The Clinical Impact of Quantitative Cell-free DNA, KRAS, and BRAF Mutations on Response to Anti-EGFR Treatment in Patients with Metastatic Colorectal Cancer

Page: [942 - 952] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Colorectal cancer (CRC) is one of the most common leading causes of cancer death in the world. Although EGFR inhibitors have established efficacy in metastatic colorectal cancer (mCRC), some patients do not respond to this treatment. The EGFR inhibitors' failure and acquired resistance are partly due to KRAS and BRAF mutations. Thus, prognostic biomarkers that help to select eligible patients are highly in demand. To improve patient selection, assessment of mutational status in circulating cell free DNA (cfDNA), which possibly represents the dynamicity of tumor genetic status better than tumor tissue, could be advantageous. This review summarizes the current knowledge of the prognostic value of cfDNA in patients with mCRC treated with EGFR inhibitors with emphasis on the clinical importance of identification of KRAS and BRAF mutations.

Keywords: Colorectal, cancer, cell-free DNA, KRAS, BRAF, EGFR.

[1]
Moradi-Marjaneh R, Hassanian SM, Fiuji H, et al. Toll like receptor signaling pathway as a potential therapeutic target in colorectal cancer. J Cell Physiol 2018; 233(8): 5613-22.
[http://dx.doi.org/10.1002/jcp.26273] [PMID: 29150944]
[2]
Marjaneh RM, Khazaei M, Ferns GA, Avan A, Aghaee-Bakhtiari SH. The role of microRNAs in 5-FU resistance of colorectal cancer: Possible mechanisms. J Cell Physiol 2019; 234(3): 2306-16.
[http://dx.doi.org/10.1002/jcp.27221] [PMID: 30191973]
[3]
Moradi Marjaneh R, Khazaei M, Ferns GA, Avan A, Aghaee-Bakhtiari SH. MicroRNAs as potential therapeutic targets to predict responses to oxaliplatin in colorectal cancer: From basic evidence to therapeutic implication. IUBMB Life 2019; 71(10): 1428-41.
[http://dx.doi.org/10.1002/iub.2108] [PMID: 31322820]
[4]
Moradi-Marjaneh R, Hassanian SM, Rahmani F, Aghaee-Bakhtiari SH, Avan A, Khazaei M. Phytosomal curcumin elicits anti-tumor properties through suppression of angiogenesis, cell proliferation and induction of oxidative stress in colorectal cancer. Curr Pharm Des 2018; 24(39): 4626-38.
[http://dx.doi.org/10.2174/1381612825666190110145151] [PMID: 30636578]
[5]
Marjaneh RM, Rahmani F, Hassanian SM, et al. Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. J Cell Physiol 2018; 233(10): 6785-98.
[http://dx.doi.org/10.1002/jcp.26538] [PMID: 29737515]
[6]
Amerizadeh F, Rezaei N, Rahmani F, et al. Crocin synergistically enhances the antiproliferative activity of 5-flurouracil through Wnt/PI3K pathway in a mouse model of colitis-associated colorectal cancer. J Cell Biochem 2018; 119(12): 10250-61.
[http://dx.doi.org/10.1002/jcb.27367] [PMID: 30129057]
[7]
Moradi Marjaneh R, Hassanian SM, Ghobadi N, et al. Targeting the death receptor signaling pathway as a potential therapeutic target in the treatment of colorectal cancer. J Cell Physiol 2018; 233(10): 6538-49.
[http://dx.doi.org/10.1002/jcp.26640] [PMID: 29741789]
[8]
Chan DLH, Segelov E, Wong RS, et al. Epidermal growth factor receptor (EGFR) inhibitors for metastatic colorectal cancer. Cochrane Database Syst Rev 2017; 6: CD007047.
[http://dx.doi.org/10.1002/14651858.CD007047.pub2] [PMID: 28654140]
[9]
Fakih M, Vincent M. Adverse events associated with anti-EGFR therapies for the treatment of metastatic colorectal cancer. Curr Oncol 2010; 17(Suppl. 1): S18-30.
