Syntheses, Biological and Material Significance of Dihydro[1,3]oxazine Derivatives: An Overview

Page: [133 - 174] Pages: 42

  • * (Excluding Mailing and Handling)

Abstract

Dihydro[1,3]oxazines are an important class of heterocyclic compounds having a wide range of biological and material properties. Medicinally, they possess diverse pharmacological activities, such as bactericidal, fungicidal, microbiocidal, antitumor, anti-HIV, and anti-inflammatory agents. Apart from being biologically active, they are materially useful for making polybenzoxazines. Polybenzoxazines are a novel class of non-conjugated thermosetting materials that belong to the family of addition-curable phenolic resins. They have lucrative properties such as small shrinkage in curing, low water absorption, good thermal stability, and there is no release of volatile materials during cure, and no need for catalyst and inexpensive raw materials. Further, the flexibility in designing a monomer gives polybenzoxazines an additional edge over ordinary phenolic resins. This review briefly describes the syntheses, including eco-friendly strategies, and biological and material significance of various dihydro[1,3]oxazine derivatives.

Keywords: Biological activity, dihydro[1, 3]oxazines, eco-friendly protocol, naphthoxazines, phenolic resins, polybenzoxazines, syntheses.

Graphical Abstract

[1]
Chylińska, J.B.; Janowiec, M.; Urbański, T. Antibacterial activity of dihydro-1,3-oxazine derivatives condensed with aromatic rings in positions 5,6. Br. J. Pharmacol., 1971, 43(3), 649-657. [http://dx.doi.org/10.1111/j.1476-5381.1971.tb07194.x]. [PMID: 5003353].
[2]
Latif, N.; Mishriky, N.; Assad, F.M. Carbonyl and thiocarbonyl compounds. XIX. Intramolecular cyclization of (2-nitroetheny1)aryl N-arylcarbamates: synthesis of newer series of 3,4-dihydro-2H-1,3-oxazin-2-ones and their antimicrobial activities. Aust. J. Chem., 1982, 35, 1037-1043. [http://dx.doi.org/10.1071/CH9821037].
[3]
Mathew, B.P.; Kumar, A.; Sharma, S.; Shukla, P.K.; Nath, M. An eco-friendly synthesis and antimicrobial activities of dihydro-2H-benzo- and naphtho-1,3-oxazine derivatives. Eur. J. Med. Chem., 2010, 45(4), 1502-1507. [http://dx.doi.org/10.1016/j.ejmech.2009.12.058]. [PMID: 20116901].
[4]
Xiao-ping, L.; Ying, W.; Hui-yu, L.; Ai-hua, S.; Wah-keung, T.K.; Ting-xia, D.T.; Chun, H. Synthesis and anti-inflammatory activity of a novel series of 9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one derivatives. Chem. Res. Chin. Univ., 2010, 26, 268.
[5]
Kuehne, M.E.; Konopka, E.A. Dihydro-1,3-oxazines as antitumor agents. J. Med. Pharm. Chem., 1962, 5, 257-280. [http://dx.doi.org/10.1021/jm01237a005]. [PMID: 14051903].
[6]
Kuehne, M.E.; Konopka, E.A.; Lambert, B.F. Steroidal dihydro-1,3-oxazines as antitumor agents. J. Med. Pharm. Chem., 1962, 5, 281-296. [http://dx.doi.org/10.1021/jm01237a006]. [PMID: 14051904].
[7]
Chylinska, J.B.; Urbanski, T.; Mordarski, M. Dihydro-1,3-oxazine derivatives and their antitumor activity. J. Med. Chem., 1963, 6, 484-487. [http://dx.doi.org/10.1021/jm00341a004]. [PMID: 14173566].
[8]
Hsu, L.Y.; Lin, C.H. Synthesis and biological evaluation of 3-hydroxymethylpyrimido[1,6-c][1,3]oxazine derivatives. Heterocycles, 1996, 43, 2687-2699. [http://dx.doi.org/10.3987/COM-96-7607].
[9]
Pedersen, O.S.; Pedersen, E.B. The flourishing syntheses of non-nucleoside reverse transcriptase inhibitors. Synthesis, 2000, 2000(4), 479-495. [http://dx.doi.org/10.1055/s-2000-6357].
[10]
Cocuzza, A.J.; Chidester, D.R.; Cordova, B.C.; Jeffrey, S.; Parsons, R.L.; Bacheler, L.T.; Erickson-Viitanen, S.; Trainor, G.L.; Ko, S.S. Synthesis and evaluation of efavirenz (Sustiva) analogues as HIV-1 reverse transcriptase inhibitors: replacement of the cyclopropylacetylene side chain. Bioorg. Med. Chem. Lett., 2001, 11(9), 1177-1179. [http://dx.doi.org/10.1016/S0960-894X(01)00192-5]. [PMID: 11354371].
[11]
Phongtamrug, S.; Pulpoka, B.; Chirachanchai, S. Inclusion compounds formed from N,N-bis(2-hydroxybenzyl)alkylamine derivatives and transition metal ions via molecular assembly. Supramol. Chem., 2004, 16, 269-278. [http://dx.doi.org/10.1080/1061027042000204029].
[12]
Nair, C.P.R. Advances in addition-cure phenolic resins. Prog. Polym. Sci., 2004, 29, 401-498. [http://dx.doi.org/10.1016/j.progpolymsci.2004.01.004].
[13]
Kasapoglu, F.; Cianga, I.; Yagci, Y.; Takeichi, T. Photoinitiated cationic polymerization of monofunctional benzoxazine. J. Polym. Sci. A Polym. Chem., 2003, 41, 3320-3328. [http://dx.doi.org/10.1002/pola.10913].
[14]
Agag, T.; Takeichi, T. Synthesis and characterization of novel benzoxazine monomers containing allyl groups and their high performance thermosets. Macromolecules, 2003, 36, 6010-6017. [http://dx.doi.org/10.1021/ma021775q].
[15]
Liu, Y.L.; Yu, J.M. Cocuring behaviors of benzoxazine and maleimide derivatives and the thermal properties of the cured products. J. Polym. Sci. A Polym. Chem., 2006, 44, 1890-1899. [http://dx.doi.org/10.1002/pola.21290].
[16]
Ning, X.; Ishida, H. Phenolic materials via ring-opening polymerization: synthesis and characterization of bisphenol-A based benzoxazines and their polymers. J. Polym. Sci. A Polym. Chem., 1994, 32, 1121-1129. [http://dx.doi.org/10.1002/pola.1994.080320614].
[17]
Woodgate, P.D.; Homer, G.M.; Maynard, N.P.; Rickard, C.E.F. Synthesis of dioxazaborocines from N-substituted-bis(2-hydroxyaryl)aminomethyl-amines. J. Organomet. Chem., 1999, 592, 180-193. [http://dx.doi.org/10.1016/S0022-328X(99)00510-0].
[18]
Burke, W.J.; Bishop, J.L.; Glennie, E.L.M.; Jr, W.N.B. A new aminoalkylation reaction. Condensation of phenols with dihydro-1,3-oxazines. J. Org. Chem., 1965, 30, 3423-3427. [http://dx.doi.org/10.1021/jo01021a037].
[19]
Kim, M.; Kim, H.; Kim, H.; Chin, J. Synthesis of enantiopure mixed alkyl-aryl vicinal diamines by the Diaza-Cope rearrangement: a synthesis of (+)-CP-99,994. J. Org. Chem., 2017, 82(23), 12050-12058. [http://dx.doi.org/10.1021/acs.joc.7b01751]. [PMID: 29027460].
