Prevention, Diagnosis and Treatment of COVID-19: A Nanotechnological Perspective

Page: [418 - 422] Pages: 5

  • * (Excluding Mailing and Handling)

Abstract

Background: According to the current scenario with millions of deaths worldwide, the outbreak of COVID-19 has created global havoc. The vast spreading of COVID-19 has already challenged the healthcare system and economy of the world. Every country is now putting the best efforts to develop its standards, strategies, and policies to fight against this pandemic. Therefore, a huge amount of research grants is allocated for the diagnosis and treatment of COVID-19 globally.

Objective: Scientists/researchers around the world are working in different fields, i.e., biological, physical, and chemical sciences, and have collaborated for an effective outcome to combat this pandemic. In light of the above-mentioned challenges, the researchers of the nanotechnology community can also contribute significantly in this direction.

Results: As team members of the nanotechnology community, we suggest various research targets that can be designed/improved, optimized, and developed by nanotechnologists. These research targets include Point-of-care diagnostics (POCD), Surveillance and monitoring, Therapeutics, Vaccine development, Improving existing drugs with potential therapeutic applications, Developing antiviral nanocoating/antimicrobial spray-based coating for PPE, Magnetic nanoparticles and viral RNA (Ribonucleic acid), and Rapid detection kits.

Conclusion: It can be concluded that multiple areas, such as the development of nano-biosensor based diagnostic technology (capable to produce fast and accurate results), development of nanoencapsulated drugs/vaccines or other efficient systems, testing/improving existing drugs with potential therapeutic applications, developing antiviral nanocoating/antimicrobial spray-based coating for PPE, etc., need immediate attention.

Keywords: COVID-19, nanotechnology, POCD, vaccine, drugs, rapid detection kits.