[http://dx.doi.org/10.3747/co.v17iS1.615] [PMID: 20680104]
[10]
Spindler KG, Boysen AK, Pallisgård N, et al. Cell-free DNA in metastatic colorectal cancer: a systematic review and meta-analysis. Oncologist 2017; 22(9): 1049-55.
[http://dx.doi.org/10.1634/theoncologist.2016-0178] [PMID: 28778958]
[11]
Kuo YB, Chen JS, Fan CW, Li YS, Chan EC. Comparison of KRAS mutation analysis of primary tumors and matched circulating cell-free DNA in plasmas of patients with colorectal cancer. Clinica Chimica Acta 2014; 433: 284-9.
[http://dx.doi.org/10.1016/j.cca.2014.03.024]
[12]
Srinivasan M, Sedmak D, Jewell S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol 2002; 161(6): 1961-71.
[http://dx.doi.org/10.1016/S0002-9440(10)64472-0] [PMID: 12466110]
[13]
Richman SD, Chambers P, Seymour MT, et al. Intra-tumoral heterogeneity of KRAS and BRAF mutation status in patients with advanced colorectal cancer (aCRC) and cost-effectiveness of multiple sample testing. Anal Cell Pathol (Amst) 2011; 34(1-2): 61-6.
[http://dx.doi.org/10.1155/2011/393521] [PMID: 21483104]
[14]
Mouliere F, Thierry AR. The importance of examining the proportion of circulating DNA originating from tumor, microenvironment and normal cells in colorectal cancer patients. Expert Opin Biol Ther 2012; 12(Suppl. 1): S209-15.
[http://dx.doi.org/10.1517/14712598.2012.688023] [PMID: 22594497]
[15]
Salvi S, Gurioli G, De Giorgi U, et al. Cell-free DNA as a diagnostic marker for cancer: current insights. OncoTargets Ther 2016; 9: 6549-59.
[http://dx.doi.org/10.2147/OTT.S100901] [PMID: 27822059]
[16]
Shaw JA, Stebbing J. Circulating free DNA in the management of breast cancer. Ann Transl Med 2014; 2(1): 3.
[PMID: 25332979]
[17]
Moss J, Magenheim J, Neiman D, et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat Commun 2018; 9(1): 5068.
[http://dx.doi.org/10.1038/s41467-018-07466-6] [PMID: 30498206]
[18]
Wong FC, Sun K, Jiang P, et al. Cell-free DNA in maternal plasma and serum: A comparison of quantity, quality and tissue origin using genomic and epigenomic approaches. Clin Biochem 2016; 49(18): 1379-86.
[http://dx.doi.org/10.1016/j.clinbiochem.2016.09.009] [PMID: 27620950]
[19]
Lam WKJ, Gai W, Sun K, et al. DNA of erythroid origin is present in human plasma and informs the types of anemia. Clin Chem 2017; 63(10): 1614-23.
[http://dx.doi.org/10.1373/clinchem.2017.272401] [PMID: 28784691]
[20]
Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011; 11(6): 426-37.
[http://dx.doi.org/10.1038/nrc3066] [PMID: 21562580]
[21]
Mouliere F, Robert B, Arnau Peyrotte E, et al. High fragmentation characterizes tumour-derived circulating DNA. PLoS One 2011; 6(9): e23418.
[http://dx.doi.org/10.1371/journal.pone.0023418] [PMID: 21909401]
[22]
Thierry AR, El Messaoudi S, Gahan PB, Anker P, Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev 2016; 35(3): 347-76.
[http://dx.doi.org/10.1007/s10555-016-9629-x] [PMID: 27392603]
[23]
Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol Detect Quantif 2019; 17: 100087.
