Abstract

Background: It becomes increasingly evident that the SARS-CoV-2 infection is not limited to the respiratory system. In addition to being a target of the virus, the kidney also seems to have a substantial influence on the outcomes of the disease.

Methods: Data was obtained by a comprehensive and non-systematic search in the PubMed, Cochrane, Scopus and SciELO databases, using mainly the terms “SARS-CoV-2”, “COVID-19”, “chronic kidney disease”, “renal transplantation”, acute kidney injury” and “renal dysfunction”

Discussion: The membrane-bound angiotensin-converting enzyme 2 is the receptor for SARS-CoV- -2, and this interaction may lead to an imbalance of the Renin-Angiotensin System (RAS), associated with worse clinical presentations of COVID-19, including acute pulmonary injury, hyperinflammatory state and hematological alterations. In the framework of renal diseases, the development of acute kidney injury is associated mostly with immune alterations and direct cytopathic lesions by the virus, leading to higher mortality. As for chronic kidney disease, the patients at a non-terminal stage have a worse prognosis, while the hemodialysis patients appear to have mild courses of COVID-19, probably due to lower chances of being affected by the cytokine storm. Furthermore, the current scenario is unfavorable to kidney donation and transplantation. The relationship between COVID-19 and immunosuppression in kidney transplantation recipients has been greatly discussed to determine whether it increases mortality and how it interacts with immunosuppressive medications.

Conclusion: The kidney and the RAS exert fundamental roles in the SARS-CoV-2 infection, and more research is required to have a complete understanding of the repercussions caused by COVID-19 in renal diseases.

Keywords: SARS-CoV-2, COVID-19, chronic kidney disease, renal transplantation, acute kidney injury, renal dysfunction.

Graphical Abstract

[1]
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, ErichseN S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020; 181(2): 271-80.
[2]
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020; 367(6485): 1444-8.
[http://dx.doi.org/10.1126/science.abb2762] [PMID: 32132184]
[3]
Liu Z, Xiao X, Wei X, et al. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J Med Virol 2020; 92(6): 595-601.
[http://dx.doi.org/10.1002/jmv.25726] [PMID: 32100877]
[4]
Martinez-Rojas MA, Vega-Vega O, Bobadilla NA. Is the kidney a target of SARS-CoV-2? Am J Physiol Renal Physiol 2020; 318(6): F1454-62.
[http://dx.doi.org/10.1152/ajprenal.00160.2020] [PMID: 32412303]
[5]
Nehme A, Cerutti C, Dhaouadi N, Gustin MP, Courand P-Y, Zibara K, et al. Atlas of tissue renin-angiotensin-aldosterone system in human A transcriptomic meta-analysis.Scientific Reports 2015.5: p. (1)10035.
[6]
Lanza K, Perez LG, Costa LB, et al. Covid-19: the renin-angiotensin system imbalance hypothesis. Clin Sci (Lond) 2020; 134(11): 1259-64.
[http://dx.doi.org/10.1042/CS20200492] [PMID: 32507883]
[7]
Wang X, Fang X, Cai Z, et al. Comorbid chronic diseases and acute organ injuries are strongly correlated with disease severity and mortality among COVID-19 patients: A systemic review and meta-analysis. Research (Wash D C) 2020; 2020: 2402961.
[http://dx.doi.org/10.34133/2020/2402961] [PMID: 32377638]
[8]
Sanchis-Gomar F, Lavie CJ, Perez-Quilis C, Henry BM, Lippi G. Angiotensin-converting enzyme 2 and antihypertensives (Angiotensin receptor blockers and angiotensin-converting enzyme inhibitors) in coronavirus disease 2019. Mayo Clin Proc 2020; 95(6): 1222-30.
[http://dx.doi.org/10.1016/j.mayocp.2020.03.026] [PMID: 32376099]
[9]
Arenas MD, Villar J, González C, Cao H, Collado S, Crespo M, et al. Management of the SARS-CoV-2 (Covid 19) coronavirus epidemic in hemodialysis units Nefrología. English Edition 2020.
[10]
Guyton AC. Kidneys and fluids in pressure regulation. Small volume but large pressure changes. Hypertension 1992; 19(1)(Suppl.): I2-8.
