K.E.B.; Thomas, G.J. Pyrimidine nucleosides. PCT Int. Appl. WO 9706178, February 20 1997.
[170]
Jamison, J.M.; Krabill, K.; Hatwalkar, A.; Jamison, E.; Tsai, C-C. Potentiation of the antiviral activity of poly r(A-U) by xanthene dyes. Cell Biol. Int. Rep., 1990, 14(12), 1075-1084.
[http://dx.doi.org/10.1016/0309-1651(90)90015-Q] [PMID: 1964628]
[171]
Gamage, S.A.; Spicer, J.A.; Atwell, G.J.; Finlay, G.J.; Baguley, B.C.; Denny, W.A. Structure-activity relationships for substituted bis(acridine-4-carboxamides): a new class of anticancer agents. J. Med. Chem., 1999, 42(13), 2383-2393.
[http://dx.doi.org/10.1021/jm980687m] [PMID: 10395479]
[172]
Tu, S.; Zhang, X.; Shi, F.; Li, T.; Wang, Q.; Zhu, X.; Zhang, J.; Xu, J. One-pot synthesis of novel N-cyclopropyldecahydroacridine-1,8-dione derivatives under microwave irradiation. J. Heterocycl. Chem., 2005, 42, 1155-1159.
[http://dx.doi.org/10.1002/jhet.5570420618]
[173]
Shchekotikhin, Y.M.; Nikolaeva, T.G.; Shub, G.M.; Krivenko, A.P. Synthesis and antimicrobial activity of substituted 1,8-dioxodecahydroacridines. Pharm. Chem. J., 2001, 35, 206-208.
[http://dx.doi.org/10.1023/A:1010484013306]
[174]
Wainwright, M. Acridine-a neglected antibacterial chromophore. J. Antimicrob. Chemother., 2001, 47(1), 1-13.
[http://dx.doi.org/10.1093/jac/47.1.1] [PMID: 11152426]
[175]
Venkatesan, K.; Pujari, S.S.; Srinivasan, K.V. Proline-catalyzed simple and efficient synthesis of 1,8-dioxo-decahydroacridines in aqueous ethanol medium. Synth. Commun., 2009, 39, 228-241.
[http://dx.doi.org/10.1080/00397910802044306]
[176]
Baghbanian, S.M.; Khanzad, G.; Vahdat, S.M.; Tashakkorian, H. p-Sulfonic acid calix[4]arene as an efficient and reusable catalyst for the synthesis of acridinediones and xanthenes. Res. Chem. Intermed., 2015, 41, 9951-9966.
[http://dx.doi.org/10.1007/s11164-015-2001-x]
[177]
Abranches, P.A.D.S.; de Paiva, W.F.; de Fátima, Â.; Martins, F.T.; Fernandes, S.A. Calix[n]arene-catalyzed three-component povarov reaction: microwave-assisted synthesis of julolidines and mechanistic insights. J. Org. Chem., 2018, 83(4), 1761-1771.
[http://dx.doi.org/10.1021/acs.joc.7b02532] [PMID: 29337547]
[178]
Rezende, T.R.M.; Varejão, J.O.S.; Sousa, A.L.L.A.; Castañeda, S.M.B.; Fernandes, S.A. Tetrahydroquinolines by the multicomponent Povarov reaction in water: calix[n]arene-catalysed cascade process and mechanistic insights. Org. Biomol. Chem., 2019, 17(11), 2913-2922.
[http://dx.doi.org/10.1039/C8OB02928H] [PMID: 30724962]