Residual Stress Distribution and Microstructure Characterization of Particle Reinforced Titanium Matrix Composite After Shot Peening Treatment: A Review

Page: [194 - 222] Pages: 29

  • * (Excluding Mailing and Handling)

Abstract

Shot peening (SP) can modify the surface properties of titanium alloys and titanium matrix composites (TMCs). Based on our previous work in the last ten years, the microstructure and mechanical properties of SP treated Ti-6Al-4V (TC4) and (TiB+TiC)/TC4 are summarized in this review. The compressive residual stress (CRS) was formed on the surface after SP. At different SP intensities, the thickness of the surface CRS layer was improved with increasing SP intensities. During the stress peening, the CRS increased evidently, and the increment was proportional to the prestress. Besides, CRS’s thermal relaxation was investigated, which showed that the CRS in the whole deformation layer was relaxed. The relaxation mechanism could be explained by the Zener-Wert- Avrami model. The microstrain, the domain size, and the dislocation density of the peened layer were investigated using the Voigt method. The domain size of TC4 was smaller than the composite, and the microstrain of the TC4 was higher than the composite. The average dislocation density was increased after SP due to the existence of reinforcements. Utilizing the Rietveld method to analyze the microstructure after SP, the variations were similar to the Voigt method’s results. Also, the composite’s stability was higher than TC4 because of the existence of reinforcements. Hardness analysis revealed that the existence of reinforcements raised the hardness. In the peened layer, the surface’s hardness was maximum, and it decreased with the increase in depth. At the same temperature, the hardness of the TC4 was smaller than the composite counterpart. Finally, the strengthening mechanism of SP was discussed and summarized based on the above analysis.

Keywords: TC4 titanium alloy, (TiB+TiC)/TC4, shot peening, residual stress, X-ray diffraction, microstructure, strengthening mechanism.

Graphical Abstract

[1]
Tjong, S.C.; Ma, Z. Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. Rep., 2000, 29(3), 49-113.
[http://dx.doi.org/10.1016/S0927-796X(00)00024-3]
[2]
Zhang, L-C.; Xu, J.; Eckert, J. Thermal stability and crystallization kinetics of mechanically alloyed TiC/Ti-based metallic glass matrix composite. J. Appl. Phys., 2006, 100(3), 033514.
[http://dx.doi.org/10.1063/1.2234535]
[3]
Zhang, L-C.; Attar, H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: A review. Adv. Eng. Mater., 2016, 18(4), 463-475.
[http://dx.doi.org/10.1002/adem.201500419]
[4]
Zhang, L-C.; Chen, L-Y. A review on biomedical titanium alloys: Recent progress and prospect. Adv. Eng. Mater., 2019, 21(4), 1801215.
[http://dx.doi.org/10.1002/adem.201801215]
[5]
Xie, L.; Wang, L.; Wang, K.; Yin, G.; Fu, Y.; Zhang, D.; Lu, W.; Hua, L.; Zhang, L-C. TEM characterization on microstructure of Ti–6Al–4V/Ag nanocomposite formed by friction stir processing. Materialia, 2018, 3, 139-144.
[http://dx.doi.org/10.1016/j.mtla.2018.08.007]
[6]
Wang, L.; Xie, L.; Shen, P.; Fan, Q.; Wang, W.; Wang, K.; Lu, W.; Hua, L.; Zhang, L-C. Surface microstructure and mechanical properties of Ti-6Al-4V/Ag nanocomposite prepared by FSP. Mater. Charact., 2019, 153, 175-183.
[http://dx.doi.org/10.1016/j.matchar.2019.05.002]
[7]
Huang, L.; Geng, L. Discontinuously Reinforced Titanium Matrix Composites; Springer: Singapore, 2017.
[8]
Huang, L.; Geng, L.; Peng, H. Microstructurally inhomogeneous composites: is a homogeneous reinforcement distribution optimal? Prog. Mater. Sci., 2015, 71, 93-168.
[9]
Zhang, L.C.; Liu, Y.; Li, S.; Hao, Y. Additive manufacturing of titanium alloys by electron beam melting: A review. Adv. Eng. Mater., 2018, 20(5), 1700842.