[http://dx.doi.org/10.1161/01.HYP.19.1_Suppl.I2] [PMID: 1730451]
[11]
Hall JE, Guyton AC, Mizelle HL. Role of the renin-angiotensin system in control of sodium excretion and arterial pressure. Acta Physiol Scand Suppl 1990; 591(591): 48-62.
[PMID: 2220409]
[12]
Inagami T. A memorial to Robert Tiegerstedt: the centennial of renin discovery. Hypertension 1998; 32(6): 953-7.
[http://dx.doi.org/10.1161/01.HYP.32.6.953] [PMID: 9856956]
[13]
Touyz RM, Berry C. Recent advances in angiotensin II signaling. Braz J Med Biol Res 2002; 35(9): 1001-15.
[http://dx.doi.org/10.1590/S0100-879X2002000900001] [PMID: 12219172]
[14]
Strawn WB, Ferrario CM. Mechanisms linking angiotensin II and atherogenesis. Current Opinion in Lipidology 2002; 13(5): 505-12.
[http://dx.doi.org/10.1097/00041433-200210000-00006]
[15]
Dandona P, Dhindsa S, Ghanim H, Chaudhuri A. Angiotensin II and inflammation: the effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. J Hum Hypertens 2007; 21(1): 20-7.
[http://dx.doi.org/10.1038/sj.jhh.1002101] [PMID: 17096009]
[16]
Santos RAS, Ed. Angiotensin-(1-7): A Comprehensive Review. Springer Nature 2019.
[http://dx.doi.org/10.1007/978-3-030-22696-1]
[17]
Simões E Silva AC, Flynn JT. The renin-angiotensin-aldosterone system in 2011: role in hypertension and chronic kidney disease. Pediatr Nephrol 2012; 27(10): 1835-45.
[http://dx.doi.org/10.1007/s00467-011-2002-y] [PMID: 21947887]
[18]
Hunyady L, Catt KJ. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol 2006; 20(5): 953-70.
[http://dx.doi.org/10.1210/me.2004-0536] [PMID: 16141358]
[19]
Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 2000; 87(5): E1-9.
[http://dx.doi.org/10.1161/01.RES.87.5.e1] [PMID: 10969042]
[20]
Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 2000; 275(43): 33238-43.
[http://dx.doi.org/10.1074/jbc.M002615200] [PMID: 10924499]
[21]
Santos RA, Simoes e Silva AC, Maric C, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 2003; 100(14): 8258-63.
[http://dx.doi.org/10.1073/pnas.1432869100] [PMID: 12829792]
[22]
Simões E Silva AC, Teixeira MM. ACE inhibition, ACE2 and angiotensin-(1-7) axis in kidney and cardiac inflammation and fibrosis. Pharmacol Res 2016; 107: 154-62.
[http://dx.doi.org/10.1016/j.phrs.2016.03.018] [PMID: 26995300]
[23]
Silveira KD, Barroso LC, Vieira AT, et al. Beneficial effects of the activation of the angiotensin-(1-7) MAS receptor in a murine model of adriamycin-induced nephropathy. PLoS One 2013; 8(6): e66082.
[http://dx.doi.org/10.1371/journal.pone.0066082] [PMID: 23762470]
[24]
Yang R, Smolders I, Dupont AG. Blood pressure and renal hemodynamic effects of angiotensin fragments. Hypertension Research 2011; 34(6): 674-83.
[http://dx.doi.org/10.1038/hr.2011.24]
[25]
Magaldi AJ, Cesar KR, de Araújo M, Simões e Silva AC, Santos RAS. Angiotensin-(1–7) stimulates water transport in rat inner medullary collecting duct: evidence for involvement of vasopressin V2 receptors. Pflügers Archiv 2003; 447(2): 223-30.
[26]
Wilson BA, Nautiyal M, Gwathmey TM, Rose JC, Chappell MC. Evidence for a mitochondrial angiotensin-(1-7) system in the kidney. Am J Physiol Renal Physiol 2016; 310(7): F637-45.
[http://dx.doi.org/10.1152/ajprenal.00479.2015] [PMID: 26697984]
[27]
da Silveira KD, Pompermayer Bosco KS, Diniz LR, et al. ACE2-angiotensin-(1-7)-Mas axis in renal ischaemia/reperfusion injury in rats. Clin Sci (Lond) 2010; 119(9): 385-94.