[20]
Lyle, R.E.; Walsh, D.A. Amine-boranes: II. A novel synthesis of the 1,3,2-benzoxazaborine ring system. J. Organomet. Chem., 1974, 67, 363-367. [http://dx.doi.org/10.1016/S0022-328X(00)88181-4].
[21]
Chirachanchai, S.; Laobuthee, A.; Phongtamburg, S.; Siripatanasarakit, W.; Ishida, H. A novel ion extraction material using host-guest properties of oligobenzoxazine local structure and benzoxazine monomer molecular assembly. J. Appl. Polym. Sci., 2000, 77, 2561-2568. [http://dx.doi.org/10.1002/1097-4628(20000919)77:12<2561:AID-APP10>3.0.CO;2-U].
[22]
Kumar, K.S.S.; Nair, C.P.R. Polybenzoxazines: Chemistry and Properties; Smithers Rapra Technology, 2010.
[23]
Liu, X.; Gu, Y. Study on the volumetric change during ring-opening polymerization of benzoxazines. Acta Polym. Sinica, 2000, 5, 612.
[24]
Leung, D.K.; Andrews, P.R.; Craik, D.J.; Iskander, M.N.; Winkler, D.A. Design, synthesis and testing of transition state analogues of alanine racemase as antibacterials. Aust. J. Chem., 1985, 38, 297. [http://dx.doi.org/10.1071/CH9850297].
[25]
Walker, J.F. Formaldehyde; Reinhold Publishing: New York, 1964, pp. 552-569.
[26]
Jensen, N.P.; Chang, M.N. Hydroxybenzylamino-aryl compounds, process for preparing and pharmaceutical compositions containing the same., European Patent EP0081782A1, June 22,. 1983.
[27]
Takeuchi, S.; Kochi, M.; Sakaguchi, K.; Nakagawa, K.; Mizutani, T. Benzaldehyde as a carcinostatic principle in figs. Agric. Biol. Chem., 1978, 42, 1449-1451.
[http://dx.doi.org/10.1080/00021369.1978.10863185]
[28]
Kochi, M.; Takeuchi, S.; Mizutani, T.; Mochizuki, K.; Matsumoto, Y.; Saito, Y. Antitumor activity of benzaldehyde. Cancer Treat. Rep., 1980, 64(1), 21-23.
[PMID: 6929727]
[29]
Taetle, R.; Howell, S.B. Preclinical re-evaluation of benzaldehyde as a chemotherapeutic agent. Cancer Treat. Rep., 1983, 67(6), 561-566.
[PMID: 6861162]
[30]
Moloney, G.P.; Craik, D.J.; Iskander, M.N. Carbon-13 NMR spectral analysis of oxazine derivatives and precursors. Magn. Reson. Chem., 1990, 28, 824-829. [http://dx.doi.org/10.1002/mrc.1260280917].
[31]
Chylinska, J.B.; Urbanski, T. The stereochemistry of some dihydro-1,3-oxazine derivatives. J. Heterocycl. Chem., 1964, 1, 93-95. [http://dx.doi.org/10.1002/jhet.5570010208].
[32]
Andrews, P.R.; Cody, V.; Gulbis, J.M.; Iskander, M.N.; Jeffrey, A.I.; Mackay, M.F.; Paola, C.D.; Sadek, M. Structure and conformations of GABA-transaminase inhibitors. II. Transition-state analogs. Aust. J. Chem., 1986, 39, 1575-1585. [http://dx.doi.org/10.1071/CH9861575].
[33]
Liu, X.; Gu, Y. Effects of molecular structure parameters on ring-opening reaction of benzoxazines. Sci. China B Chem., 2001, 44, 552-560. [http://dx.doi.org/10.1007/BF02880686].
[34]
Moloney, G.P.; Craik, D.J.; Iskander, M.N. Qualitative analysis of the stability of the oxazine ring of various benzoxazine and pyridooxazine derivatives with proton nuclear magnetic resonance spectroscopy. J. Pharm. Sci., 1992, 81(7), 692-697. [http://dx.doi.org/10.1002/jps.2600810721]. [PMID: 1403706].
[35]
Tzschoppe, D.; Vebrel, J.; Schwob, J.M.; Roche, M.; Riess, G. Réactivité des Dihydro-3,4-2H-benzoxazines-1,3 Avec les Amines Mise en Évidence D’Un Equilibre Impliquant L’Ouverture de L’Hétérocycle. Bull. Soc. Chim. Belg., 1986, 95, 45-48.
[36]
Burke, W.J. 3,4-Dihydro-1,3-2H-benzoxazines., Reaction of p-substituted phenols with N,N-dimethyl-olamines. J. Am. Chem. Soc., 1949, 71, 609-612. [http://dx.doi.org/10.1021/ja01170a063].
[37]
Burke, W.J.; Weatherbee, C. 3,4-Dihydro-1,3-2H-benzoxazines. Reaction of polyhydroxybenzenes with N-methyl-olamines. J. Am. Chem. Soc., 1950, 72, 4691-4694. [http://dx.doi.org/10.1021/ja01166a094].
[38]
Burke, W.J.; Hammer, C.R.; Weatherbee, C. Bis-m-oxazines from hydroquinone. J. Org. Chem., 1961, 26, 4403-4407. [http://dx.doi.org/10.1021/jo01069a053].
[39]
Fields, D.L.; Miller, J.B.; Reynolds, D.D. Mannich-type condensation of hydroquinone, formaldehyde and primary amines. J. Org. Chem., 1962, 27, 2749-2753. [http://dx.doi.org/10.1021/jo01055a011].
[40]
Burke, W.J.; Kolbezen, M.J.; Stephens, C.W. Condensation of naphthols with formaldehyde and primary amines. J. Am. Chem. Soc., 1952, 74, 3601-3605. [http://dx.doi.org/10.1021/ja01134a039].
[41]
Burke, W.J.; Reynolds, R.J. Condensation of 2-naphthol with acetaldehyde ammonia. J. Am. Chem. Soc., 1954, 76, 1291-1293. [http://dx.doi.org/10.1021/ja01634a027].
[42]
Burke, W.J.; Murdock, K.C.; Ec, G. Condensation of hydroxyaromatic compounds with formaldehyde and primary aromatic amines. J. Am. Chem. Soc., 1954, 76, 1677-1679. [http://dx.doi.org/10.1021/ja01635a065].
[43]
Desai, R.B. Mannich reaction with hydroxycoumarins. J. Org. Chem., 1961, 26, 5251-5253. [http://dx.doi.org/10.1021/jo01070a543].
[44]
Schmidt, C.; Thondorf, I.; Kolehmainen, E.; Bohmer, V.; Vogt, W.; Rissanen, K. One-step synthesis of resorcarene dimers composed of two tetra-benzoxazine units. Tetrahedron Lett., 1998, 39, 8833-8836. [http://dx.doi.org/10.1016/S0040-4039(98)02046-2].
[45]
Higham, C.S.; Dowling, D.P.; Shaw, J.L.; Cetin, A.; Zieglerb, C.J.; Farrell, J.R. Multidentate aminophenol ligands prepared with Mannich condensations. Tetrahedron Lett., 2006, 47, 4419-4423. [http://dx.doi.org/10.1016/j.tetlet.2006.04.077].
[46]
Agag, T.; Takeichi, T. High-molecular-weight AB-type benzoxazines as new precursors for high-performance thermosets. J. Polym. Sci. A Polym. Chem., 2007, 45, 1878-1888. [http://dx.doi.org/10.1002/pola.21953].
[47]
Burke, W.J.; Smith, R.P.; Weatherbee, C.N. N-bis-(hydroxybenzyl)-amines: synthesis from phenols, formaldehyde and primary amines. J. Am. Chem. Soc., 1952, 74, 602-605. [http://dx.doi.org/10.1021/ja01123a007].