[http://dx.doi.org/10.1002/adem.201700842]
[10]
Lu, W.; Zhang, D.; Zhang, X.; Wu, R.; Sakata, T.; Mori, H. HREM study of TiB/Ti interfaces in a TiB-TiC in situ composite. Scr. Mater., 2001, 44(7), 1069-1075.
[http://dx.doi.org/10.1016/S1359-6462(01)00663-7]
[11]
Wang, L.; Xie, L.; Lv, Y.; Zhang, L-C.; Chen, L.; Meng, Q.; Qu, J.; Zhang, D.; Lu, W. Microstructure evolution and superelastic behavior in Ti-35Nb-2Ta-3Zr alloy processed by friction stir processing. Acta Mater., 2017, 131, 499-510.
[http://dx.doi.org/10.1016/j.actamat.2017.03.079]
[12]
Saito, T.; Furuta, T.; Yamaguchi, T. Development of low cost titanium alloy matrix composite. Recent Advances in Titanium Metal Matrix Composites; Froes, F.H; Storer, J., Ed.; TMS: Warrendale, PA, 1995, pp. 33-44.
[13]
Tu, J.P.; Wang, N.Y.; Yang, Y.Z.; Qi, W.X.; Liu, F.; Zhang, X.B.; Lu, H.M.; Liu, M.S. Preparation and properties of TiB2 nanoparticle reinforced copper matrix composites by in situ processing. Mater. Lett., 2002, 52(6), 448-452.
[http://dx.doi.org/10.1016/S0167-577X(01)00442-6]
[14]
Tjong, S.C.; Ma, Z.Y.; Li, R.K.Y. The dynamic mechanical response of Al2O3 and TiB2 particulate reinforced aluminum matrix composites produced by in-situ reaction. Mater. Lett., 1999, 38(1), 39-44.
[http://dx.doi.org/10.1016/S0167-577X(98)00129-3]
[15]
Feng, G.; Yang, Y.; Luo, X.; Li, J.; Huang, B.; Chen, Y. Fatigue properties and fracture analysis of a SiC fiber-reinforced titanium matrix composite. Compos. B Eng, 2015, 68, 336-342.
[16]
Xiao, Z.; Yang, Y.; Luo, X.; Huang, B. Raman investigation of interfacial reaction product of SiCf/Ti43Al9V composite. J. Am. Ceram. Soc., 2015, 98(6), 1937-1941.
[http://dx.doi.org/10.1111/jace.13545]
[17]
Luo, X.; Zhu, Y.R.; Yang, Y.Q.; Huang, B.; Jin, N.; Xu, J.J.; Zhang, M.X. Effect of quenching on the matrix microstructure of SiCf/Ti–6Al–4V composites. J. Mater. Sci., 2018, 53(3), 1922-1932.
[http://dx.doi.org/10.1007/s10853-017-1671-8]
[18]
Schuh, C.; Dunand, D.C. Whisker alignment of Ti–6Al–4V/TiB composites during deformation by transformation superplasticity. Int. J. Plast., 2001, 17(3), 317-340.
[http://dx.doi.org/10.1016/S0749-6419(00)00038-3]
[19]
Koo, M.Y.; Park, J.S.; Park, M.K.; Kim, K.T.; Hong, S.H. Effect of aspect ratios of in situ formed TiB whiskers on the mechanical properties of TiBw/Ti–6Al–4V composites. Scr. Mater., 2012, 66(7), 487-490.
[http://dx.doi.org/10.1016/j.scriptamat.2011.12.024]
[20]
Wagoner Johnson, A.J.; Kumar, K.S.; Briant, C.L. Deformation mechanisms in Ti-6Al-4V/TiC composites. Metall. Mater. Trans., A Phys. Metall. Mater. Sci., 2003, 34(9), 1869.
[http://dx.doi.org/10.1007/s11661-003-0152-7]
[21]
Wei, Z.; Cao, L.; Wang, H.; Zou, C. Microstructure and mechanical properties of TiC/Ti‐6Al‐4V composites processed by in situ casting route. Mater. Sci. Technol., 2011, 27(8), 1321-1327.