[http://dx.doi.org/10.1042/CS20090554] [PMID: 20528771]
[28]
Rodrigues PrestesTR, Rocha NP, Miranda AS, Teixeira AL, Simoes-E-Silva AC. The anti-inflammatory potential of ACE2/angiotensin-(1-7)/mas receptor axis: evidence from basic and clinical research. Curr Drug Targets 2017; 18(11): 1301-13.
[http://dx.doi.org/10.2174/1389450117666160727142401] [PMID: 27469342]
[29]
Vickers C, Hales P, Kaushik V, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 2002; 277(17): 14838-43.
[http://dx.doi.org/10.1074/jbc.M200581200] [PMID: 11815627]
[30]
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367(6483): 1260-3.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[31]
Phan T. Genetic diversity and evolution of SARS-CoV-2. Infection, Genetics and Evolution 2020; 81: 104260.
[32]
Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020; 581(7807): 221-4.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[33]
Glowacka I, Bertram S, Herzog P, et al. Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. J Virol 2010; 84(2): 1198-205.
[http://dx.doi.org/10.1128/JVI.01248-09] [PMID: 19864379]
[34]
Haga S, Yamamoto N, Nakai-Murakami C, et al. Modulation of TNF-α-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-α production and facilitates viral entry. Proc Natl Acad Sci USA 2008; 105(22): 7809-14.
[http://dx.doi.org/10.1073/pnas.0711241105] [PMID: 18490652]
[35]
Wang S, Guo F, Liu K, et al. Endocytosis of the receptor-binding domain of SARS-CoV spike protein together with virus receptor ACE2. Virus Res 2008; 136(1-2): 8-15.
[http://dx.doi.org/10.1016/j.virusres.2008.03.004] [PMID: 18554741]
[36]
Alsufyani HA, Docherty JR. The renin angiotensin aldosterone system and COVID-19. Saudi Pharm J 2020; 28(8): 977-84.
[http://dx.doi.org/10.1016/j.jsps.2020.06.019] [PMID: 32788834]
[37]
Xia T, Wang Y. Coronavirus disease 2019 and transplantation: The combination of lopinavir/ritonavir and hydroxychloroquine is responsible for excessive tacrolimus trough level and unfavorable outcome. American Journal of Transplantation 2020.
[38]
Ingraham NE, Barakat AG, Reilkoff R, et al. Understanding the renin-angiotensin-aldosterone-SARS-CoV axis: a comprehensive review. Eur Respir J 2020; 56(1): 2000912.
[http://dx.doi.org/10.1183/13993003.00912-2020] [PMID: 32341103]
[39]
Costa LB, Perez LG, Palmeira VA, et al. Insights on SARS-CoV-2 molecular interactions with the Renin-Angiotensin System. Front Cell Dev Biol 2020.
[http://dx.doi.org/10.3389/fcell.2020.55984]
[40]
Bourgonje AR, Abdulle AE, Timens W, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol 2020; 251(3): 228-48.
[http://dx.doi.org/10.1002/path.5471] [PMID: 32418199]
[41]
Mahmudpour M, Roozbeh J, Keshavarz M, Farrokhi S, Nabipour I. COVID-19 cytokine storm: The anger of inflammation. Cytokine 2020; 133: 155151.
[http://dx.doi.org/10.1016/j.cyto.2020.155151] [PMID: 32544563]
[42]
Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin–angiotensin–aldosterone system inhibitors in patients with Covid-19. N Engl J Med 2020; 382(17): 1653-9.
[http://dx.doi.org/10.1056/NEJMsr2005760] [PMID: 32227760]
[43]
Wu A, Peng Y, Huang B, et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe 2020; 27(3): 325-8.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[44]
Perico L, Benigni A, Remuzzi G. Should COVID-19 concern nephrologists? Why and to what extent? The emerging impasse of angiotensin blockade. Nephron 2020; 144(5): 213-21.
[http://dx.doi.org/10.1159/000507305] [PMID: 32203970]
[45]
Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020; 17(5): 259-60.
[http://dx.doi.org/10.1038/s41569-020-0360-5] [PMID: 32139904]
[46]
Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, et al. Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell 2020; 181(4): 905-13.
[47]
Gurwitz D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Development Research 1-4.
[48]
Towler P, Staker B, Prasad SG, et al. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biol Chem 2004; 279(17): 17996-8007.