[48]
Shozo, M.; Naoki, K. Production of 3-aryldihydro-1,3-benzoxazine compound. Jpn. Patent JP2000169456A, June 20,. 2000.
[49]
Burke, W.J.; Glennie, E.L.M.; Weatherbee, C. Condensation of halophenols with formaldehyde and primary amines. J. Org. Chem., 1964, 29, 909-912. [http://dx.doi.org/10.1021/jo01027a038].
[50]
Horswill, E.C.; Lindsay, D.A.; Ingold, K.U. Condensation of some substituted phenols and anilines with formaldehyde. Formation of 2-phenyl-1,3-benzoxazines and N-(2-hydroxybenzy1)-anilines. Can. J. Chem., 1970, 48, 579-583. [http://dx.doi.org/10.1139/v70-095].
[51]
Brownstein, S.; Horswill, E.C.; Ingold, K.U. Barriers to rotation in ortho-alkylphenyl substituted 1,3-benzoxazines. Can. J. Chem., 1969, 47, 3243-3246. [http://dx.doi.org/10.1139/v69-532].
[52]
Brunovska, Z.; Liu, J.P.; Ishida, H. 1,3,5-Triphenylhexahydro-1,3,5-triazine – active intermediate and precursor in the novel synthesis of benzoxazine monomers and oligomers. Macromol. Chem. Phys., 1999, 200, 1745-1752. [http://dx.doi.org/10.1002/(SICI)1521-3935(19990701)200:7<1745:AID-MACP1745>3.0.CO;2-D].
[53]
Ishida, H. Process for preparation of benzoxazine compounds in solventless systems. U.S. Patent 5,543,516, August 6,. 1996.
[54]
Shinde, P.V.; Kategaonkar, A.H.; Shingate, B.B.; Shingare, M.S. Polyethylene glycol (PEG) mediated expeditious synthetic route to 1,3-oxazine derivatives. Chin. Chem. Lett., 2011, 22, 915-918. [http://dx.doi.org/10.1016/j.cclet.2011.01.011].
[55]
Mathew, B.P.; Nath, M. One-pot three-component synthesis of dihydrobenzo- and naphtho[e]-1,3-oxazines in water. J. Heterocycl. Chem., 2009, 46, 1003-1006. [http://dx.doi.org/10.1002/jhet.147].
[56]
Calo, E.; Maffezzoli, A.; Mele, G.; Martina, F.; Mazzetto, S.E.; Tarzia, A.; Stifani, C. Synthesis of novel cardanol-based benzoxazine monomer and environmentally sustain-able production of polymers and bio-composites. Green Chem., 2007, 9, 754-759. [http://dx.doi.org/10.1039/b617180j].
[57]
Kategaonkar, A.H.; Sonar, S.S.; Shelke, K.F.; Shingate, B.B.; Shingare, M.S. Ionic liquid catalyzed multicomponent synthesis of 3,4-dihydro-3-substituted-2H-naphtho[2,1-e][1,3]oxazine derivatives. Org. Commun., 2010, 3, 1.
[58]
Mukhopadhyay, C.; Rana, S.; Butcher, R.J. An ionic liquid [secbmim]+Br- as a “dual reagent catalyst” for the multicomponent synthesis of (quinolinyl- and isoquinolinyl- amino) alkylnaphthols, their bis- analogs and a facile route to naphthoxazines. ARKIVOC, 2010, 2010, 291-304.
[59]
Tumtin, S.; Phucho, I.T.; Nongpiur, A.; Nongrum, R.; Vishwakarma, J.N.; Myrboh, B.; Nongkhlaw, R.L. One pot synthesis of [1,3]-oxazine and [1,3]-thiazine derivatives under thermal and microwave conditions. J. Heterocycl. Chem., 2010, 47, 125.
[60]
Gupta, N.; Sharma, S.; Raina, A.; Dingroo, N.A.; Bhushan, S.; Sangwan, P.L. Synthesis and anti-proliferative evaluation of novel 3,4-dihydro-2H-1,3-oxazine derivatives of bakuchiol. RSC Advances, 2016, 6, 106150-106159. [http://dx.doi.org/10.1039/C6RA23757F].
[61]
Bikas, R.; Emami, M.; Lepokura, K.S.; Noshiranzadeh, N. Preparing Mn(III) salen-type Schiff’s base complexes using 1,3-oxazines obtained by Mannich condensation: towards removing ortho-hydroxyaldehydes. New J. Chem., 2017, 41, 9710-9717. [http://dx.doi.org/10.1039/C7NJ01562C].
[62]
Khanna, G.; Saluja, P.; Khurana, J.M. A facile and convenient approach for the synthesis of novel sesamol-oxazine and quinoline-oxazine hybrids. Aust. J. Chem., 2017, 70, 1285-1290. [http://dx.doi.org/10.1071/CH17272].
[63]
Mathew, B.P.; Aggarwal, N.; Kumar, R.; Nath, M. Synthesis and anti-bacterial activity of novel dihydrochromeno[8,7-e][1,3]oxazine-2(8H)-thiones. J. Sulfur Chem., 2014, 35, 31-41. [http://dx.doi.org/10.1080/17415993.2013.769543].
[64]
Mathew, B.P.; Tandon, R.; Batra, N.; Agarwal, D.; Bose, M.; Gupta, R.D.; Nath, M. Environmentally benign synthesis and anti-mycobacterial evaluation of 9,10-dihydro-4-methyl-chromeno[8,7-e][1,3]oxazin-2(8H)-one derivatives. Indian J. Chem., 2017, 56B, 1237-1242.
[65]
Mathew, B.P.; Batra, N.; Nath, M. A convenient one-pot aqueous phase synthesis and properties of naphtho[ e]bis[1,3]oxazines. Curr. Green Chem., 2016, 3, 360-365. [http://dx.doi.org/10.2174/2213346104666170215152404].
[66]
Zhang, M.Z.; Zhang, R.R.; Yin, W.Z.; Yu, X.; Zhang, Y.L.; Liu, P.; Gu, Y.C.; Zhang, W.H. Microwave-assisted synthesis and antifungal activity of coumarin[8,7-e][1,3]oxazine derivatives. Mol. Divers., 2016, 20(3), 611-618. [http://dx.doi.org/10.1007/s11030-016-9662-2]. [PMID: 26880591].
[67]
Xu, Di; Lin, Y.; Chen. Y.; Zhang, J.; Cao, W.; Chen, J. Synthesis and characterization of oxadisilole-fused-3,4-dihydro-2H-naphtho[2,1-e]-1,3-oxazines and 3,4-dihydro-2H-anthra[2,1-e]-1,3-oxazines. Tetrahedron, 2013, 69, 6144-6149. [http://dx.doi.org/10.1016/j.tet.2013.05.052].
[68]
Deck, L.M.; Paine, R.T.; Bright, E.R.; Ouizem, S.; Dickie, D.A. Synthesis of methylpyridine and methylpyridine N-oxide decorated benzoxazine and naphthoxazine platforms. Tetrahedron Lett., 2014, 55, 2434-2437. [http://dx.doi.org/10.1016/j.tetlet.2014.02.129 ].
[69]
Bansal, P.; Jasuja, N.D.; Sharma, G. Novel and efficient microwave-assisted three component reaction for the synthesis of oxazine derivatives. Orient. J. Chem., 2016, 32, 2131-2138. [http://dx.doi.org/10.13005/ojc/320442].