Graphical Abstract

[1]
Deng, S-Q.; Peng, H-J. Characteristics of and public health responses to the Coronavirus Disease 2019 outbreak in China. J. Clin. Med., 2020, 9(2), 575.
[http://dx.doi.org/10.3390/jcm9020575] [PMID: 32093211]
[2]
] COVID-19 Map - Johns Hopkins Coronavirus Resource Center.. https://coronavirus.jhu.edu/map.html2020
[3]
Arshad Ali, S.; Baloch, M.; Ahmed, N.; Arshad Ali, A.; Iqbal, A. The outbreak of Coronavirus Disease 2019 (COVID-19)-An emerging global health threat. J. Infect. Public Health, 2020, 13(4), 644-646.
[http://dx.doi.org/10.1016/j.jiph.2020.02.033] [PMID: 32199792]
[4]
Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg., 2020, 78, 185-193.
[http://dx.doi.org/10.1016/j.ijsu.2020.04.018] [PMID: 32305533]
[5]
Li, W.; Shi, Z.; Yu, M.; Ren, W.; Smith, C.; Epstein, J.H.; Wang, H.; Crameri, G.; Hu, Z.; Zhang, H.; Zhang, J.; McEachern, J.; Field, H.; Daszak, P.; Eaton, B.T.; Zhang, S.; Wang, L.F. Bats are natural reservoirs of SARS-like coronaviruses. Science, 2005, 310(5748), 676-679.
[http://dx.doi.org/10.1126/science.1118391] [PMID: 16195424]
[6]
Li, B.; Si, H-R.; Zhu, Y.; Yang, X-L.; Anderson, D.E.; Shi, Z-L.; Wang, L-F.; Zhou, P. Discovery of bat coronaviruses through surveillance and probe capture-based next-generation sequencing. MSphere, 2020, 5(1), e00807-e00819.
[http://dx.doi.org/10.1128/mSphere.00807-19] [PMID: 31996413]
[7]
Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A.C.K.; Zhou, J.; Liu, W.; Bi, Y.; Gao, G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol., 2016, 24(6), 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[8]
Singhal, T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J. Pediatr., 2020, 87(4), 281-286.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[9]
Tang, B.; Bragazzi, N.L.; Li, Q.; Tang, S.; Xiao, Y.; Wu, J. An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infect. Dis. Model., 2020, 5, 248-255.
[http://dx.doi.org/10.1016/j.idm.2020.02.001] [PMID: 32099934]
[10]
Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases. https://www.who.int/publications-detail/laboratory-testing-for-2019-novel-coronavirus-in-suspected-human-cases-202001172020
[11]
Lim, J.; Jeon, S.; Shin, H.Y.; Kim, M.J.; Seong, Y.M.; Lee, W.J.; Choe, K.W.; Kang, Y.M.; Lee, B.; Park, S.J. Case of the index patient who caused tertiary transmission of Coronavirus Disease 2019 in Korea: The application of Lopinavir/Ritonavir for the treatment of COVID-19 pneumonia monitored by quantitative RT-PCR. J. Korean Med. Sci., 2020, 35(6), e79.
[http://dx.doi.org/10.3346/jkms.2020.35.e79] [PMID: 32056407]
[12]
Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends, 2020, 14(1), 72-73.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[13]
Lu, H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends, 2020, 14(1), 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[14]
Baron, S.A.; Devaux, C.; Colson, P.; Raoult, D.; Rolain, J.M. Teicoplanin: an alternative drug for the treatment of COVID-19? Int. J. Antimicrob. Agents, 2020, 55(4), 105944.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105944] [PMID: 32179150]
[15]
Ampel, N.M. Lopinavir-Ritonavir Was Not Effective for COVID-19. N. Engl. J. Med., 2020.
[16]
Thanh Le, T.; Andreadakis, Z.; Kumar, A.; Gómez Román, R.; Tollefsen, S.; Saville, M.; Mayhew, S. The COVID-19 vaccine development landscape. Nat. Rev. Drug Discov., 2020, 19(5), 305-306.
[http://dx.doi.org/10.1038/d41573-020-00073-5] [PMID: 32273591]
[17]
Mahase, E. Covid-19: What do we know so far about a vaccine? BMJ, 2020, 369, m1679.
[http://dx.doi.org/10.1136/bmj.m1679] [PMID: 32340998]
[18]
Bhavsar, M.D.; Amiji, M.M. Polymeric nano- and microparticle technologies for oral gene delivery. Expert Opin. Drug Deliv., 2007, 4(3), 197-213.
[http://dx.doi.org/10.1517/17425247.4.3.197] [PMID: 17489649]
[19]
Akagi, T.; Baba, M.; Akashi, M. Biodegradable nanoparticles as vaccine adjuvants and delivery systems: Regulation of immune responses by nanoparticle-based vaccine. Polymers in Nanomedicine. Advances in Polymer Science; Kunugi, S; Yamaoka, T., Ed.; Springer: Berlin, Heidelberg, 2012, Vol. 247, pp. 31-64.
[http://dx.doi.org/10.1007/12_2011_150]
[20]
Huh, A.J.; Kwon, Y.J. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release, 2011, 156(2), 128-145.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.002] [PMID: 21763369]