[http://dx.doi.org/10.1016/j.bdq.2019.100087] [PMID: 30923679]
[24]
Chang Y, Tolani B, Nie X, Zhi X, Hu M, He B. Review of the clinical applications and technological advances of circulating tumor DNA in cancer monitoring. Ther Clin Risk Manag 2017; 13: 1363-74.
[http://dx.doi.org/10.2147/TCRM.S141991] [PMID: 29066904]
[25]
El Messaoudi S, Mouliere F, Du Manoir S, et al. Circulating DNA as a strong multimarker prognostic tool for metastatic colorectal cancer patient management care. Clin Cancer Res 2016; 22(12): 3067-77.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0297] [PMID: 26847055]
[26]
Mouliere F, El Messaoudi S, Gongora C, et al. Circulating cell-free DNA from cocancer patients may reveal higlorectal h KRAS or BRAF mutation load. Transl Oncol 2013; 6(3): 319-28.
[http://dx.doi.org/10.1593/tlo.12445] [PMID: 23730412]
[27]
Wong SQ, Raleigh JM, Callahan J, et al. Circulating tumor DNA analysis and functional imaging provide complementary approaches for comprehensive disease monitoring in metastatic melanoma. Precision Oncology 2017; 1: 1-14.
[http://dx.doi.org/10.1200/PO.16.00009]
[28]
Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early-and late-stage human malignancies. Transl Med 2014; 6: 224-224ra24.
[29]
Murtaza M, Dawson S-J, Pogrebniak K, et al. Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer. Nat Commun 2015; 6(1): 8760.
[http://dx.doi.org/10.1038/ncomms9760] [PMID: 26530965]
[30]
Zhang W, Xia W, Lv Z, Ni C, Xin Y, Yang L. Liquid biopsy for cancer: circulating tumor cells, circulating free DNA or exosomes? Cell Physiol Biochem 2017; 41(2): 755-68.
[http://dx.doi.org/10.1159/000458736] [PMID: 28214887]
[31]
Neumann MHD, Bender S, Krahn T, Schlange T. ctDNA and CTCs in liquid biopsy-current status and where we need to progress. Comput Struct Biotechnol J 2018; 16: 190-5.
[http://dx.doi.org/10.1016/j.csbj.2018.05.002] [PMID: 29977481]
[32]
Mouliere F, Thierry AR. The importance of examining the proportion of circulating DNA originating from tumor, microenvironment and normal cells in colorectal cancer patients. Expert Opinion Biol Ther 2012; Suppl 1: S209-15.
[http://dx.doi.org/10.1517/14712598.2012.688023]
[33]
Kustanovich A, Schwartz R, Peretz T, Grinshpun A. Life and death of circulating cell-free DNA. Cancer Biol Ther 2019; 20(8): 1057-67.
[http://dx.doi.org/10.1080/15384047.2019.1598759] [PMID: 30990132]
[34]
Merker JD, Oxnard GR, Compton C, et al. Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists joint review. Arch Pathol Lab Med 2018; 142(10): 1242-53.
[http://dx.doi.org/10.5858/arpa.2018-0901-SA] [PMID: 29504834]
[35]
Diehl F, Diaz L, Kinzler KW, Vogelstein B, Schmidt K. Circulating mutant DNA to assess tumor dynamics Google Patents. 2010.
[36]
Ma X, Zhu L, Wu X, et al. Cell-free DNA provides a good representation of the tumor genome despite its biased fragmentation patterns. PLoS One 2017; 12(1): e0169231.
[http://dx.doi.org/10.1371/journal.pone.0169231] [PMID: 28046008]
[37]
Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 2016; 164(1-2): 57-68.
[http://dx.doi.org/10.1016/j.cell.2015.11.050] [PMID: 26771485]
[38]
Jiang P, Chan CW, Chan KC, et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc Natl Acad Sci USA 2015; 112(11): E1317-25.