[70]
Talele, H.R.; Sahoo, S.; Bedekar, A.V. Synthesis of chiral helical 1,3-oxazines. Org. Lett., 2012, 14(12), 3166-3169. [http://dx.doi.org/10.1021/ol301267r]. [PMID: 22671695].
[71]
Talele, H.R.; Bedekar, A.V. Synthesis of chiral bis-oxazines: a preliminary assessment of helical conformational framework. Org. Biomol. Chem., 2012, 10(43), 8579-8582. [http://dx.doi.org/10.1039/c2ob26669e]. [PMID: 23042208].
[72]
Shafiee, M.; Khosropour, A.R.; Mohammadpoor-Baltork, I.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Khavasi, H.R. Synthesis of trans-1,3-diaryl-2-(5-methylisoxazol-3-yl)-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazines via bismuth(III)-catalyzed one-pot pseudo-four component reaction. Mol. Divers., 2012, 16(4), 727-735. [http://dx.doi.org/10.1007/s11030-012-9408-8]. [PMID: 23090419].
[73]
Oliveira, D. Synthesis and polymerization of naphthoxazines containing furan groups: an approach to novel biobased and flame-resistant thermosets. Int. J. Polym. Sci., 2018, 20184201681
[http://dx.doi.org/10.1155/2018/4201681]]
[74]
Sharma, V.; Amarnath, N.; Shukla, S.; Ayana, R.; Kumar, N.; Yadav, N.; Kannan, D.; Sehrawat, S.; Pati, S.; Lochab, B.; Singh, S. Benzoxazine derivatives of phytophenols show anti-plasmodial activity via sodium homeostasis disruption. Bioorg. Med. Chem. Lett., 2018, 28(9), 1629-1637. [http://dx.doi.org/10.1016/j.bmcl.2018.03.047]. [PMID: 29615339].
[75]
Azad, S.; Mirjalili, B.B.F. One-pot solvent-free synthesis of 2,3-dihydro-2-substituted-1H-naphtho[1,2-e][1,3]oxazine derivatives using Fe3O4@nano-cellulose/TiCl as a bio-based and recyclable magnetic nano-catalyst. Mol. Divers., 2019, 23(2), 413-420. [http://dx.doi.org/10.1007/s11030-018-9884-6]. [PMID: 30315396].
[76]
Babaei, E. Mirjalili, Bi Bi F. One pot aqueous media synthesis of 1,3-oxazine derivatives catalyzed by reusable nano-Al2O3/BF3/Fe3O4 at room temperature. Polycycl. Aromat. Compd., 2019, 2019, 2-8. [http://dx.doi.org/10.1080/10406638.2019.1600561].
[77]
Nongrum, R.; Kharkongor, M.; Nongthombam, G.S.; Rani, J.W.S.; Rahman, N.; Kharmawlong, G.K.; Nongkhlaw, R. [1,3]Oxazines: green synthesis by sonication using a magnetically separable basic nano catalyst and investigation of its activity against the toxic effect of a pesticide on the morphology of blood cells. Environ. Chem. Lett., 2019, 17, 1325-1331. [http://dx.doi.org/10.1007/s10311-019-00857-1].
[78]
Jadhav, A.M.; Balwe, S.G.; Cho, B.G.; Lim, K.T.; Jeong, Y.T. L-proline catalyzed unprecedented synthesis of novel naphtho-bis[1,3]oxazines under solvent-free conditions. Synth. Commun., 2020, 50, 1-10. [http://dx.doi.org/10.1080/00397911.2020.1719423].
[79]
May, E.L. 3,4-Dihydro-1,3-oxazines from dicyclohexylcarbodiimide. J. Med. Chem., 1967, 10(3), 505-506. [http://dx.doi.org/10.1021/jm00315a055]. [PMID: 22185171].
[80]
Shakil, N.A.; Dhawan, A.; Sharma, N.K.; Kumar, V.; Kumar, S.; Bose, M.; Raj, H.G.; Olsen, C.E.; Cholli, A.L.; Samuelson, L.A.; Kumar, J.; Watterson, A.C.; Parmar, V.S.; Prasad, A.K. Synthetic, biocatalytic acetylation and anti-tuberculosis activity evaluation studies on (+)-4-alkyl-3,4-dihydro-3-ω-hydroxyalkyl-2H-1,3-benzoxazines. Indian J. Chem., 2003, 42B, 1958-1969.
[81]
Jogleker, S.J.; Samant, S.D. New route for the preparation of 2H-3-aryl-3, 4-dihydro-1, 3-benzoxazines and 2H-3-aryl-3, 4-dihydro-4-methyl-1, 3-benzoxazines. J. Indian Chem. Soc., 1988, 65, 110-111. [http://dx.doi.org/10.1002/chin.198840188 ].
[82]
Tang, Z.; Zhu, Z.; Xia, Z.; Liu, H.; Chen, J.; Xiao, W.; Ou, X. Synthesis and fungicidal activity of novel 2,3-disubstituted-1,3-benzoxazines. Molecules, 2012, 17(7), 8174-8185. [http://dx.doi.org/10.3390/molecules17078174]. [PMID: 22772812].
[83]
Anwar, H.F.; Skattebol, L.; Hansen, T.V. Synthesis of substituted salicylamines and dihydro-2H-1,3-benzoxazines. Tetrahedron, 2007, 63, 9997-10002. [http://dx.doi.org/10.1016/j.tet.2007.07.064].
[84]
Reddy, C.S.; Raghu, M. Synthesis of some new N,N′-diarylsubstituted methylene-bis-dihydro-2H-1,3-benzoxazines. Chin. Chem. Lett., 2008, 19, 1407-1410. [http://dx.doi.org/10.1016/j.cclet.2008.07.001].
[85]
Rivera, A.; Gallo, G.I.; Gayon, M.E. 1,3-Bis(2′-hydroxybenzyl)imida-zolidines as novel precursors of 3,3′-ethylene-bis(3,4-dihydro-2H-1,3-benzoxazine). Synth. Commun., 1994, 24, 2081-2089. [http://dx.doi.org/10.1080/00397919408010219].
[86]
Katritzky, A.R.; Xu, Y-J.; Jain, R. A novel dilithiation approach to 3,4-dihydro-2H-1,3-benzothiazines, 3,4-dihydro-2H-1,3-benzoxazines, and 2,3,4,-5-tetrahydro-1,3-benzothiazepines. J. Org. Chem., 2002, 67(23), 8234-8236. [http://dx.doi.org/10.1021/jo020176e]. [PMID: 12423158].
[87]
Colin, J.L.; Loubinoux, B. Nouvelle voie d’acces aux dihydro-3,4-2H-benzoxazines-1,3. Tetrahedron Lett., 1982, 23, 4245-4246. [http://dx.doi.org/10.1016/S0040-4039(00)88715-8].
[88]
Barber, H.J.; Fuller, R.F.; Green, M.B.; Zwartouw, H.T. New ω-substituted anisoles: III. Aryloxymethyl halides: their preparation and reactions. J. Appl. Chem. (Lond.), 1953, 3, 266-274. [http://dx.doi.org/10.1002/jctb.5010030605].
[89]
Aversa, M.C.; Giannetto, P.; Caristi, C.; Ferlazzo, A. Behaviour of an N-(o-hydroxybenzyl)-β-amino-acid in the presence of dehydrating agents. Synthesis of a 3,4-dihydro-2H-1,3-benzoxazine. J. Chem. Soc. Chem. Commun., 1982, 1982, 469-470. [http://dx.doi.org/10.1039/C39820000469].
[90]
McDonagh, A.F.; Smith, H.E. Ring-chain tautomerism of derivatives of o-hydroxybenzylamine with aldehydes and ketones. J. Org. Chem., 1968, 33, 1-8. [http://dx.doi.org/10.1021/jo01265a001].