[http://dx.doi.org/10.1074/jbc.M311191200] [PMID: 14754895]
[49]
Baral R, White M, Vassiliou VS. Effect of Renin-Angiotensin-Aldosterone System Inhibitors in Patients with COVID-19: a Systematic Review and Meta-analysis of 28,872 Patients. Curr Atheroscler Rep 2020; 22(10): 61.
[http://dx.doi.org/10.1007/s11883-020-00880-6] [PMID: 32830286]
[50]
Cano F, Gajardo M, Freundlich M. [Renin Angiotensin Axis, Angiotensin Converting Enzyme 2 and Coronavirus]. Rev Chil Pediatr 2020; 91(3): 330-8.
[http://dx.doi.org/10.32641/rchped.v91i3.2548] [PMID: 32730512]
[51]
Pelayo J, Lo KB, Bhargav R, et al. Clinical Characteristics and Outcomes of Community- and Hospital-Acquired Acute Kidney Injury with COVID-19 in a US Inner City Hospital System. Cardiorenal Med 2020; 10(4): 223-31.
[http://dx.doi.org/10.1159/000509182] [PMID: 32554965]
[52]
Banerjee D, Popoola J, Shah S, Ster IC, Quan V, Phanish M. COVID-19 infection in kidney transplant recipients. Kidney International 2020; 97(6): 1076-82.
[53]
Hirsch JS, Ng JH, Ross DW, et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int 2020; 98(1): 209-18.
[http://dx.doi.org/10.1016/j.kint.2020.05.006] [PMID: 32416116]
[54]
Cheng Y, Luo R, Wang K, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int 2020; 97(5): 829-38.
[http://dx.doi.org/10.1016/j.kint.2020.03.005] [PMID: 32247631]
[55]
Yang X, Jin Y, Li R, Zhang Z, Sun R, Chen D. Prevalence and impact of acute renal impairment on COVID-19: a systematic review and meta-analysis. Crit Care 2020; 24(1): 356.
[http://dx.doi.org/10.1186/s13054-020-03065-4] [PMID: 32552872]
[56]
Shao M, Li X, Liu F, Tian T, Luo J, Yang Y. Acute kidney injury is associated with severe infection and fatality in patients with COVID-19: A systematic review and meta-analysis of 40 studies and 24,527 patients. Pharmacol Res 2020; 161105107.
[http://dx.doi.org/10.1016/j.phrs.2020.105107] [PMID: 32739424]
[57]
Adapa S, Chenna A, Balla M, et al. COVID-19 Pandemic Causing Acute Kidney Injury and Impact on Patients With Chronic Kidney Disease and Renal Transplantation. J Clin Med Res 2020; 12(6): 352-61.
[http://dx.doi.org/10.14740/jocmr4200] [PMID: 32587651]
[58]
Hansrivijit P, Qian C, Boonpheng B, et al. Incidence of acute kidney injury and its association with mortality in patients with COVID-19: a meta-analysis. J Investig Med 2020; jim-2020-001407.
[http://dx.doi.org/10.1136/jim-2020-001407] [PMID: 32655013]
[59]
Gameiro J, Fonseca JA, Oliveira J, Marques F, Bernardo J, Costa C, et al. Acute kidney injury in hospitalized patients with COVID-19
[60]
Robbins-Juarez SY, Qian L, King KL, et al. Outcomes for Patients With COVID-19 and Acute Kidney Injury: A Systematic Review and Meta-Analysis. Kidney Int Rep 2020; 5(8): 1149-60.
[http://dx.doi.org/10.1016/j.ekir.2020.06.013] [PMID: 32775814]
[61]
Ali H, Daoud A, Mohamed MM, et al. Survival rate in acute kidney injury superimposed COVID-19 patients: a systematic review and meta-analysis. Ren Fail 2020; 42(1): 393-7.
[http://dx.doi.org/10.1080/0886022X.2020.1756323] [PMID: 32340507]
[62]
Ronco C, Reis T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat Rev Nephrol 2020; 16(6): 308-10.
[http://dx.doi.org/10.1038/s41581-020-0284-7] [PMID: 32273593]
[63]
Douglas J. Stewart, John C Hartley, Mae Johnson, Stephen D Marks, Pascale du Pré, Jelena Stojanovic. Renal dysfunction in hospitalised children with COVID-19. Lancet 2020.