[http://dx.doi.org/10.1073/pnas.1500076112] [PMID: 25646427]
[39]
Beyer C, Stearns NA, Giessl A, Distler JH, Schett G, Pisetsky DS. The extracellular release of DNA and HMGB1 from Jurkat T cells during in vitro necrotic cell death. Innate Immun 2012; 18(5): 727-37.
[http://dx.doi.org/10.1177/1753425912437981] [PMID: 22344226]
[40]
Beyer C, Pisetsky DS. Modeling nuclear molecule release during in vitro cell death. Autoimmunity 2013; 46(5): 298-301.
[http://dx.doi.org/10.3109/08916934.2012.750297] [PMID: 23244202]
[41]
Bronkhorst AJ, Wentzel JF, Aucamp J, van Dyk E, du Plessis L, Pretorius PJ. Characterization of the cell-free DNA released by cultured cancer cells. Biochim Biophys Acta 2016; 1863(1): 157-65.
[http://dx.doi.org/10.1016/j.bbamcr.2015.10.022] [PMID: 26529550]
[42]
Peters DL, Pretorius PJ. Origin, translocation and destination of extracellular occurring DNA--a new paradigm in genetic behaviour. Clin Chim Acta 2011; 412(11-12): 806-11.
[http://dx.doi.org/10.1016/j.cca.2011.01.026] [PMID: 21277292]
[43]
Yipp BG, Petri B, Salina D, et al. Dynamic NETosis is carried out by live neutrophils in human and mouse bacterial abscesses and during severe gram-positive infection. Nat Med 2012; 18(9): 1386.
[http://dx.doi.org/10.1038/nm.2847] [PMID: 22922410]
[44]
Moras M, Lefevre SD, Ostuni MA. From erythroblasts to mature red blood cells: organelle clearance in mammals. Front Physiol 2017; 8: 1076.
[http://dx.doi.org/10.3389/fphys.2017.01076] [PMID: 29311991]
[45]
Sansone P, Savini C, Kurelac I, et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci USA 2017; 114(43): E9066-75.
[http://dx.doi.org/10.1073/pnas.1704862114] [PMID: 29073103]
[46]
Ingelsson B, Söderberg D, Strid T, et al. Lymphocytes eject interferogenic mitochondrial DNA webs in response to CpG and non-CpG oligodeoxynucleotides of class C. Proc Natl Acad Sci USA 2018; 115(3): E478-87.
[http://dx.doi.org/10.1073/pnas.1711950115] [PMID: 29295921]
[47]
Baldus SE, Schaefer K-L, Engers R, Hartleb D, Stoecklein NH, Gabbert HE. Prevalence and heterogeneity of KRAS, BRAF, and PIK3CA mutations in primary colorectal adenocarcinomas and their corresponding metastases. Clin Cancer Res 2010; 16(3): 790-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2446] [PMID: 20103678]
[48]
Spindler KL, Appelt AL, Pallisgaard N, Andersen RF, Brandslund I, Jakobsen A. Cell-free DNA in healthy individuals, noncancerous disease and strong prognostic value in colorectal cancer. Int J Cancer 2014; 135(12): 2984-91.
[http://dx.doi.org/10.1002/ijc.28946] [PMID: 24798213]
[49]
Thierry AR, El Messaoudi S, Mollevi C, et al. Clinical utility of circulating DNA analysis for rapid detection of actionable mutations to select metastatic colorectal patients for anti-EGFR treatment. Ann Oncol 2017; 28(9): 2149-59.
[http://dx.doi.org/10.1093/annonc/mdx330] [PMID: 28911069]
[50]
Spindler KLG, Pallisgaard N, Andersen RF, Brandslund I, Jakobsen A. Circulating free DNA as biomarker and source for mutation detection in metastatic colorectal cancer. PLoS One 2015; 10(4): e0108247.
[http://dx.doi.org/10.1371/journal.pone.0108247] [PMID: 25875772]
[51]
Philipp AB, Stieber P, Nagel D, et al. Prognostic role of methylated free circulating DNA in colorectal cancer. Int J Cancer 2012; 131(10): 2308-19.
