Current Chinese Chemistry

Author(s): Doaa S. El Sayed* and Mohamed A. Makhyoun

DOI: 10.2174/2666001601999201006125255

QSAR to Design an Effective Eco-friendly Inhibitor Model from Chitosan Derivatives Sea-food Waste based on DFT Calculations and Experimental Study

Page: [56 - 71] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: A density functional theory (DFT) study of some selected eco-friendly chitosan derivatives was performed, recently used as corrosion inhibitors for steel in 0.1M and 0.5M HCl. Correlation between observed and predicted inhibition efficiencies is based on QSAR by some statistical calculations.

Methods: We extracted the optimum molecular descriptors for the chitosan derivatives group under study and it was found that these descriptors have a proper effect on increasing the inhibition efficiency that was proved by applying the theoretical calculations (non-linear regression) on two models of chitosan derivatives (ChI and ChII). The quantum chemical descriptors most relevant to the corrosion inhibitors potential effect have been calculated in the aqueous phase. They include: EHOMO, ELUMO, dipole moment (D), molecular area (MA), molecular volume (MV), the charge on common oxygen (O Charge), the charge on common nitrogen (N Charge), nuclear repulsion energy (NRE), final single point energy (E) and total positive charge (TPC).

Results: The optimum parameters resulted using multiple linear regression are EHOMO, CCO, CCN, and D. Using these optimum parameters, the models designed show good results in their inhibition effect on steel at the same environment of the chitosan derivatives group under study.

Conclusion: Experimental explanation showed good results from modelling prediction, where the corrosion rate decreases markedly with increasing the concentration of the designed inhibitors till the optimum concentration where the rate becomes constant. SEM on the optimum inhibitor concentration proved the high inhibition efficiency obtained.

Keywords: DFT calculations, QSAR, statistical analysis, experimental study, chitosan derivatives, corrosion inhibition, model designing.