[http://dx.doi.org/10.1016/ S2352-4642(20)30178-4]
[64]
Ronco C, Reis T, Husain-Syed F. Management of acute kidney injury in patients with COVID-19. Lancet Respir Med 2020; 8(7): 738-42.
[http://dx.doi.org/10.1016/S2213-2600(20)30229-0] [PMID: 32416769]
[65]
Rismanbaf A, Zarei S. Liver and kidney injuries in COVID-19 and their effects on drug therapy; a letter to editor. Arch Acad Emerg Med 2020; 8(1): e17.
[PMID: 32185369]
[66]
Pan XW, Xu D, Zhang H, Zhou W, Wang LH, Cui XG. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis. Intensive Care Med 2020; 46(6): 1114-6.
[http://dx.doi.org/10.1007/s00134-020-06026-1] [PMID: 32236644]
[67]
Batlle D, Soler MJ, Sparks MA, et al. Acute kidney injury in COVID-19: emerging evidence of a distinct pathophysiology. J Am Soc Nephrol 2020; 31(7): 1380-3.
[http://dx.doi.org/10.1681/ASN.2020040419] [PMID: 32366514]
[68]
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect 2020; 80(6): 607-13.
[http://dx.doi.org/10.1016/j.jinf.2020.03.037] [PMID: 32283152]
[69]
Tufan A, Avanoğlu Güler A, Matucci-Cerinic M. COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. Turk J Med Sci 2020; 50(SI-1): 620-32.
[http://dx.doi.org/10.3906/sag-2004-168] [PMID: 32299202]
[70]
Hartman ME, Hernandez RA, Patel K, et al. COVID-19 respiratory failure: targeting inflammation on VV-ECMO support. ASAIO J 2020; 66(6): 603-6.
[http://dx.doi.org/10.1097/MAT.0000000000001177] [PMID: 32304395]
[71]
Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int 2020; 98(1): 219-27.
[http://dx.doi.org/10.1016/j.kint.2020.04.003] [PMID: 32327202]
[72]
Diao B, Feng Z, Wang C, Wang H, Liu L, Wang C, et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection 2020.
[73]
Sardu C, Gambardella J, Morelli MB, Wang X, Marfella R, Santulli G. Hypertension, thrombosis, kidney failure, and diabetes: is COVID-19 an endothelial disease? A comprehensive evaluation of clinical and basic evidence. J Clin Med 2020; 9(5): 1417.
[http://dx.doi.org/10.3390/jcm9051417] [PMID: 32403217]
[74]
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020; 395(10234): 1417-8.
[http://dx.doi.org/10.1016/S0140-6736(20)30937-5] [PMID: 32325026]
[75]
Suwanwongse K, Shabarek N. Rhabdomyolysis as a presentation of 2019 novel coronavirus disease. Cureus 2020; 12(4): e7561.
[PMID: 32382463]
[76]
Gefen AM, Palumbo N, Nathan SK, Singer PS, Castellanos-Reyes LJ, Sethna CB. Pediatric COVID-19-associated rhabdomyolysis: a case report. Pediatr Nephrol 2020; 35(8): 1517-20.
[http://dx.doi.org/10.1007/s00467-020-04617-0] [PMID: 32447505]
[77]
Rabb H, Griffin MD, McKay DB, et al. Inflammation in AKI: current understanding, key questions, and knowledge gaps. J Am Soc Nephrol 2016; 27(2): 371-9.
[http://dx.doi.org/10.1681/ASN.2015030261] [PMID: 26561643]
[78]
Holdsworth SR, Gan P-Y. Cytokines: names and numbers you should care about. Clin J Am Soc Nephrol 2015; 10(12): 2243-54.
[http://dx.doi.org/10.2215/CJN.07590714] [PMID: 25941193]
[79]
Henry BM, Lippi G. Chronic kidney disease is associated with severe coronavirus disease 2019 (COVID-19) infection. Int Urol Nephrol 2020; 52(6): 1193-4.
[http://dx.doi.org/10.1007/s11255-020-02451-9] [PMID: 32222883]
[80]
Imig JD, Ryan MJ. Immune and inflammatory role in renal disease. Compr Physiol 2013; 3(2): 957-76.