[91]
Tramontini, M. Advances in the chemistry of Mannich bases. Synthesis, 1973, (12), 703-775. [http://dx.doi.org/10.1055/s-1973-22294].
[92]
Kanatomi, H.; Murase, I. Reaction of salicylamine with α-dicarbonyl compounds. I. Transamination reaction. Bull. Chem. Soc. Jpn., 1969, 42, 1329-1332. [http://dx.doi.org/10.1246/bcsj.42.1329].
[93]
Kanatomi, H.; Murase, I. Reaction of salicylamine with α-dicarbonyl compounds. II. Formation of 2,2′-bibenz-1,3-oxazines. Bull. Chem. Soc. Jpn., 1969, 43, 226-231. [http://dx.doi.org/10.1246/bcsj.43.226].
[94]
Dargaville, T.R.; Bruyn, P.J.D.; Lim, A.S.C.; Looney, M.G.; Potter, A.C.; Solomon, D.H.; Zhang, X. Chemistry of novolac resins. II. Reaction of model phenols with hexamethylene-tetramine. J. Polym. Sci. A Polym. Chem., 1997, 35, 1389-1398. [http://dx.doi.org/10.1002/(SICI)1099-0518(199706)35:8<1389:AID-POLA7>3.0.CO;2-V].
[95]
Espinosa, M.A.; Cadiz, V.; Galia, M. Synthesis and characterization of benzoxazine-based phenolic resins: crosslinking study. J. Appl. Polym. Sci., 2003, 90, 470-481. [http://dx.doi.org/10.1002/app.12678].
[96]
Li, S.F. Synthesis of benzoxazine-based phenolic resin containing furan groups. Chin. Chem. Lett., 2010, 21, 868-871. [http://dx.doi.org/10.1016/j.cclet.2010.01.007].
[97]
Luk’yanov, B.S.; Ryabukhin, Y.I.; Dorofeenko, G.N.; Nivorozhkin, L.E.; Minkin, V.I. Photochromic and thermochromic spirans. Chem. Heterocycl. Compd., 1978, 14, 122-127. [http://dx.doi.org/10.1007/BF00945321].
[98]
Safoklov, B.B.; Luk’yanov, B.S.; Bulanov, A.O.; Metelitsa, A.V.; Minkin, V.I.; Tkachev, V.V.; Aldoshin, S.M. Photo- and thermochromic spiropyrans 21. 8′-Formyl-3,6-dimethyl-4-oxospiro(3,4-dihydro-2H-1,3-benzoxazine-2, 2′-[2H]chromene) possessing photochromic properties in the solid phase. Russ. Chem. Bull., 2002, 51, 464-466.
[http://dx.doi.org/10.1023/A:1015556201886]
[99]
Bulanov, A.O.; Safoklov, B.B.; Luk’yanov, B.S.; Tkachev, V.V.; Minkin, V.I.; Aldoshin, S.M.; Alekseenko, Y.S. Photochromic and thermochromic spiropyrans. 22. Spiropyrans of the 4-oxo-3,4-dihydro-3H-1,3-benzoxazine series containing π-accepting substituents at position 8′. Chem. Heterocycl. Compd., 2003, 39, 315-317. [http://dx.doi.org/10.1023/A:1023906608643].
[100]
Lukyanov, B.S.; Metelitsa, A.V.; Lukyanova, M.B.; Mukhanov, E.L.; Borisenko, N.I.; Alekseenko, Y.S.; Bezugliy, S.O. Photochromism of the spiropyran thin solid films. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2005, 431, 351-356. [http://dx.doi.org/10.1080/15421400590946730].
[101]
Alekseenko, Y.S.; Bulanov, A.O.; Sayapin, Y.A.; Alekseenko, A.S.; Lukyanov, B.S.; Safoklov, B.B. New photochromic bispiropyran. Chem. Heterocycl. Compd., 2002, 38, 1152-1153. [http://dx.doi.org/10.1023/A:1021242323405].
[102]
Mukhanov, E.L.; Alekseenko, Y.S.; Lukyanov, B.S.; Yabukhin, Y.I.; Ryashchin, O.N.; Lukyanova, M.B. Novel spiropyrans of the benzoxazinone series containing a condensed benzo ring in the hetarene moiety. Chem. Heterocycl. Compd., 2006, 42, 408-409. [http://dx.doi.org/10.1007/s10593-006-0101-7].
[103]
Mukhanov, E.L.; Ryashin, O.N.; Alekseenko, Y.S. New asymmetrical bispiro-pyran 4th National Crystal Chemical Conference, , p. 125.Chernogolovka, Russia June 2006
[104]
Kukharev, B.F.; Stankevich, V.K.; Klimenko, G.R.; Bayandin, V.V. Condensation of oxazolidines with 2-hydroxybenzaldehydes. Mendeleev Commun., 2001, 11, 143-144. [http://dx.doi.org/10.1070/MC2001v011n04ABEH001467].
[105]
Kukharev, B.F.; Stankevich, V.K.; Klimenko, G.R.; Kukhareva, V.A.; Kovalyuk, E.N.; Bayandin, V.V. Synthesis and corrosion-protective properties of 2,3,5,10b-tetrahydrooxazolo[3,2-c][1,3]benzoxazine. Russ. J. Appl. Chem., 2004, 77, 851-852. [http://dx.doi.org/10.1023/B:RJAC.0000038830.44234.79].
[106]
Szatamari, I.; Martinek, T.A.; Lazar, L.; Fulop, F. Substituent effects in the ring-chain tautomerism of 1,3-diaryl-2,3-dihydro-1H-naphth[1,2-e][1,3]-oxazines. Tetrahedron, 2003, 59, 2877-2884. [http://dx.doi.org/10.1016/S0040-4020(03)00331-4].
[107]
Szatmári, I.; Martinek, T.A.; Lázár, L.; Koch, A.; Kleinpeter, E.; Neuvonen, K.; Fülöp, F. Stereoelectronic effects in ring-chain tautomerism of 1,3-diarylnaphth[1,2-e][1,3]oxazines and 3-alkyl-1-arylnaphth[1,2-e][1,3]oxa-zines. J. Org. Chem., 2004, 69(11), 3645-3653. [http://dx.doi.org/10.1021/jo0355810]. [PMID: 15152992].
[108]
Heydenreich, M.; Koch, A.; Klod, S.; Szatamari, I.; Fulop, F.; Kleinpeter, E. Synthesis and conformational analysis of naphtha[1′,2′:5,6][1,3]oxazino[3,2-c][1,3]benzoxazine and naphtha[1′,2′:5,6][1,3]oxazino[3,4-c][1,3]benzo-xazine derivatives. Tetrahedron, 2006, 62, 11081-11089. [http://dx.doi.org/10.1016/j.tet.2006.09.037].
[109]
Meyers, A.I.; Downing, S.V.; Weiser, M.J. Asymmetric synthesis of 2-alkyl-perhydroazepines from [5,3,0]-bicyclic lactams. J. Org. Chem., 2001, 66(4), 1413-1419. [http://dx.doi.org/10.1021/jo001548r]. [PMID: 11312974].
[110]
Szatamari, I.; Hetényi, A.; Lazar, L.; Fulop, F. Transformation reactions of the betti base analog aminonaphthols. J. Heterocycl. Chem., 2004, 41, 367-373. [http://dx.doi.org/10.1002/jhet.5570410310].
[111]
Lazar, L.; Fulop, F. Recent developments in the ring-chain tautomerism of 1,3-heterocycles. Eur. J. Org. Chem., 2003, 2003(16), 3025-3042. [http://dx.doi.org/10.1002/ejoc.200300142].