Graphical Abstract

[1]
Sheldon, R.A. Metrics of green chemistry and sustainability: past, present, and future. Chem. Eng., 2018, 6(1), 32-48.
[2]
Negm, N.A.; Zaki, M.F. Salem. M.A.I., J. Synthesis and evaluation of 4‐diethyl amino benzaldehyde schiff base cationic amphiphiles as corrosion inhibitors for carbon steel in different acidic media. Surfact. Deterg., 2009, 12, 321-329.
[http://dx.doi.org/10.1007/s11743-009-1156-0]
[3]
Negm, N.A.; Morsy, S.M.I.; Said, M.M. Corrosion inhibition of some novel hydrazone derivatives. Surfact. J. Deterg., 2005, 8, 95-98.
[http://dx.doi.org/10.1007/s11743-005-0336-4]
[4]
Negm, N.A. Morsy, S.M.I, J. Corrosion inhibition of triethanolammonium bromide mono‐ and dibenzoate as cationic inhibitors in an acidic medium. Surfact. Deterg., 2005, 8, 283-287.
[http://dx.doi.org/10.1007/s11743-005-0359-x]
[5]
Negm, N.A.; El Farargy, A.F.; Al Sabagh, A.M.; Abdelrahman, N.R. New schiff base cationic surfactants: surface and thermodynamic properties and applicability in bacterial growth and metal corrosion prevention. Surfact. J. Deterg., 2011, 14, 505-514.
[http://dx.doi.org/10.1007/s11743-011-1258-3]
[6]
Sinko, J.P. Challenges of chromate inhibitor pigments replacement in organic coatings. Org. Coat., 2001, 42, 267-282.
[http://dx.doi.org/10.1016/S0300-9440(01)00202-8]
[7]
Hiano, S.; Inui, H.; Kosaki, H.; Uno, Y.; Toda, T. Biotechnology and bioactive polymers; Springer, 1994.
[8]
Sugama, T.; Cook, M. Poly(itaconic acid)-modified chitosan coatings for mitigating corrosion of aluminum substrates. Prog. Org. Coat., 2000, 38(2), 79-87.
[http://dx.doi.org/10.1016/S0300-9440(00)00077-1]
[9]
Kobayashi, H.; Fukuoka, A. Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chem., 2013, 15, 1740-1763.
[http://dx.doi.org/10.1039/c3gc00060e]
[10]
Daoutidis, P.; Kelloway, A.; Marvin, W.A.; Rangarajan, S.; Torres, A.I. Process systems engineering for biorefineries: new research vistas. Curr. Opin. Chem. Eng., 2013, 2(4), 442-447.
[http://dx.doi.org/10.1016/j.coche.2013.09.006]
[11]
Abdallah, M.; Asghar, B.H.; Zaafarany, I.; Fouda, A.S. The inhibition of carbon steel corrosion in hydrochloric acid solution using some phenolic compounds. Int. J. Electrochem. Sci., 2012, 7(1), 282-304.
[12]
Khaled, M.I. Evaluation of cysteine as environmentally friendly corrosion inhibitor for copper in neutral and acidic chloride solutions. Electrochim. Acta, 2007, 52, 7811-7819.
[http://dx.doi.org/10.1016/j.electacta.2007.02.053]
[13]
Alsabagh, A.M.; Elsabee, M.Z.; Moustafa, Y.M.; Elfky, A.; Mors, R.E. Corrosion inhibition efficiency of some hydrophobically modified chitosan surfactants in relation to their surface active properties. Egyptian. J. Petrol., 2014, 23, 349-359.
[14]
Menaka, R.; Subhashini, S. Chitosan Schiff base as effective corrosion inhibitor for mild steel in acid medium. Polym. Int., 2017, 66, 349-358.
[http://dx.doi.org/10.1002/pi.5245]
[15]
Darmokoesoemo, H.; Suyanto, S.; Anggara, L.S.; Amenaghawon, A.N.; Kusuma, H.S. Application of carboxymethyl chitosan-benzaldehyde as anticorrosion agent on steel. Int. J. Chem. Eng., 2018, 2, 9.
[16]
Verma, C.; Kumar, A.M.; Mazumder, A.J.; Quraishi, M.A. Chitosan-Based Green and Sustainable Corrosion Inhibitors for Carbon Steel. In: Chitin-Chitosan - Myriad Functionalities in Science and Technology; , 2018.
[http://dx.doi.org/10.5772/intechopen.74989]
[17]
Hussein, M.H.M.; El-Hady, M.F.; Shehata, H.A.H.; Hegazy, M.A.; Hefni, H.H.H. Preparation of some eco-friendly corrosion inhibitors having antibacterial activity from sea food waste. J. Surfactants Deterg., 2013, 16(2), 233-242.
[PMID: 23420292]
[18]
El-Mahdy, G.A.; Atta, A.M.; Al-Lohedan, H.A.; Ezzat, A.O. Synthesis of water soluble hyperbranched poly (amine-ester) as corrosion inhibitors for steel. Int. J. Electrochem. Sci., 2015, 10, 5812-5826.
[19]
Toy, M.; Tanak, H.; Theo, J. DFT quantum chemical studies on 1-[n-(2-pyridyl) aminomethylidene]-2 (1h)-naphtalenone. Comput. Chem., 2012, 11, 745.
[20]
Frank, N. The ORCA program system. Interdiscip. Rev. Comput. Mol. Sci., 2012, 8, 73-78.
[21]
Becke, A. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 1998, 38, 3098.
[http://dx.doi.org/10.1103/PhysRevA.38.3098]
[22]
Becke, A.D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98, 5648.
[http://dx.doi.org/10.1063/1.464913]
[23]
Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[24]
Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys., 1980, 72, 650.
[http://dx.doi.org/10.1063/1.438955]
[25]
Blaudeau, J.P.; McGrath, M.P.; Curtiss, L.A.; Radom, L. Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca. J. Chem. Phys., 1997, 107, 5016.
[http://dx.doi.org/10.1063/1.474865]
[26]
Curtiss, L.A.; McGrath, M.P.; Blandeau, J.P.; Davis, N.E.; Binning, R.C.; Radom, L. J. Chem. Phys., 1995, Extension of Gaussian 2 theory to molecules containing third row atoms Ga-Kr. 1995, 103, 6104.
[http://dx.doi.org/10.1063/1.470438]
[27]
A)Mills, N. ChemDraw Ultra 10.0 CambridgeSoft, 100 CambridgePark Drive, Cambridge, MA. J. Adm. Soc., 2006, 128(41), 13649-13650.
B)Zhurko, G.A.; Zhurko, D.A. ChemCraft: Tool for Treatment of Chemical Data, Lite Version Build 08 (freeware) 2005.
[28]
Fujita, T.; Winkler, D.A. Understanding the roles of the “Two QSARs”. J. Chem. Inf. Model., 2016, 56(2), 269-274.
[http://dx.doi.org/10.1021/acs.jcim.5b00229] [PMID: 26754147]
[29]
Winkler, D.A.; Burden, F.R. Robust QSAR models from novel descriptors and bayesian regularised neural networks. Mol. Simul., 2000, 24, 243-258.
[http://dx.doi.org/10.1080/08927020008022374]
[30]
Le, T.; Epa, N.V.; Burden, F.R.; Winkler, D.A. Quantitative structure property relationship modeling of diverse materials properties. Chem. Rev., 2012, 112, 2889-2919.
[31]
Gupta, M.K.; Gupta, S.; Rawal, R.K. Impact of artificial neural networks in qsar and computational modeling. In: M. Puri, Y Pathak, VK Sutariya, S Tipparaju and W Moreno. Eds. Artificial Neural Network for Drug Design, Delivery and Disposition. Eds; Elsevier (Academic Press): London UK, 2015; pp. 153-179.
[32]
Montañez-Godínez, N.; Martínez-Olguín, A.C.; Deeb, O.; Garduño-Juárez, R.; Ramírez-Galicia, G. QSAR/QSPR as an application of artificial neural networks. Methods Mol. Biol., 2015, 1260, 319-333.
[http://dx.doi.org/10.1007/978-1-4939-2239-0_19] [PMID: 25502390]
[33]
Norman, H.; Dale, H.; Hull, C.H. SPSS Statistical Package for the Social Sciences, 1970.
[34]
Khaled, K.F.; Babic-Samarzija, K.; Hackerman, N. Theoretical study of the structural effects of polymethylene amines on corrosion inhibition of iron in acid solutions. Electrochim. Acta, 2005, 5, 2515-2520.
[http://dx.doi.org/10.1016/j.electacta.2004.10.079]
[35]
Khalil, N. Quantum chemical approach of corrosion inhibition. Electrochim. Acta, 2003, 48(18), 2635.
[http://dx.doi.org/10.1016/S0013-4686(03)00307-4]
[36]
Lukovits, I.; Kalman, E.; Palinkas, G. Nonlinear group-contribution models of corrosion inhibition. Corrosion, 1995, 51, 201.
[http://dx.doi.org/10.5006/1.3294362]
[37]
Lukovits, I.; Palfi, K.; Bako, I.; Kalman, E. LKP model of the inhibition mechanism of thiourea compounds. Corrosion, 1997, 53(12), 915-919.
[http://dx.doi.org/10.5006/1.3290275]