[http://dx.doi.org/10.1002/cphy.c120028] [PMID: 23720336]
[81]
Vianna HR, Soares CM, Tavares MS, Teixeira MM, Silva AC. Inflammation in chronic kidney disease: the role of cytokines. J Bras Nefrol 2011; 33(3): 351-64.
[http://dx.doi.org/10.1590/S0101-28002011000300012] [PMID: 22042353]
[82]
Gupta R, Hussain A, Misra A. Diabetes and COVID-19: evidence, current status and unanswered research questions. Eur J Clin Nutr 2020; 74(6): 864-70.
[http://dx.doi.org/10.1038/s41430-020-0652-1] [PMID: 32404898]
[83]
Yuan H, Guo E, Gao Z, Hu F, Lu L. Coronavirus Disease 2019 in a Hemodialysis Patient. Blood Purif 2020; 1-4.
[http://dx.doi.org/10.1159/000507877] [PMID: 32340018]
[84]
Wang H. Maintenance Hemodialysis and Coronavirus Disease 2019 (COVID-19). Saving Lives With Caution, Care, and Courage Kidney Medicine 2020; 2(3): 365-66.
[85]
Weiner DE, Watnick SG. Hemodialysis and COVID-19: An Achilles’ Heel in the Pandemic Healthcare Response in the United States. Kidney Medicine 2020; 2(3): 227-30.
[86]
Ke C, Wang Y, Zeng X, Yang C, Hu Z. novel coronavirus disease (COVID-19) in hemodialysis patients: a report of two cases. Clin Biochem 2020; 81: 9-12.
[PMID: 32360479]
[87]
Goicoechea M, Cámara LAS, Macías N, de Morales AM, Rojas ÁG, Bascuñana A, et al. COVID-19: Clinical course and outcomes of 36 maintenance hemodialysis patients from a single center in Spain. Kidney Int 2020; 98(1): 37-4.
[http://dx.doi.org/10.1016/j.kint.2020.04.031]
[88]
Trujillo H, Caravaca-Fontán F, Sevillano Á, et al. SARS-CoV-2 infection in hospitalized patients with kidney disease. Kidney Int Rep 2020; 5(6): 905-9.
[http://dx.doi.org/10.1016/j.ekir.2020.04.024] [PMID: 32363253]
[89]
Wang R, Liao C, He H, et al. COVID-19 in hemodialysis patients: a report of 5 cases. Am J Kidney Dis 2020; 76(1): 141-3.
[http://dx.doi.org/10.1053/j.ajkd.2020.03.009] [PMID: 32240718]
[90]
Tang B, Li S, Xiong Y, Tian M, Yu J, Xu L, et al. Coronavirus disease 2019 (COVID-19) pneumonia in a hemodialysis patient. Kidney Medicine 2020; 23: 354-58.
[http://dx.doi.org/10.1016/j.xkme.2020.03.001]
[91]
Alalwan AA, Taher A, Alaradi AH. A Hemodialysis Patient with Severe COVID-19 Pneumonia. Cureus. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study 2020; 12(5)
[92]
Cruz MV, Bellorin O, Srivatana V, Afaneh C. Safety and Efficacy of Bedside Peritoneal Dialysis Catheter Placement in the COVID-19 Era: Initial Experience at a New York City Hospital [Internet]. Vol. 44. World J Surg 2020; 2464-70.
[http://dx.doi.org/10.1007/s00268-020-05600-4]
[93]
Ikizler TA, Kliger AS. Minimizing the risk of COVID-19 among patients on dialysis. Nat Rev Nephrol 2020; 16(6): 311-3.
[http://dx.doi.org/10.1038/s41581-020-0280-y] [PMID: 32249840]
[94]
Parapiboon W, Ponce D, Cullis B. Acute peritoneal dialysis in COVID-19. Perit Dial Int 2020; 40(4): 359-62.
[http://dx.doi.org/10.1177/0896860820931235] [PMID: 32552550]
[95]
Wilkie M, Davies S. Peritoneal Dialysis in the time of COVID-19. Perit Dial Int 2020; 40(4): 357-8.
[http://dx.doi.org/10.1177/0896860820921657] [PMID: 32312176]
[96]
Quintaliani G, Reboldi G, Di Napoli A, et al. Exposure to novel coronavirus in patients on renal replacement therapy during the exponential phase of COVID-19 pandemic: survey of the Italian Society of Nephrology. J Nephrol 2020; 33(4): 725-36.