[http://dx.doi.org/10.1002/ijc.27505] [PMID: 22362391]
[52]
Spindler K-LG, Pallisgaard N, Vogelius I, Jakobsen A. Quantitative cell free DNA, KRAS and BRAF mutations in plasma from patients with metastatic colorectal cancer during treatment with cetuximab and irinotecan. Clin Cancer Res 2011; 18(4): 1177-85.
[53]
Razavi P, Li BT, Hou C, et al. Cell-free DNA (cfDNA) mutations from clonal hematopoiesis: Implications for interpretation of liquid biopsy tests American Society of Clinical Oncology. 2017.
[54]
Trigg RM, Martinson LJ, Parpart-Li S, Shaw JA. Factors that influence quality and yield of circulating-free DNA: A systematic review of the methodology literature. Heliyon 2018; 4(7): e00699.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00699] [PMID: 30094369]
[55]
Sorber L, Zwaenepoel K, Deschoolmeester V, et al. A comparison of cell-free DNA isolation kits: isolation and quantification of cell-free DNA in plasma. J Mol Diagn 2017; 19(1): 162-8.
[http://dx.doi.org/10.1016/j.jmoldx.2016.09.009] [PMID: 27865784]
[56]
Devonshire AS, Whale AS, Gutteridge A, et al. Towards standardisation of cell-free DNA measurement in plasma: controls for extraction efficiency, fragment size bias and quantification. Anal Bioanal Chem 2014; 406(26): 6499-512.
[http://dx.doi.org/10.1007/s00216-014-7835-3] [PMID: 24853859]
[57]
Kuan CT, Wikstrand CJ, Bigner DD. EGF mutant receptor vIII as a molecular target in cancer therapy. Endocr Relat Cancer 2001; 8(2): 83-96.
[http://dx.doi.org/10.1677/erc.0.0080083] [PMID: 11397666]
[58]
Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets 2012; 16(1): 15-31.
[http://dx.doi.org/10.1517/14728222.2011.648617] [PMID: 22239438]
[59]
Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel) 2017; 9(5): 52.
[PMID: 28513565]
[60]
Rukhlenko OS, Khorsand F, Krstic A, et al. Dissecting RAF inhibitor resistance by structure-based modeling reveals ways to overcome oncogenic RAS signaling. Cell systems 2018; 7(2): 161-179.e14.
[http://dx.doi.org/10.1016/j.cels.2018.06.002]
[61]
Bahrami A, Hassanian SM, ShahidSales S, et al. Targeting RAS signaling pathway as a potential therapeutic target in the treatment of colorectal cancer. J Cell Physiol 2018; 233(3): 2058-66.
[http://dx.doi.org/10.1002/jcp.25890] [PMID: 28262927]
[62]
Castellano E, Santos E. Functional specificity of ras isoforms: so similar but so different. Genes Cancer 2011; 2(3): 216-31.
[http://dx.doi.org/10.1177/1947601911408081] [PMID: 21779495]
[63]
Vasan N, Boyer JL, Herbst RS. A RAS renaissance: emerging targeted therapies for KRAS-mutated non-small cell lung cancer. Clin Cancer Res 2014; 20(15): 3921-30.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1762] [PMID: 24893629]
[64]
Kim HS, Heo JS, Lee J, et al. The impact of KRAS mutations on prognosis in surgically resected colorectal cancer patients with liver and lung metastases: a retrospective analysis. BMC Cancer 2016; 16(1): 120.
[http://dx.doi.org/10.1186/s12885-016-2141-4] [PMID: 26887348]
[65]
Hobbs GA, Der CJ, Rossman KL. RAS isoforms and mutations in cancer at a glance. J Cell Sci 2016; 129(7): 1287-92.
[http://dx.doi.org/10.1242/jcs.182873] [PMID: 26985062]
[66]
Fetics SK, Guterres H, Kearney BM, et al. Allosteric effects of the oncogenic RasQ61L mutant on Raf-RBD. Structure 2015; 23(3): 505-16.