[http://dx.doi.org/10.1179/026708310X12699498462922]
[22]
Rastegari, H.; Abbasi, S.M. Producing Ti–6Al–4V/TiC composite with superior properties by adding boron and thermo-mechanical processing. Mater. Sci. Eng. A, 2013, 564, 473-477.
[http://dx.doi.org/10.1016/j.msea.2012.12.011]
[23]
Rangaswamy, P.; Bourke, M.A.M.; Wright, P.K.; Jayaraman, N.; Kartzmark, E.; Roberts, J.A. The influence of thermal-mechanical processing on residual stresses in titanium matrix composites. Mater. Sci. Eng. A, 1997, 224(1), 200-209.
[http://dx.doi.org/10.1016/S0921-5093(96)10517-7]
[24]
Rangaswamy, P.; Prime, M.B.; Daymond, M.; Bourke, M.A.M.; Clausen, B.; Choo, H.; Jayaraman, N. Comparison of residual strains measured by X-ray and neutron diffraction in a titanium (Ti–6Al–4V) matrix composite. Mater. Sci. Eng. A, 1999, 259(2), 209-219.
[http://dx.doi.org/10.1016/S0921-5093(98)00893-4]
[25]
Saigal, A.; Kupperman, D.S.; Majumdar, S. Residual strains in titanium matrix high-temperature composites. Mater. Sci. Eng. A, 1992, 150(1), 59-65.
[http://dx.doi.org/10.1016/0921-5093(90)90008-Q]]
[26]
Huang, B.; Yang, Y.; Luo, H.; Yuan, M. Effects of the coating system and interfacial region thickness on the thermal residual stresses in SiCf/Ti–6Al–4V composites. Mater. Des., 2009, 30(3), 718-722.
[http://dx.doi.org/10.1016/j.matdes.2008.05.013]
[27]
Huang, B.; Yang, Y.; Luo, H.; Yuan, M.; Chen, Y. Effect of the interfacial reaction layer thickness on the thermal residual stresses in SiCf/Ti–6Al–4V composites. Mater. Sci. Eng. A, 2008, 489(1), 178-186.
[http://dx.doi.org/10.1016/j.msea.2008.01.007]
[28]
Gundel, D.B.; Warrier, S.G.; Miracle, D.B. The transverse tensile behavior of SiC-fiber/Ti–6Al–4V composites 2. Stress distribution and interface failure. Compos. Sci. Technol., 1999, 59(7), 1087-1096.
[http://dx.doi.org/10.1016/S0266-3538(98)00153-5]
[29]
Durodola, J.F.; Derby, B. An analysis of thermal residual stresses in Ti-6-4 alloy reinforced with SiC and Al2O3 fibres. Acta Metall. Mater., 1994, 42(5), 1525-1534.
[http://dx.doi.org/10.1016/0956-7151(94)90362-X]]
[30]
Prime, M.B.; Hill, M.R. Measurement of fiber-scale residual stress variation in a metal-matrix composite. J. Compos. Mater., 2004, 38(23), 2079-2095.
[http://dx.doi.org/10.1177/0021998304045584]
[31]
Fang, Q.; Sidky, P.S.; Hocking, G.M. Residual stresses in titanium matrix composites (TMC) in thermomechanical cycling using matrix etching. Mater. Sci. Eng. A, 2000, 288(2), 293-297.
[http://dx.doi.org/10.1016/S0921-5093(00)00844-3]]
[32]
Güngör, S. Residual stress measurements in fibre reinforced titanium alloy composites. Acta Mater., 2002, 50(8), 2053-2073.
[http://dx.doi.org/10.1016/S1359-6454(02)00050-2]
[33]
Xing, Y.M.; Tanaka, Y.; Kishimoto, S.; Shinya, N. Determining interfacial thermal residual stress in SiC/Ti-15-3 composites. Scr. Mater., 2003, 48(6), 701-706.
[http://dx.doi.org/10.1016/S1359-6462(02)00554-7]
[34]
Mao, X.N. Effect of internal stress of TiC particle reinforced titanium matrix composite on mechanical properties of materials; Northwestern Polytechnical University, 2004.