[21]
Pauksch, L.; Hartmann, S.; Rohnke, M.; Szalay, G.; Alt, V.; Schnettler, R.; Lips, K.S. Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. Acta Biomater., 2014, 10(1), 439-449.
[http://dx.doi.org/10.1016/j.actbio.2013.09.037] [PMID: 24095782]
[22]
Munger, M.A.; Radwanski, P.; Hadlock, G.C.; Stoddard, G.; Shaaban, A.; Falconer, J.; Grainger, D.W.; Deering-Rice, C.E. In vivo human time-exposure study of orally dosed commercial silver nanoparticles. Nanomedicine (Lond.), 2014, 10(1), 1-9.
[http://dx.doi.org/10.1016/j.nano.2013.06.010] [PMID: 23811290]
[23]
Zang, F.; Su, Z.; Zhou, L.; Konduru, K.; Kaplan, G.; Chou, S.Y. Ultrasensitive Ebola virus antigen sensing via 3D nanoantenna arrays. Adv. Mater., 2019, 31(30), e1902331.
[http://dx.doi.org/10.1002/adma.201902331] [PMID: 31168856]
[24]
Yeh, Y.T.; Tang, Y.; Sebastian, A.; Dasgupta, A.; Perea-Lopez, N.; Albert, I.; Lu, H.; Terrones, M.; Zheng, S.Y. Tunable and label-free virus enrichment for ultrasensitive virus detection using carbon nanotube arrays. Sci. Adv., 2016, 2(10), e1601026.
[http://dx.doi.org/10.1126/sciadv.1601026] [PMID: 27730213]
[25]
Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G.A.; Wang, J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano, 2020, 14(5), 5268-5277.
[http://dx.doi.org/10.1021/acsnano.0c02439] [PMID: 32281785]
[26]
Li, Y.; Lin, Z.; Guo, M.; Xia, Y.; Zhao, M.; Wang, C.; Xu, T.; Chen, T.; Zhu, B. Inhibitory activity of selenium nanoparticles functionalized with oseltamivir on H1N1 influenza virus. Int. J. Nanomedicine, 2017, 12, 5733-5743.
[http://dx.doi.org/10.2147/IJN.S140939] [PMID: 28848350]
[27]
Quan, Le M.; Ye, L.; Bernasconi, V.; Carpentier, R.; Fasquelle, F.; Lycke, N.; Staeheli, P.; Betbeder, D. Prevention of influenza virus infection and transmission by intranasal administration of a porous maltodextrin nanoparticle-formulated vaccine. Int. J. Pharm., 2020, 582, 119348.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119348] [PMID: 32325240]
[28]
Pimentel, T.A.P.F.; Yan, Z.; Jeffers, S.A.; Holmes, K.V.; Hodges, R.S.; Burkhard, P. Peptide nanoparticles as novel immunogens: design and analysis of a prototypic severe acute respiratory syndrome vaccine. Chem. Biol. Drug Des., 2009, 73(1), 53-61.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00746.x] [PMID: 19152635]
[29]
Coleman, C.M.; Liu, Y.V.; Mu, H.; Taylor, J.K.; Massare, M.; Flyer, D.C.; Smith, G.E.; Frieman, M.B.; Frieman, M.B. Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine, 2014, 32(26), 3169-3174.
[http://dx.doi.org/10.1016/j.vaccine.2014.04.016] [PMID: 24736006]
[30]
Chen, W.H.; Strych, U.; Hotez, P.J.; Bottazzi, M.E. The SARS-CoV-2 Vaccine pipeline: An overview. Curr. Trop. Med. Rep., 2020, 7, 1-4. [published online ahead of print, 2020 Mar 3
[http://dx.doi.org/10.1007/s40475-020-00201-6] [PMID: 32219057]
[32]
Iyigundogdu, Z.U.; Demir, O.; Asutay, A.B.; Sahin, F. Developing novel antimicrobial and antiviral textile products. Appl. Biochem. Biotechnol., 2017, 181(3), 1155-1166.
[http://dx.doi.org/10.1007/s12010-016-2275-5] [PMID: 27734286]
[33]
Seino, S.; Imoto, Y.; Kosaka, T.; Nishida, T.; Nakagawa, T.; Yamamoto, T.A. Antiviral activity of silver nanoparticles immobilized onto textile fabrics synthesized by radiochemical process. MRS Adv., 2016, 1, 705-710.
[http://dx.doi.org/10.1557/adv.2016.43]
[34]
Saqib, S.; Zaman, W.; Ullah, F.; Majeed, I.; Ayaz, A.; Hussain Munis, M.F. Organometallic assembling of chitosan-iron oxide nanoparticles with their antifungal evaluation against Rhizopus oryzae. Appl. Organomet. Chem., 2019, 33(11), e5190.
[http://dx.doi.org/10.1002/aoc.5190]
[35]
Vasantharaj, S.; Sathiyavimal, S.; Senthilkumar, P. LewisOscar, F.; Pugazhendhi, A. Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: Antimicrobial properties and their applications in photocatalytic degradation. J. Photochem. Photobiol. B, 2019, 192, 74-82.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.12.025] [PMID: 30685586]
[36]
Producing iron oxide nanoparticles for 150,000 COVID-19 tests per week.. https://www.nanowerk.com/nanotechnology-news2/newsid=54893.php2020
[37]
Sheridan, C. Fast, portable tests come online to curb coronavirus pandemic. Nat. Biotechnol., 2020, 38(5), 515-518.
[http://dx.doi.org/10.1038/d41587-020-00010-2] [PMID: 32203294]