[http://dx.doi.org/10.1016/j.str.2014.12.017] [PMID: 25684575]
[67]
Pietrantonio F, Petrelli F, Coinu A, et al. Predictive role of BRAF mutations in patients with advanced colorectal cancer receiving cetuximab and panitumumab: a meta-analysis. Eur J Cancer 2015; 51(5): 587-94.
[http://dx.doi.org/10.1016/j.ejca.2015.01.054] [PMID: 25673558]
[68]
Sanz-Garcia E, Argiles G, Elez E, Tabernero J. BRAF mutant colorectal cancer: prognosis, treatment, and new perspectives. Ann Oncol 2017; 28(11): 2648-57.
[http://dx.doi.org/10.1093/annonc/mdx401] [PMID: 29045527]
[69]
Mao C, Liao R-Y, Qiu L-X, Wang X-W, Ding H, Chen Q. BRAF V600E mutation and resistance to anti-EGFR monoclonal antibodies in patients with metastatic colorectal cancer: a meta-analysis. Mol Biol Rep 2011; 38(4): 2219-23.
[http://dx.doi.org/10.1007/s11033-010-0351-4] [PMID: 20857202]
[70]
Xie P, Streu C, Qin J, et al. The crystal structure of BRAF in complex with an organoruthenium inhibitor reveals a mechanism for inhibition of an active form of BRAF kinase. Biochemistry 2009; 48(23): 5187-98.
[http://dx.doi.org/10.1021/bi802067u] [PMID: 19371126]
[71]
Miyamoto Y, Suyama K, Baba H. Recent advances in targeting the EGFR signaling pathway for the treatment of metastatic colorectal cancer. Int J Mol Sci 2017; 18(4): 752.
[http://dx.doi.org/10.3390/ijms18040752] [PMID: 28368335]
[72]
Douillard J-Y, Oliner KS, Siena S, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 2013; 369(11): 1023-34.
[http://dx.doi.org/10.1056/NEJMoa1305275] [PMID: 24024839]
[73]
Al-Shamsi HO, Alhazzani W, Wolff RA. Extended RAS testing in metastatic colorectal cancer-Refining the predictive molecular biomarkers. J Gastrointest Oncol 2015; 6(3): 314-21.
[PMID: 26029459]
[74]
Hsu H-C, Thiam TK, Lu Y-J, et al. Mutations of KRAS/NRAS/BRAF predict cetuximab resistance in metastatic colorectal cancer patients. Oncotarget 2016; 7(16): 22257-70.
[http://dx.doi.org/10.18632/oncotarget.8076] [PMID: 26989027]
[75]
Schmiegel W, Scott RJ, Dooley S, et al. Blood-based detection of RAS mutations to guide anti-EGFR therapy in colorectal cancer patients: concordance of results from circulating tumor DNA and tissue-based RAS testing. Mol Oncol 2017; 11(2): 208-19.
[http://dx.doi.org/10.1002/1878-0261.12023] [PMID: 28106345]
[76]
Dawson S-J, Tsui DW, Murtaza M, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 2013; 368(13): 1199-209.
[http://dx.doi.org/10.1056/NEJMoa1213261] [PMID: 23484797]
[77]
Strickler JH, Loree JM, Ahronian LG, et al. Genomic landscape of cell-free DNA in patients with colorectal cancer. Cancer Discov 2018; 8(2): 164-73.
[http://dx.doi.org/10.1158/2159-8290.CD-17-1009] [PMID: 29196463]
[78]
Van Emburgh BO, Arena S, Siravegna G, et al. Acquired RAS or EGFR mutations and duration of response to EGFR blockade in colorectal cancer. Nat Commun 2016; 7: 13665.