[35]
Mao, X.N.; Lian, Z.; Zhou, Y.; Ji, V.; Zhang, P.; Yu, L. Measurement of internal stresses of TiCp/titanium based composites after heat-treatment using XRD method. Rare Met. Mater. Eng., 2004, 33(4), 368-371.
[36]
Mao, X.N.; Ji, V.; Zhou, L.; Zhou, Y.G.; Zhang, P.S.; Yu, L.L. Internal stress effects on mechanical properties of TiCp particle reinforced titanium composites. Mater. Sci. Forum, 2005, 490-491, 564-570.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.490-491.564]
[37]
Sidhom, N.; Laamouri, A.; Fathallah, R.; Braham, C.; Lieurade, H.P. Fatigue strength improvement of 5083 H11 Al-alloy T-welded joints by shot peening: experimental characterization and predictive approach. Int. J. Fatigue, 2005, 27(7), 729-745.
[http://dx.doi.org/10.1016/j.ijfatigue.2005.02.001]
[38]
Al-Obaid, Y.F. The effect of shot peening on stress corrosion cracking behaviour of 2205-duplex stainless steel. Eng. Fract. Mech., 1995, 51(1), 19-25.
[http://dx.doi.org/10.1016/0013-7944(94)00213-2]
[39]
Geng, K.; Lu, W.; Yang, Z.; Zhang, D. In situ preparation of titanium matrix composites reinforced by TiB and Nd2O3. Mater. Lett., 2003, 57(24-25), 4054-4057.
[http://dx.doi.org/10.1016/S0167-577X(03)00264-7]
[40]
Lu, W.; Zhang, D.; Zhang, X.; Wu, R.; Sakata, T.; Mori, H. Microstructural characterization of TiB in in situ synthesized titanium matrix composites prepared by common casting technique. J. Alloys Compd., 2001, 327(1-2), 240-247.
[http://dx.doi.org/10.1016/S0925-8388(01)01445-1]
[41]
Ungár, T.; Borbély, A. The effect of dislocation contrast on X-ray line broadening: A new approach to line profile analysis. Appl. Phys. Lett., 1996, 69(21), 3173-3175.
[http://dx.doi.org/10.1063/1.117951]
[42]
Ungar, T.; Dragomir, I.; Revesz, A.; Borbely, A. The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice. J. Appl. Cryst., 1999, 32(5), 992-1002.
[http://dx.doi.org/10.1107/S0021889899009334]
[43]
Lutterotti, L.; Chateigner, D.; Ferrari, S.; Ricote, J. Texture, residual stress and structural analysis of thin films using a combined X-ray analysis. Thin Solid Films, 2004, 450(1), 34-41.
[http://dx.doi.org/10.1016/j.tsf.2003.10.150]
[44]
Kewei, X.; Naisai, H.; Jiawen, H. Microstructural effect on fatigue crack initiation for shot peened copper and brass. Acta Metall., 1994, 30(1), 29-34.
[45]
Sun, S.; Wang, M.; Wang, L.; Qin, J.; Lu, W.; Zhang, D. The influences of trace TiB and TiC on microstructure refinement and mechanical properties of in situ synthesized Ti matrix composite. Compos. B Eng, 2012, 43(8), 3334-3337.
[http://dx.doi.org/10.1016/j.compositesb.2012.01.075]
[46]
Xie, L.; Jiang, C.; Lu, W.; Zhan, K.; Chen, Y. Investigation on the residual stress and microstructure of (TiB + TiC)/Ti–6Al–4V composite after shot peening. Mater. Sci. Eng. A, 2011, 528(9), 3423-3427.
[http://dx.doi.org/10.1016/j.msea.2011.01.022]
[47]
Xie, L.; Wen, Y.; Wang, L.; Jiang, C.; Ji, V. Characterization on surface properties of Ti–6Al–4V after multiple shot peening treatments. J. Eng. Mater. Technol., 2016, 138(4), 041005-041005.
[http://dx.doi.org/10.1115/1.4033577]
[48]
Xie, L.; Jiang, C.; Lu, W.; Chen, Y.; Huang, J. Effect of stress peening on surface layer characteristics of (TiB + TiC)/Ti–6Al–4V composite. Mater. Des., 2012, 33, 64-68.