[http://dx.doi.org/10.1007/s40620-020-00794-1] [PMID: 32621109]
[97]
Ronco C, Manani SM, Giuliani A, Tantillo I, Reis T, Brown EA. Remote patient management of peritoneal dialysis during COVID-19 pandemic. Perit Dial Int 2020; 40(4): 363-7.
[http://dx.doi.org/10.1177/0896860820927697] [PMID: 32597314]
[98]
Jacobs P, Glorieux G, Vanholder R. Interleukin/cytokine profiles in haemodialysis and in continuous peritoneal dialysis. Nephrol Dial Transplant 2004; 19(5): 41-5.
[99]
Kato S, Chmielewski M, Honda H, et al. Aspects of immune dysfunction in end-stage renal disease. Clin J Am Soc Nephrol 2008; 3(5): 1526-33.
[http://dx.doi.org/10.2215/CJN.00950208] [PMID: 18701615]
[100]
Farouk SS, Fiaccadori E, Cravedi P, Campbell KN. COVID-19 and the kidney: what we think we know so far and what we don’t. Journal of Nephrology 2020; 33: 1213-8.
[101]
Perna AF, Capolongo G, Trepiccione F, Simeoni M, Zacchia M, Ingrosso D. COVID-19, Low-Molecular-Weight Heparin, and Hemodialysis. Kidney Blood Press Res 2020; 45(3): 357-62.
[http://dx.doi.org/10.1159/000508460] [PMID: 32450560]
[102]
Wichmann D, Sperhake J-P, Lütgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med 2020; 173(4): 268-77.
[http://dx.doi.org/10.7326/M20-2003] [PMID: 32374815]
[103]
Kronbichler A, Gauckler P, Windpessl M, Il Shin J, Jha V, Rovin BH, et al. COVID-19: implications for immunosuppression in kidney disease and transplantation. Nature Reviews Nephrology 2020; 16(7): 365-7.
[104]
Bellini MI, Tortorici F, Capogni M. Kidney transplantation and the lockdown effect. Transplant International 202033(9): 1142-43.
[105]
de Vries APJ, Alwayn IPJ, Hoek RAS, van den Berg AP, Ultee FCW, Vogelaar SM, et al. Immediate impact of COVID-19 on transplant activity in the Netherlands. Transplant Immunology 2020; 61: 101304.
[106]
Ahn C, Amer H, Anglicheau D, et al. Global Transplantation COVID Report March 2020. Transplantation 2020.
[http://dx.doi.org/10.1097/TP.0000000000003258] [PMID: 32243281]
[107]
Loupy A, Aubert O, Reese PP, Bastien O, Bayer F, Jacquelinet C. Organ procurement and transplantation during the COVID-19 pandemic. Lancet 2020; 395(10237): e95-6.
[http://dx.doi.org/10.1016/S0140-6736(20)31040-0] [PMID: 32407668]
[108]
Aslam S, Mehra MR. COVID-19: Yet another coronavirus challenge in transplantation. J Heart Lung Transplant 2020; 39(5): 408-9.
[http://dx.doi.org/10.1016/j.healun.2020.03.007] [PMID: 32253113]
[109]
Akalin E, Azzi Y, Bartash R, et al. Covid-19 and Kidney Transplantation. N Engl J Med 2020; 382(25): 2475-7.
[http://dx.doi.org/10.1056/NEJMc2011117] [PMID: 32329975]
[110]
Alberici F, Delbarba E, Manenti C, Econimo L, Valerio F, Pola A, et al. A single center observational study of the clinical characteristics and short-term outcome of 20 kidney transplant patients admitted for SARS-CoV2 pneumonia. Kidney International 2020; 97(6): 1083-8.
[111]
Abrishami A, Samavat S, Behnam B, Arab-Ahmadi M, Nafar M, Sanei Taheri M. Clinical Course, Imaging Features, and Outcomes of COVID-19 in Kidney Transplant Recipients. Eur Urol 2020; 78(2): 281-6.