[112]
Sharma, S.; Nath, M. Synthesis of meso-substituted dihydro-1,3-oxazinoporphyrins. Beilstein J. Org. Chem., 2013, 9, 496-502. [http://dx.doi.org/10.3762/bjoc.9.53]. [PMID: 23616789].
[113]
Waghmode, N.A.; Kalbandhe, A.H.; Thorat, P.B.; Karade, N.N. Metal-free new synthesis of 1,3-naphthaoxazines via intramolecular cross dehydrogenative-coupling reaction of 1-(α-aminoalkyl)-2-naphthols using hypervalent iodine(III) reagent. Tet. Lett, 2016, 57, 680-683.
[114]
Deb, M.L.; Pegu, C.D.; Borpatra, P.J.; Baruah, P.K. Metal-free intramolecular α–sp3 C-H oxygenation of tert-amine: an efficient approach to 1,3-oxazines. Tet. Lett, 2016, 57, 5479-5483. [http://dx.doi.org/10.1016/j.tetlet.2016.10.086].
[115]
Singh, D.; Pandey, S.; Chouhan, P.S.; Kant, R.; Chauhan, P.M.S. Copper-mediated intramolecular oxidative α-functionalization of Ugi precursor: an efficient synthesis of highly functionalized 2H-benzo[e][1,3]oxazin-4(3H)-one derivatives. ChemistrySelect, 2020, 5, 6780-6785. [http://dx.doi.org/10.1002/slct.202001165].
[116]
Carramiñana, V.; Ochoa de Retana, A.M.; de Los Santos, J.M.; Palacios, F. First synthesis of merged hybrids phosphorylated azirino[2,1-b]benzo[e][1,3]oxazine derivatives as anticancer agents. Eur. J. Med. Chem., 2020, 185111771 [http://dx.doi.org/10.1016/j.ejmech.2019.111771]. [PMID: 31671309].
[117]
Deb, M.L.; Pegu, C.D.; Borpatra, P.J.; Saikia, P.J.; Baruah, P.K. Catalyst-free multi-component cascade C–H-functionalization in water using molecular oxygen: an approach to 1,3-oxazines. Green Chem., 2017, 19, 4036-4042. [http://dx.doi.org/10.1039/C7GC01494E].
[118]
Zhang, G.Y.; Xiang, Y.; Guan, Z.; He, Y.H. Enzyme and photoredox sequential catalysis for the synthesis of 1,3-oxazine derivatives in one pot. Catal. Sci. Technol., 2017, 7, 1937-1942. [http://dx.doi.org/10.1039/C6CY02682F].
[119]
Borpatra, P.J.; Deb, M.L.; Baruah, P.K. Visible light-promoted metal-free intramolecular cross dehydrogenative coupling approach to 1,3-oxazines. Tetrahedron Lett., 2017, 58, 4006-4010. [http://dx.doi.org/10.1016/j.tetlet.2017.09.018].
[120]
Wang, C-Y.; Han, J-B.; Wang, L.; Tang, X-Y. Lewis acid catalyzed [4+2] cycloaddition of N-tosylhydrazones with ortho-quinone methides. J. Org. Chem., 2019, 84(21), 14258-14269. [http://dx.doi.org/10.1021/acs.joc.9b02040]. [PMID: 31599153].
[121]
Duffin, W.M.; Rollo, I.M. Antimalarial activity of hydroxy-substituted naphthalene compounds. Br. J. Pharmacol. Chemother., 1957, 12(2), 171-175. [http://dx.doi.org/10.1111/j.1476-5381.1957.tb00116.x]. [PMID: 13446369].
[122]
Bajwa, G.S.; Hartman, K.E.; Joullié, M.M. Antimalarial, I. Heterocyclic analogs of N-substituted naphthalenebisoxazines. J. Med. Chem., 1973, 16(2), 134-138. [http://dx.doi.org/10.1021/jm00260a012]. [PMID: 4566627].
[123]
March, L.C.; Romanchick, W.A.; Bajwa, G.S.; Joullié, M.M. Antimalarial, II. Dihydro-1,3-oxazinoquinolines and dihydro-1,3-pyridobenzoxazines. J. Med. Chem., 1973, 16(4), 337-342. [http://dx.doi.org/10.1021/jm00262a006]. [PMID: 4577306].
[124]
Mbaba, M.; Dingle, L.M.K.; Cash, D.; Mare, J.A.; Laming, D.; Taylor, D.; Hoppe, H.C.; Edkins, A.L.; Khanye, S.D. Repurposing a polymer precursor: Synthesis and in vitro medicinal potential of ferrocenyl 1,3-benzoxazine derivatives. Eur. J. Med. Chem., 2020, 187111924 [http://dx.doi.org/10.1016/j.ejmech.2019.111924]. [PMID: 31855792].
[125]
Czarnocki, W.; Ledochowski, Z.; Radzikowski, C.; Urbanski, T. Biological activity of benzoxazine-1, 3 derivatives, particularly against experimental sarcoma. Nature, 1956, 178(4546), 1351-1352. [http://dx.doi.org/10.1038/1781351a0]. [PMID: 13387710].
[126]
Urbanski, T.; Gurne, D.; Slopek, S.; Mordarska, H.; Mordarski, M. Anti-neoplastic activity of tetrahydro-1, 3-oxazine derivatives. Nature, 1960, 187, 426-427. [http://dx.doi.org/10.1038/187426a0]. [PMID: 13840449].
[127]
Benameur, L.; Bouaziz, Z.; Nebois, P.; Bartoli, M.H.; Boitard, M.; Fillion, H. Synthesis of furonaphth[1,3]oxazine and furo[1,3]oxazinoquinoline derivatives as precursors for an o-quinonemethide structure and potential antitumor agents. Chem. Pharm. Bull. (Tokyo), 1996, 44(3), 605-608. [http://dx.doi.org/10.1248/cpb.44.605]. [PMID: 8882458].
[128]
Botla, V.; Pilli, N.; Koude, D.; Misra, S.; Malapaka, C. Molecular engineering of tetracyclic 2,3-dihydro-1H-benzo[2,3]-benzofuro[4,5-e][1,3]oxazine derivatives: Evaluation for potential anticancer agents. Arch. Pharm. (Weinheim), 2017, 350(10)e1700169 [http://dx.doi.org/10.1002/ardp.201700169]. [PMID: 28834614].
[129]
Waisser, K.; Hladuvková, J.; Gregor, J.; Rada, T.; Kubicová, L.; Klimesová, V.; Kaustová, J. Relationships between the chemical structure of antimycobacterial substances and their activity against atypical strains. Part 14: 3-Aryl-6,8-dihalogeno-2H-1,3-benzoxazine-2,4(3H)-diones. Arch. Pharm. (Weinheim), 1998, 331(1), 3-6. [http://dx.doi.org/10.1002/(SICI)1521-4184(199801)331:1<3:AID-ARDP3>3.0.CO;2-2]. [PMID: 9507695].
[130]
Waisser, K.; Gregor, J.; Kubicová, L.; Klimesová, V.; Kunes, J.; Machácek, M.; Kaustová, J. New groups of antimycobacterial agents: 6-chloro-3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 6-chloro-3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones. Eur. J. Med. Chem., 2000, 35(7-8), 733-741. [http://dx.doi.org/10.1016/S0223-5234(00)00174-4]. [PMID: 10960190].