[http://dx.doi.org/10.1016/j.matdes.2011.07.010]
[49]
Xie, L.; Feng, Q.; Wen, Y.; Wang, L.; Jiang, C.; Lu, W. Surface microstructure characterization on shot peened (TiB+ TiC)/Ti–6Al–4V by Rietveld whole pattern fitting method. J. Mater. Res., 2016, 31(15), 2291-2301.
[http://dx.doi.org/10.1557/jmr.2016.256]
[50]
Withers, P.; Bhadeshia, H. Residual stress. Part 1–measurement techniques. Mater. Sci. Technol., 2001, 17(4), 355-365.
[http://dx.doi.org/10.1179/026708301101509980]
[51]
Vives, S.; Gaffet, E.; Meunier, C. X-ray diffraction line profile analysis of iron ball milled powders. Mater. Sci. Eng. A, 2004, 366(2), 229-238.
[http://dx.doi.org/10.1016/S0921-5093(03)00572-0]
[52]
Langford, J.I. A rapid method for analysing the breadths of diffraction and spectral lines using the Voigt function. J. Appl. Cryst., 1978, 11(1), 10-14.
[http://dx.doi.org/10.1107/S0021889878012601]
[53]
Young, R.A.; Wiles, D.B. Application of the Rietveld method for structure refinement with powder diffraction data. Powder Diffr., 1981, 24, 1-23.
[54]
Lutterotti, L.; Scardi, P. Simultaneous structure and size-strain refinement by the Rietveld method. J. Appl. Cryst., 1990, 23(4), 246-252.
[http://dx.doi.org/10.1107/S0021889890002382]
[55]
Popa, N.C. The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement. J. Appl. Cryst., 1998, 31(2), 176-180.
[http://dx.doi.org/10.1107/S0021889897009795]
[56]
Hill, R.J.; Madsen, I.C. Data collection strategies for constant wavelength rietveld analysis. Powder Diffr., 1987, 2(3), 146-162.
[http://dx.doi.org/10.1017/S088571560001263X]
[57]
Young, R.A.; Wiles, D.B. Profile shape functions in Rietveld refinements. J. Appl. Cryst., 1982, 15(4), 430-438.
[http://dx.doi.org/10.1107/S002188988201231X]
[58]
Williamson, G.K.; Smallman, R.E. III Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos. Mag., 1956, 1(1), 34-46.
[http://dx.doi.org/10.1080/14786435608238074]
[59]
Ungár, T.; Gubicza, J.; Hanák, P.; Alexandrov, I. Densities and character of dislocations and size-distribution of subgrains in deformed metals by X-ray diffraction profile analysis. Mater. Sci. Eng. A, 2001, 319-321, 274-278.
[http://dx.doi.org/10.1016/S0921-5093(01)01025-5]
[60]
Gubicza, J.; Ribárik, G.; Goren-Muginstein, G.R.; Rosen, A.R.; Ungár, T. The density and the character of dislocations in cubic and hexagonal polycrystals determined by X-ray diffraction. Mater. Sci. Eng. A, 2001, 309-310, 60-63.
[http://dx.doi.org/10.1016/S0921-5093(00)01666-X]
[61]
Xie, L.; Jiang, C.; Ji, V. Thermal relaxation of residual stresses in shot peened surface layer of (TiB+ TiC)/Ti–6Al–4V composite at elevated temperatures. Mater. Sci. Eng. A, 2011, 528(21), 6478-6483.
[http://dx.doi.org/10.1016/j.msea.2011.04.075]
[62]
Xie, L.; Jiang, C.; Lu, W.; Zhan, K.; Feng, Q.; Wu, X.; Wang, F. The recrystallization behavior of surface deformation layer of (TiB+TiC)/Ti–6Al–4V composite during isothermal annealing. Mater. Sci. Eng. A, 2011, 530, 239-243.
[http://dx.doi.org/10.1016/j.msea.2011.09.081]
[63]
Xie, L.; Wang, C.; Wang, L.; Wang, Z.; Jiang, C.; Lu, W.; Ji, V. Numerical analysis and experimental validation on residual stress distribution of titanium matrix composite after shot peening treatment. Mech. Mater., 2016, 99, 2-8.