[http://dx.doi.org/10.1038/ncomms13665] [PMID: 27929064]
[79]
Morelli MP, Overman MJ, Dasari A, et al. Characterizing the patterns of clonal selection in circulating tumor DNA from patients with colorectal cancer refractory to anti-EGFR treatment. Ann Oncol 2015; 26(4): 731-6.
[http://dx.doi.org/10.1093/annonc/mdv005] [PMID: 25628445]
[80]
Oddo D, Sennott EM, Barault L, et al. landscape of acquired resistance to targeted Therapy Combinations in BRAF-mutant colorectal cancer. Cancer Res 2016; 76(15): 4504-15.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0396] [PMID: 27312529]
[81]
Grasselli J, Elez E, Caratù G, et al. Concordance of blood- and tumor-based detection of RAS mutations to guide anti-EGFR therapy in metastatic colorectal cancer. Ann Oncol 2017; 28(6): 1294-301.
[http://dx.doi.org/10.1093/annonc/mdx112] [PMID: 28368441]
[82]
Spindler KL, Pallisgaard N, Andersen RF, Jakobsen A. Changes in mutational status during third-line treatment for metastatic colorectal cancer--results of consecutive measurement of cell free DNA, KRAS and BRAF in the plasma. Int J Cancer 2014; 135(9): 2215-22.
[http://dx.doi.org/10.1002/ijc.28863] [PMID: 24659028]
[83]
Toledo RA, Cubillo A, Vega E, et al. Clinical validation of prospective liquid biopsy monitoring in patients with wild-type RAS metastatic colorectal cancer treated with FOLFIRI-cetuximab. Oncotarget 2017; 8(21): 35289-300.
[http://dx.doi.org/10.18632/oncotarget.13311] [PMID: 27852040]
[84]
Buim ME, Fanelli MF, Souza VS, et al. Detection of KRAS mutations in circulating tumor cells from patients with metastatic colorectal cancer. Cancer Biol Ther 2015; 16(9): 1289-95.
[http://dx.doi.org/10.1080/15384047.2015.1070991] [PMID: 26252055]
[85]
Misale S, Yaeger R, Hobor S, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 2012; 486(7404): 532-6.
[http://dx.doi.org/10.1038/nature11156] [PMID: 22722830]
[86]
Nikolic A, Vlajnic M, Ristanovic M, Petrovic J, Dimitrijevic I, Krivokapic Z, et al. Cell-free DNA as biomarker and source for mutation detection in primary colorectal cancer. J BU ON 2017; 22(1): 178-83.
[87]
Tabernero J, Lenz HJ, Siena S, et al. Analysis of circulating DNA and protein biomarkers to predict the clinical activity of regorafenib and assess prognosis in patients with metastatic colorectal cancer: a retrospective, exploratory analysis of the CORRECT trial. Lancet Oncol 2015; 16(8): 937-48.
[http://dx.doi.org/10.1016/S1470-2045(15)00138-2] [PMID: 26184520]
[88]
Czeiger D, Shaked G, Eini H, et al. Measurement of circulating cell-free DNA levels by a new simple fluorescent test in patients with primary colorectal cancer. Am J Clin Pathol 2011; 135(2): 264-70.
[http://dx.doi.org/10.1309/AJCP4RK2IHVKTTZV] [PMID: 21228367]
[89]
Lin J-K, Lin P-C, Lin C-H, et al. Clinical relevance of alterations in quantity and quality of plasma DNA in colorectal cancer patients: based on the mutation spectra detected in primary tumors. Ann Surg Oncol 2014; 21(4)(Suppl. 4): S680-6.
[http://dx.doi.org/10.1245/s10434-014-3804-5] [PMID: 24841357]
[90]
Spindler KL, Pallisgaard N, Appelt AL, Andersen RF, Schou JV, Nielsen D, et al. Clinical utility of KRAS status in circulating plasma DNA compared to archival tumour tissue from patients with metastatic colorectal cancer treated with anti-epidermal growth factor receptor therapy. Eur J Cancer 2015; 51(17): 2678-85.