[131]
Waisser, K.; Petrlíková, E.; Perina, M.; Klimesová, V.; Kunes, J.; Palát, K., Jr; Kaustová, J.; Dahse, H.M.; Möllmann, U. A note to the biological activity of benzoxazine derivatives containing the thioxo group. Eur. J. Med. Chem., 2010, 45(7), 2719-2725. [http://dx.doi.org/10.1016/j.ejmech.2010.02.037]. [PMID: 20226572].
[132]
Houston, S.; Fanning, A. Current and potential treatment of tuberculosis. Drugs, 1994, 48(5), 689-708. [http://dx.doi.org/10.2165/00003495-199448050-00004]. [PMID: 7530627].
[133]
Winder, F.G.; Collins, P.B.; Whelan, D. Effects of ethionamide and isoxyl on mycolic acid synthesis in Mycobacterium tuberculosis BCG. J. Gen. Microbiol., 1971, 66(3), 379-380. [http://dx.doi.org/10.1099/00221287-66-3-379]. [PMID: 4999216].
[134]
Wang, F.; Langley, R.; Gulten, G.; Dover, L.G.; Besra, G.S.; Jacobs, W.R., Jr; Sacchettini, J.C. Mechanism of thioamide drug action against tuberculosis and leprosy. J. Exp. Med., 2007, 204(1), 73-78. [http://dx.doi.org/10.1084/jem.20062100]. [PMID: 17227913].
[135]
Takayama, K.; Wang, C.; Besra, G.S. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin. Microbiol. Rev., 2005, 18(1), 81-101. [http://dx.doi.org/10.1128/CMR.18.1.81-101.2005]. [PMID: 15653820].
[136]
Raman, K.; Rajagopalan, P.; Chandra, N. Flux balance analysis of mycolic acid pathway: targets for anti-tubercular drugs. PLOS Comput. Biol., 2005, 1(5)e46 [http://dx.doi.org/10.1371/journal.pcbi.0010046]. [PMID: 16261191].
[137]
Poradosu, E.; Gazit, A.; Reuveni, H.; Levitzki, A. α-cyanocinnamide derivatives: a new family of non-peptide, non-sulfhydryl inhibitors of Ras farnesylation. Bioorg. Med. Chem., 1999, 7(8), 1727-1736. [http://dx.doi.org/10.1016/S0968-0896(99)00118-2]. [PMID: 10482464].
[138]
Moloney, G.P.; Martin, G.R.; Mathews, N.; MacLennan, S.; Dodsworth, S.; Sang, P.Y.; Knight, C.; Maxwell, M.; Glen, R.C. Synthesis and serotonergic activity of 2-oxadiazolyl-5-substituted-N,N-dimethyltry-ptamines: novel antagonists for the vascular 5-HT1B-like receptor. J. Chem. Soc., Perkin Trans. 1, 1999, 1999(19), 2725-2733. [http://dx.doi.org/10.1039/a903325d].
[139]
Rajanarendar, E.; Mohan, G.; Reddy, A.S.R. Synthesis and antimicrobial activity of new isoxazolyl-1,3-benzoxazines. Indian J. Chem., 2008, 47B, 112.
[140]
Vibhute, A.Y.; Sayyad, M.A.; Mokle, S.S.; Khansole, S.V.; Vibhute, Y.B.; Gurav, V.M. Synthesis and antibacterial evaluation of some new 1,3-benzoxazines. Pharma Chem., 2009, 1, 86.
[141]
Shakil, N.A.; Pandey, A.; Singh, M.K.; Kumar, J.; Awasthi, S.K. Pankaj, Srivastava, C.; Pandey, R.P. Synthesis and bioefficacy evaluation of new 3-substituted-3,4-dihydro-1,3-benz-oxazines. J. Environ. Sci. Health B, 2010, 45, 108-115. [http://dx.doi.org/10.1080/03601230903471852]. [PMID: 20390939].
[142]
Manikannan, R.; Muthusubramanian, S. Synthesis and biological activity of 6-alkyl/chloro-3-4-(6-alkyl/chloro-2H-benzo[e][1,3]-oxazin-3(4H)-yl)phenyl-3,4-dihydro-2H-benzo[e][1,3]oxazines. Indian J. Chem., 2010, 49B, 1083. [http://dx.doi.org/10.1002/chin.201048158].
[143]
Mayekar, A.N.; Yathirajan, H.S.; Narayana, B.; Sarojini, B.K.; Kumari, N.S.; Harrison, W.T.A. Synthesis and antimicrobial study of new 8-bromo-1,3-diaryl-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazines. Int. J. Chem., 2011, 3, 74. [http://dx.doi.org/10.5539/ijc.v3n1p74].
[144]
Tang, Z.; Chen, W.; Zhu, Z.; Liu, H. Synthesis of 2,3-diaryl-3,4-dihydro-2H-1,3-benzoxazines and their fungicidal activities. J. Heterocycl. Chem., 2011, 48, 255-260. [http://dx.doi.org/10.1002/jhet.533].
[145]
Prasad, D.; Rohilla, R.K.; Roy, N.; Nath, M. Synthesis and antibacterial evaluation of of benzazoles tethered 1,3-oxazines. Indian J. Chem., 2012, 51B, 739-745.
[146]
Pindel, A.A.; Harych, A.M.; Gębarowska, E.; Gębarowski, T.; Jędrzkiewicz, D.; Pląskowska, E.; Zalewski, D.; Gulia, N.; Szafert, S.; Ejfler, J. Design and functionalization of bioactive benzoxazines. An unexpected ortho-substitution effect. New J. Chem., 2019, 43, 12042-12053. [http://dx.doi.org/10.1039/C8NJ06440G].
[147]
Desai, N.C.; Bhatt, N.B.; Joshi, S.B. Synthesis and antimicrobial importance of oxazine bearing pyridine scaffold. Indian J. Chem., 2019, 58B, 527-540.
[148]
Desai, N.C.; Bhatt, N.B.; Joshi, S.B.; Jadeja, K.A.; Khedkar, V.M. Synthesis, antimicrobial activity and 3D-QSAR study of hybrid oxazine clubbed pyridine scaffolds. ChemistrySelect, 2019, 4, 7541-7550. [http://dx.doi.org/10.1002/slct.201901391].
[149]
Thompson, A.M.; O’Connor, P.D.; Marshall, A.J.; Blaser, A.; Yardley, V.; Maes, L.; Gupta, S.; Launay, D.; Braillard, S.; Chatelain, E.; Wan, B.; Franzblau, S.G.; Ma, Z.; Cooper, C.B.; Denny, W.A. Development of (6 R)-2-Nitro-6-[4-(trifluoromethoxy)phenoxy]-6,7-dihydro-5H-imidazo[2,1-b][1,3]-oxazine (DNDI-8219): a new lead for visceral leishmaniasis. J. Med. Chem., 2018, 61(6), 2329-2352. [http://dx.doi.org/10.1021/acs.jmedchem.7b01581]. [PMID: 29461823].
[150]
Madhavan, G.R.; Chakrabarti, R.; Reddy, K.A.; Rajesh, B.M.; Balraju, V.; Rao, P.B.; Rajagopalan, R.; Iqbal, J. Dual PPAR-α and -γ activators derived from novel benzoxazinone containing thiazolidinediones having antidiabetic and hypolipidemic potential. Bioorg. Med. Chem., 2006, 14(2), 584-591. [http://dx.doi.org/10.1016/j.bmc.2005.08.043]. [PMID: 16198573].
[151]
Akhter, M.; Habibullah, S.; Hasan, S.M.; Alam, M.M.; Akhter, N.; Shaquiquzzaman, M. Synthesis of some new 3,4-dihydro-2H-1,3-benzoxazines under microwave irradiation in solvent-free conditions and their biological activity. Med. Chem. Res., 2010, 2010, 1147-1153.