[http://dx.doi.org/10.1016/j.mechmat.2016.05.005]
[64]
Liu, G.; Lu, J.; Lu, K. Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening. Mater. Sci. Eng. A, 2000, 286(1), 91-95.
[http://dx.doi.org/10.1016/S0921-5093(00)00686-9]
[65]
Zhang, H.W.; Hei, Z.K.; Liu, G.; Lu, J.; Lu, K. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Mater., 2003, 51(7), 1871-1881.
[http://dx.doi.org/10.1016/S1359-6454(02)00594-3]
[66]
Lin, Y.; Lu, J.; Wang, L.; Xu, T.; Xue, Q. Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel. Acta Mater., 2006, 54(20), 5599-5605.
[http://dx.doi.org/10.1016/j.actamat.2006.08.014]
[67]
Luan, W.; Jiang, C.; Ji, V.; Chen, Y.; Wang, H. Investigation for warm peening of TiB2/Al composite using X-ray diffraction. Mater. Sci. Eng. A, 2008, 497(1-2), 374-377.
[http://dx.doi.org/10.1016/j.msea.2008.07.016]
[68]
Luan, W.; Jiang, C.; Ji, V. Surface layer characteristics of TiB2/Al composite by stress peening. Mater. Trans., 2009, 50(4), 837-840.
[http://dx.doi.org/10.2320/matertrans.MRA2008391]
[69]
Hammersley, G.; Hackel, L.A.; Harris, F. Surface prestressing to improve fatigue strength of components by laser shot peening. Opt. Lasers Eng., 2000, 34(4), 327-337.
[http://dx.doi.org/10.1016/S0143-8166(00)00083-X]
[70]
Menig, R.; Schulze, V.; Vöhringer, O. Optimized warm peening of the quenched and tempered steel AISI 4140. Mater. Sci. Eng. A, 2002, 335(1-2), 198-206.
[http://dx.doi.org/10.1016/S0921-5093(01)01915-3]
[71]
Evans, A.; Kim, S.B.; Shackleton, J.; Bruno, G.; Preuss, M.; Withers, P.J. Relaxation of residual stress in shot peened Udimet 720Li under high temperature isothermal fatigue. Int. J. Fatigue, 2005, 27(10-12), 1530-1534.
[http://dx.doi.org/10.1016/j.ijfatigue.2005.07.027]
[72]
Lee, H.; Mall, S. Stress relaxation behavior of shot-peened Ti–6Al–4V under fretting fatigue at elevated temperature. Mater. Sci. Eng. A, 2004, 366(2), 412-420.
[http://dx.doi.org/10.1016/j.msea.2003.09.064]
[73]
Nikitin, I.; Altenberger, I.; Maier, H.J.; Scholtes, B. Mechanical and thermal stability of mechanically induced near-surface nanostructures. Mater. Sci. Eng. A, 2005, 403(1-2), 318-327.
[http://dx.doi.org/10.1016/j.msea.2005.05.030]
[74]
Juijerm, P.; Altenberger, I. Residual stress relaxation of deep-rolled Al–Mg–Si–Cu alloy during cyclic loading at elevated temperatures. Scr. Mater., 2006, 55(12), 1111-1114.
[http://dx.doi.org/10.1016/j.scriptamat.2006.08.047]
[75]
Nikitin, I.; Besel, M. Residual stress relaxation of deep-rolled austenitic steel. Scr. Mater., 2008, 58(3), 239-242.
[http://dx.doi.org/10.1016/j.scriptamat.2007.09.045]
[76]
Berger, M.C.; Gregory, J.K. Residual stress relaxation in shot peened Timetal 21s. Mater. Sci. Eng. A, 1999, 263(2), 200-204.
[http://dx.doi.org/10.1016/S0921-5093(98)01165-4]
[77]
Feng, B.; Mao, X.; Yang, G.; Yu, L.; Wu, X. Residual stress field and thermal relaxation behavior of shot-peened TC4-DT titanium alloy. Mater. Sci. Eng. A, 2009, 512(1), 105-108.