[http://dx.doi.org/10.1016/j.eururo.2020.04.064] [PMID: 32409114]
[112]
Zhang H, Chen Y, Yuan Q, Xia Q-X, Zeng X-P, Peng J-T, et al. Identification of Kidney Transplant Recipients with Coronavirus Disease 2019. European Urology 2019; 77(6): 742-.
[113]
Tschopp J, L'Huillier AG, Mombelli M, Mueller NJ, Khanna N, Garzoni C, et al. First experience of SARS-CoV-2 infections in solid organ transplant recipients in the Swiss Transplant Cohort Study. Am J Transplant 2020; 20(10): 2876-82.
[114]
Columbia University Kidney Transplant Program. Early Description of Coronavirus 2019 Disease in Kidney Transplant Recipients in New York. J Am Soc Nephrol 2020; 31(6): 1150-6.
[http://dx.doi.org/10.1681/ASN.2020030375] [PMID: 32317402]
[115]
Fernández-Ruiz M, Andrés A, Loinaz C, Delgado JF, López-Medrano F, San Juan R, et al. COVID-19 in solid organ transplant recipients: A single-center case series from Spain. Am J Transplant 2020; 20(10): 2876-82.
[116]
Romanelli A, Mascolo S. Immunosuppression drug-related and clinical manifestation of Coronavirus disease 2019: A therapeutical hypothesis. Am J Transplant 2020; 20(7): 1947-48.
[117]
Ju C-R, Lian Q-Y, Zhang J-H, Qiu T, Cai Z-T, Jiang W-Y, et al. Recommended prophylactic and management strategies for severe acute respiratory syndrome coronavirus 2 infection in transplant recipients. Chronic Diseases and Translational Medicine 2020; 6(2): 87-97.
[http://dx.doi.org/10.1016/j.cdtm.2020.02.003]
[118]
WHO Coronavirus Disease (COVID-19) Dashboard 2020.https://covid19.who.int/
[119]
CDC COVID-19 Response Team. Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) - United States 2020.https://www.cdc.gov/mmwr/volumes/69/wr/pdfs/mm6912e2-H.pdf
[120]
Protocolo Clínico e Diretrizes Terapêuticas. Imunossupressão no transplante renal 2014.http://conitec.gov.br/images/Protocolos/PCDT_Imunossupressao_no_Transplante_Renal.pdf
[121]
Ribeiro MPdA. Sandes-Freitas TVd, Sato KH, Ribeiro Junior MA, Silva-Junior HT, Medina-Pestana JO. Efeito da terapia de indução em pacientes sensibilizados: análise dos riscos e benefícios. Brazilian Journal of Nephrology 2016; 38: 82-9.
[122]
Felsenstein S, Herbert JA, McNamara PS, Hedrich CM. COVID-19: Immunology and treatment options. Clinical Immunology 2020.
[123]
Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. The Journal of Clinical Investigation 2019; 130(5): 2620-9.
[124]
Manuel O, Estabrook M. RNA respiratory viral infections in solid organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33(9): e13511.
[http://dx.doi.org/10.1111/ctr.13511] [PMID: 30817023]
[125]
Johnson RWG. Sirolimus (Rapamune) in renal transplantation. Current Opinion in Nephrology and Hypertension 2002; 11(6): 603-7.
[126]
Emoto C, Vinks AA, Fukuda T. Risk Assessment of Drug-Drug Interactions of Calcineurin Inhibitors Affecting Sirolimus Pharmacokinetics in Renal Transplant Patients. Ther Drug Monit 2016; 38(5): 607-13.
[http://dx.doi.org/10.1097/FTD.0000000000000314] [PMID: 27310200]
[127]
Zimmerman JJ. Exposure-response relationships and drug interactions of sirolimus. The AAPS Journal 2004; 6(4): 1-12.
[http://dx.doi.org/10.1208/aapsj060428]
[128]
Johnson KM, Belfer JJ, Peterson GR, Boelkins MR, Dumkow LE. Managing COVID-19 in renal transplant recipients: A review of recent literature and case supporting corticosteroid-sparing immunosuppression. Pharmacotherapy 2020; 40(6): 517-24.
[http://dx.doi.org/10.1002/phar.2410] [PMID: 32339304]
[129]
Coates PT, Wong G, Drueke T, Rovin B, Ronco P. Associate Editors ftEET. Early experience with COVID-19 in kidney transplantation. Kidney International 2020; 97(6): 1074-5.