[152]
Gawali, R.; Trivedi, J.; Bhansali, S.; Bhosale, R.; Sarkar, D.; Mitra, D. Design, synthesis, docking studies and biological screening of 2-thiazolyl substituted -2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazines as potent HIV-1 reverse transcriptase inhibitors. Eur. J. Med. Chem., 2018, 157, 310-319. [http://dx.doi.org/10.1016/j.ejmech.2018.07.067]. [PMID: 30099253].
[153]
Böhme, T.M.; Augelli-Szafran, C.E.; Hallak, H.; Pugsley, T.; Serpa, K.; Schwarz, R.D. Synthesis and pharmacology of benzoxazines as highly selective antagonists at M4 muscarinic receptors. J. Med. Chem., 2002, 45(14), 3094-3102. [http://dx.doi.org/10.1021/jm011116o]. [PMID: 12086495].
[154]
Ghosh, N.N.; Kiskan, B.; Yagci, Y. Polybenzoxazines-new high performance thermosetting resins: synthesis and properties. Prog. Polym. Sci., 2007, 32, 1344-1391. [http://dx.doi.org/10.1016/j.progpolymsci.2007.07.002].
[155]
Yagci, Y.; Kiskan, B.; Ghosh, N.N. Recent advancement on polybenzoxazine-A newly developed high performance thermoset. J. Polym. Sci. A Polym. Chem., 2009, 47, 5565-5576. [http://dx.doi.org/10.1002/pola.23597].
[156]
Chen, W.; He, J.; Li, L. Characterization of polybenzoxazine and its electrochemical polymerization mechanism. Front. Chem. China, 2009, 4, 390. [http://dx.doi.org/10.1007/s11458-009-0105-9].
[157]
Ishida, H.; Rodriguez, Y. Catalyzing the curing reaction of a new benzoxazine-based phenolic resin. J. Appl. Polym. Sci., 1995, 58, 1751. [http://dx.doi.org/10.1002/app.1995.070581013].
[158]
Wang, Y.X.; Ishida, H. Synthesis and properties of new thermoplastic polymers from substituted 3,4-dihydro-2H-1,3-benzoxazines. Macromolecules, 2000, 33, 2839-2847. [http://dx.doi.org/10.1021/ma9909096].
[159]
Kiskan, B. Adapting benzoxazine chemistry for unconventional applications. React. Funct. Polym., 2018, 129, 76-88. [http://dx.doi.org/10.1016/j.reactfunctpolym.2017.06.009].
[160]
Kiskan, B.; Yagci, Y. Benzoxazine resins as smart materials and future per- spectives.In: Thermosets: Structure, Properties, and Applications; Guo, Q., Ed.; Elsevier, 2018, pp. 543-576. [http://dx.doi.org/10.1016/B978-0-08-101021-1.00017-4]
[161]
Liu, Y.L.; Chou, C.I. High performance benzoxazine monomers and polymers containing furan groups. J. Polym. Sci. A Polym. Chem., 2005, 43, 5267-5282. [http://dx.doi.org/10.1002/pola.21023].
[162]
Allen, D.J.; Ishida, H. Physical and mechanical properties of flexible polybenzoxazine resins: effect of aliphatic diamine chain length. J. Appl. Polym. Sci., 2006, 101, 2798-2809. [http://dx.doi.org/10.1002/app.22501].
[163]
Russell, V.M.; Koenig, J.L.; Low, H.Y.; Ishida, H. Study of the characterization and curing of benzoxazines using C-13 solid-state nuclear magnetic resonance. J. Appl. Polym. Sci., 1998, 70, 1413-1425. [http://dx.doi.org/10.1002/(SICI)1097-4628(19981114)70:7<1413:AID-APP16>3.0.CO;2-0].
[164]
Audebert, P.; Roche, M.; Pagetti, J. Electrochemical properties of some benzoxazines: conditions for electropoly-merization in alkaline medium. J. Electroanal. Chem. (Lausanne Switz.), 1995, 383, 139-143. [http://dx.doi.org/10.1016/0022-0728(94)03657-O].
[165]
Brunovska, Z.; Ishida, H. Thermal study on the copolymers of phthalonitrile and phenylnitrile-functional benzoxazines. J. Appl. Polym. Sci., 1999, 73, 2937-2949. [http://dx.doi.org/10.1002/(SICI)1097-4628(19990929)73:14<2937:AID-APP18>3.0.CO;2-E].
[166]
Kim, H.J.; Brunovska, Z.; Ishida, H. Synthesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers. Polymer (Guildf.), 1999, 40, 6565-6573. [http://dx.doi.org/10.1016/S0032-3861(99)00046-4].
[167]
Agag, T.; Takeichi, T. Novel benzoxazine monomers containing p-phenyl propargyl ether: polymerization of monomers and properties of polybenzoxazines. Macromolecules, 2001, 34, 7257-7263. [http://dx.doi.org/10.1021/ma0107915].
[168]
Ishida, H.; Ohba, S. Synthesis and characterization of maleimide and norbornene functionalized benzoxazines. Polymer (Guildf.), 2005, 46, 5588-5595. [http://dx.doi.org/10.1016/j.polymer.2005.04.080].
[169]
Andreu, R.; Espinosa, M.A.; Galia, M.; Cadiz, B.; Ronda, J.C.; Reina, J.A. Synthesis of novel benzoxazines containing glycidyl groups: a study of the crosslinking behaviour. J. Polym. Sci. A Polym. Chem., 2006, 44, 1529-1540. [http://dx.doi.org/10.1002/pola.21255].
[170]
Chernykh, A.; Agag, T.; Ishida, H. Novel benzoxazine monomer containing diacetylene linkage: an approach to benzoxazine thermosets with low polymerization temperature without added initiators or catalyst. Polymer (Guildf.), 2009, 50, 3153-3157. [http://dx.doi.org/10.1016/j.polymer.2009.04.061].
[171]
Lin, H.C.; Chang, H.L.; Wang, C.F.; Huang, C.F.; Chang, F.C. Polybenzoxazine–silica hybrid surface with environmentally responsive wettability behavior.In: Superhydrophobic Surfaces; CRC Press, 2009, pp. 347-356.
[172]
Pakkethati, K.; Boonmalert, A.; Chaisuwan, T.; Wongkasemjit, S. Development of polybenzoxazine membranes for ethanol-water separation via pervaporation. Desalination, 2011, 267, 73-81. [http://dx.doi.org/10.1016/j.desal.2010.09.008].
[173]
Kiskan, B.; Demirel, A.L.; Kamer, O.; Yagci, Y. Synthesis and characterization of nanomagnetite thermosets based on benzoxazines. J. Polym. Sci. A Polym. Chem., 2008, 46, 6780-6788. [http://dx.doi.org/10.1002/pola.23023].
[174]
Shukla, S.; Ghosh, A.; Sen, U.K.; Roy, P.K.; Mitra, S.; Lochab, B. Cardanol benzoxazine-sulfur copolymers for Li-S batteries: symbiosis of sustainability and performance. ChemistrySelect, 2016, 3, 594-600. [http://dx.doi.org/10.1002/slct.201600050].
[175]
Je, S.H.; Hwang, T.H.; Talapaneni, S.N.; Buyukcakir, O.; Kim, H.J.; Yu, S.; Woo, S-G.; Jang, M.C.; Son, B.K.; Coskun, A.; Choi, J.W. Rational sulfur cathode design for lithium−sulfur batteries: sulfur-embedded benzoxazine polymers. ACS Energy Lett., 2016, 1, 566-572. [http://dx.doi.org/10.1021/acsenergylett.6b00245].