[http://dx.doi.org/10.1016/j.ejca.2015.06.118]
[91]
Garlan F, Laurent-Puig P, Sefrioui D, et al. Early evaluation of circulating tumor DNA as marker of therapeutic efficacy in metastatic colorectal cancer patients (PLACOL study). Clin Cancer Res 2017; 23(18): 5416-25.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3155] [PMID: 28576867]
[92]
Tie J, Kinde I, Wang Y, et al. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann Oncol 2015; 26(8): 1715-22.
[http://dx.doi.org/10.1093/annonc/mdv177] [PMID: 25851626]
[93]
Hao TB, Shi W, Shen XJ, et al. Circulating cell-free DNA in serum as a biomarker for diagnosis and prognostic prediction of colorectal cancer. Br J Cancer 2014; 111(8): 1482-9.
[http://dx.doi.org/10.1038/bjc.2014.470] [PMID: 25157833]
[94]
Cao B, Zhou X, Yang W, et al. The role of cell-free DNA in predicting colorectal cancer prognosis. Expert Rev Gastroenterol Hepatol 2018; 12(1): 39-48.
[http://dx.doi.org/10.1080/17474124.2017.1372191] [PMID: 28838275]
[95]
De Mattos-Arruda L, Olmos D, Tabernero J. Prognostic and predictive roles for circulating biomarkers in gastrointestinal cancer. Future Oncol 2011; 7(12): 1385-97.
[http://dx.doi.org/10.2217/fon.11.122] [PMID: 22112315]
[96]
Bossuyt PM, Reitsma JB, Bruns DE, et al. STARD Group. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ 2015; 351: h5527.
[http://dx.doi.org/10.1136/bmj.h5527] [PMID: 26511519]
[97]
Kidess E, Heirich K, Wiggin M, et al. Mutation profiling of tumor DNA from plasma and tumor tissue of colorectal cancer patients with a novel, high-sensitivity multiplexed mutation detection platform. Oncotarget 2015; 6(4): 2549-61.
[http://dx.doi.org/10.18632/oncotarget.3041] [PMID: 25575824]
[98]
Kidess-Sigal E, Liu HE, Triboulet MM, et al. Enumeration and targeted analysis of KRAS, BRAF and PIK3CA mutations in CTCs captured by a label-free platform: Comparison to ctDNA and tissue in metastatic colorectal cancer. Oncotarget 2016; 7(51): 85349-64.
[http://dx.doi.org/10.18632/oncotarget.13350] [PMID: 27863403]
[99]
Bronte G, Silvestris N, Castiglia M, et al. New findings on primary and acquired resistance to anti-EGFR therapy in metastatic colorectal cancer: do all roads lead to RAS? Oncotarget 2015; 6(28): 24780-96.
[http://dx.doi.org/10.18632/oncotarget.4959] [PMID: 26318427]
[100]
Thierry AR, Mouliere F, El Messaoudi S, et al. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med 2014; 20(4): 430-5.
[http://dx.doi.org/10.1038/nm.3511] [PMID: 24658074]
[101]
Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 2014; 32(6): 579-86.
[http://dx.doi.org/10.1200/JCO.2012.45.2011] [PMID: 24449238]
[102]
Bhalla A, Zulfiqar M, Bluth MH. Molecular diagnostics in colorectal carcinoma: advances and applications for 2018. Clin Lab Med 2018; 38(2): 311-42.
[http://dx.doi.org/10.1016/j.cll.2018.02.008] [PMID: 29776633]
[103]
Kin C, Kidess E, Poultsides GA, Visser BC, Jeffrey SS. Colorectal cancer diagnostics: biomarkers, cell-free DNA, circulating tumor cells and defining heterogeneous populations by single-cell analysis. Expert Rev Mol Diagn 2013; 13(6): 581-99.
[http://dx.doi.org/10.1586/14737159.2013.811896] [PMID: 23895128]