[http://dx.doi.org/10.1016/j.msea.2009.01.028]
[78]
Zhang, X.; Liu, D. Effect of shot peening on fretting fatigue of Ti811 alloy at elevated temperature. Int. J. Fatigue, 2009, 31(5), 889-893.
[http://dx.doi.org/10.1016/j.ijfatigue.2008.10.004]
[79]
Gao, Y. Residual compressive stress field in TC18 ultra-high strength titanium alloy by shot peening. Rare Met. Mater. Eng., 2004, 33(11), 1209-1212.
[80]
Juijerm, P.; Altenberger, I.; Scholtes, B. Influence of ageing on cyclic deformation behavior and residual stress relaxation of deep rolled as-quenched aluminium alloy AA6110. Int. J. Fatigue, 2007, 29(7), 1374-1382.
[http://dx.doi.org/10.1016/j.ijfatigue.2006.10.008]
[81]
Perez, R.A.; Dyment, F.; Nakajima, H. Diffusion in α-Ti and Zr. Mater. Trans., 2003, 44(1), 2-13.
[http://dx.doi.org/10.2320/matertrans.44.2]
[82]
Wang, M.; Lu, W.; Qin, J.; Zhang, D.; Ji, B.; Zhu, F. Superplastic behavior of in situ synthesized (TiB+ TiC)/Ti matrix composite. Scr. Mater., 2005, 53(2), 265-270.
[http://dx.doi.org/10.1016/j.scriptamat.2005.01.049]
[83]
De Reca, N.E.W.; Libanati, C.M.y. Autodifusion de titanio beta y hafnio beta. Acta Metall., 1968, 16(10), 1297-1305.
[http://dx.doi.org/10.1016/0001-6160(68)90010-2]
[84]
Humphreys, F.J.; Kalu, P.N. Dislocation-particle interactions during high temperature deformation of two-phase aluminium alloys. Acta Metall., 1987, 35(12), 2815-2829.
[http://dx.doi.org/10.1016/0001-6160(87)90281-1]
[85]
Roland, T.; Retraint, D.; Lu, K.; Lu, J. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scr. Mater., 2006, 54(11), 1949-1954.
[http://dx.doi.org/10.1016/j.scriptamat.2006.01.049]
[86]
Roland, T.; Retraint, D.; Lu, K.; Lu, J. Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability. Mater. Sci. Eng. A, 2007, 445-446, 281-288.
[http://dx.doi.org/10.1016/j.msea.2006.09.041]
[87]
Xie, L.; Jiang, C.; Lu, W.; Feng, Q.; Wu, X. Investigation on the surface layer characteristics of shot peened titanium matrix composite utilizing X-ray diffraction. Surf. Coat. Tech., 2011, 206(2), 511-516.
[http://dx.doi.org/10.1016/j.surfcoat.2011.07.070]
[88]
Kril, C.E.; Birringer, R. Estimating grain-size distributions in nanocrystalline materials from X-ray diffraction profile analysis. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop., 1998, 77(3), 621-640.
[http://dx.doi.org/10.1080/01418619808224072]
[89]
Langford, J.I.; Louer, D.; Scardi, P. Effect of a crystallite size distribution on X-ray diffraction line profiles and whole-powder-pattern fitting. J. Appl. Cryst., 2000, 33(3 Part 2), 964-974.
[http://dx.doi.org/10.1107/S002188980000460X]
[90]
Popa, N.C.; Balzar, D. An analytical approximation for a size-broadened profile given by the lognormal and gamma distributions. J. Appl. Cryst., 2002, 35(3), 338-346.
[http://dx.doi.org/10.1107/S0021889802004156]
[91]
Pan, J.; Tong, J.; Tian, M. Fundamentals of Materials Science; Tsinghua University Press: Beijing, 1998.
[92]
Jiang, C.H.; Wang, D.Z.; Yao, C.K. Relaxation behavior of thermal stress in a SiCw/Al composite. J. Mater. Sci. Lett., 2000, 19(14), 1285-1286.
[http://dx.doi.org/10.1023/A:1006794018451]
[93]
Ferry, M.; Munroe, P.R. Recrystallization kinetics and final grain size in a cold rolled particulate reinforced Al-based MMC. Compos., Part A Appl. Sci. Manuf., 2004, 35(9), 1017-1025.
[http://dx.doi.org/10.1016/j.compositesa.2004.03.014]
[94]
Cavaliere, P.; Evangelista, E. Isothermal forging of metal matrix composites: Recrystallization behaviour by means of deformation efficiency. Compos. Sci. Technol., 2006, 66(2), 357-362.
[http://dx.doi.org/10.1016/j.compscitech.2005.04.047]
[95]
Poudens, A.; Bacroix, B. Recrystallization textures in AL-SiC metal matrix composites. Scr. Mater., 1996, 34(6), 847-855.
[http://dx.doi.org/10.1016/1359-6462(95)00613-3]
[96]
Xie, L.; Jiang, C.; Lu, W. The influence of shot peening on the surface properties of (TiB+ TiC)/Ti–6Al–4V. Appl. Surf. Sci., 2013, 280, 981-988.
[http://dx.doi.org/10.1016/j.apsusc.2013.05.135]
[97]
Xie, L.; Zhou, Q.; Jin, X.; Wang, Z.; Jiang, C.; Lu, W.; Wang, J.; Jane Wang, Q. Effect of reinforcements on rolling contact fatigue behaviors of titanium matrix composite (TiB + TiC)/Ti–6Al–4V. Int. J. Fatigue, 2014, 66, 127-137.
[http://dx.doi.org/10.1016/j.ijfatigue.2014.03.019]
[98]
Metrology, I. The scanning probe image processor. SPIPTM, user’s and reference guide version 4.2, 2002.
[99]
Wang, Z.; Chen, Y.; Jiang, C. Thermal relaxation behavior of residual stress in laser hardened 17-4PH steel after shot peening treatment. Appl. Surf. Sci., 2011, 257(23), 9830-9835.
[http://dx.doi.org/10.1016/j.apsusc.2011.06.032]
[100]
Liu, J.; Umemoto, M.; Todaka, Y.; Tsuchiya, K. Formation of a nanocrystalline surface layer on steels by air blast shot peening. J. Mater. Sci., 2007, 42(18), 7716-7720.
[http://dx.doi.org/10.1007/s10853-007-1659-x]
[101]
Mittemeijer, E.J. Fundamentals of Materials Science; Springer Berlin Heidelberg, 2010.
[102]
Bailey, J.E.; Hirsch, P.B. The recrystallization process in some polycrystalline metals. Proc. R. Soc. Lond. A Math. Phys. Sci., 1962, 267, 11-30.
[http://dx.doi.org/10.1098/rspa.1962.0080]
[103]
Wang, M-M.; Lu, W-J.; Qin, J-N.; Zhang, D.; Ji, B.; Zhu, F. The effect of reinforcements on superplasticity of in situ synthesized (TiB+TiC)/Ti matrix composite. Scr. Mater., 2006, 54(11), 1955-1959.
[http://dx.doi.org/10.1016/j.scriptamat.2006.01.044]
[104]
Ferry, M.; Munroe, P.R. Enhanced recovery in a particulate-reinforced aluminium composite. Mater. Sci. Eng. A, 2003, 358(1), 142-151.
[http://dx.doi.org/10.1016/S0921-5093(03)00333-2]
[105]
Zhang, D-Q.; He, J-W. Residual stress analysis by X-ray diffraction and its functions; Xi'an Jiao Tong University Press: Xi'an, China, 1999.
[106]
Xie, L.; Wen, Y.; Zhan, K.; Wang, L.; Jiang, C.; Ji, V. Characterization on surface mechanical properties of Ti–6Al–4V after shot peening. J. Alloys Compd., 2016, 666, 65-70.
[http://dx.doi.org/10.1016/j.jallcom.2016.01.119]
[107]
Luan, W.; Jiang, C.; Wang, H.; Panardie, J.; Chen, D. XRD investigation of thermostability of TiB2/Al deformation layer introduced by shot peening. Mater. Sci. Eng. A, 2008, 480(1), 1-4.
[http://dx.doi.org/10.1016/j.msea.2007.07.004]