An Overview of the One-pot Synthesis of Imidazolines

Page: [2341 - 2355] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

One-pot syntheses are a simple, efficient and easy methodology, which are widely used for the synthesis of organic compounds. Imidazoline is a valuable heterocyclic moiety used as a synthetic intermediate, chiral auxiliary, chiral catalyst and a ligand for asymmetric catalysis. Imidazole is a fundamental unit of biomolecules that can be easily prepared from imidazolines. The one-pot method is an impressive approach to synthesize organic compounds as it minimizes the reaction time, separation procedures, and ecological impact. Many significant one-pot methods such as N-bromosuccinimide mediated reaction, ring-opening of tetrahydrofuran, triflic anhydrate mediated reaction, etc. were reported for imidazoline synthesis. This review describes an overview of the one-pot synthesis of imidazolines and covers literature up to 2020.

Keywords: One-pot synthesis, imidazolines, ethylenediamine, green chemistry, imidazolones, organic compounds.

Graphical Abstract

[1]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[2]
Sreedevi, R.; Saranya, S.; Rohit, K.R.; Anilkumar, G. Recent trends in iron-catalyzed reactions towards the synthesis of nitrogen-containing heterocycles. Adv. Synth. Catal., 2019, 361, 2236-2249.
[http://dx.doi.org/10.1002/adsc.201801471]
[3]
Cherian, R.M.; Harry, N.A.; Saranya, S.; Rohit, K.R.; Anilkumar, G. Copper-catalysed multicomponent syntheses of heterocycles. Asian J. Org. Chem., 2019, 8, 197-233.
[http://dx.doi.org/10.1002/ajoc.201800619]
[4]
Krishnan, K.K.; Ujwaldev, S.M.; Saranya, S.; Anilkumar, G.; Beller, M. Recent advances and perspectives in the synthesis of heterocycles via zinc catalysis. Adv. Synth. Catal., 2019, 361, 382-404.
[http://dx.doi.org/10.1002/adsc.201800868]
[5]
Sreedevi, R.; Saranya, S. Recent trends in the silver‐catalyzed synthesis of nitrogen heterocycles. Adv. Synth. Catal., 2019, 361, 4625-4644.
[http://dx.doi.org/10.1002/adsc.201900599]
[6]
Ujwaldev, S.M.; Harry, N.A.; Divakar, M.A.; Anilkumar, G. Cobalt-catalyzed C–H activation: recent progress in heterocyclic chemistry. Catal. Sci. Technol., 2018, 8, 5983-6018.
[http://dx.doi.org/10.1039/C8CY01418C]
[7]
Walsh, C.T. Nature loves nitrogen heterocycles. Tetrahedron Lett., 2015, 56, 3075-3081.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.046]
[8]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[9]
Kranjc, K.; Kocevar, M. Microwave-assisted organic synthesis: general considerations and transformations of heterocyclic compounds. Curr. Org. Chem., 2010, 14, 1050-1074.
[http://dx.doi.org/10.2174/138527210791130488]
[10]
Elders, N.; Ruijter, E.; de Kanter, F.J.; Groen, M.B.; Orru, R.V.A. Selective formation of 2-imidazolines and 2-substituted oxazoles by using a three-component reaction. Chemistry Eur. J., 2008, 14(16), 4961-4973.
[http://dx.doi.org/10.1002/chem.200800271] [PMID: 18431735]
[11]
Faillace, M.S.; Silva, A.P.; Alves Borges Leal, A.L.; Muratori da Costa, L.; Barreto, H.M.; Peláez, W.J. Sulfurated and oxygenated imidazoline derivatives: synthesis, antioxidant activity and light-mediated antibacterial activity. ChemMedChem, 2020, 15(10), 851-861.
[http://dx.doi.org/10.1002/cmdc.202000048] [PMID: 32144846]
[12]
Ammemiya, Y.; Miller, D.D.; Hsu, F.L. Dehydrogenation of imidazolines to imidazoles with Pd-carbon. Synth. Commun., 1990, 20, 2483-2489.
[http://dx.doi.org/10.1080/00397919008053197]
[13]
Ferm, R.J.; Riebsomer, J.L. The chemistry of the 2-imidazolines and imidazolidines. Chem. Rev., 1954, 54, 593-613.
[http://dx.doi.org/10.1021/cr60170a002]
[14]
Katritzky, A.R.; Suzuki, K.; He, H.Y. Convenient syntheses of unsymmetrical imidazolidines. J. Org. Chem., 2002, 67(9), 3109-3114.
[http://dx.doi.org/10.1021/jo010868n] [PMID: 11975574]
[15]
Liua, H.; Du, D.M. Recent advances in the synthesis of 2‐imidazolines and their applications in homogeneous catalysis. Adv. Synth. Catal., 2009, 351, 489-519.
[http://dx.doi.org/10.1002/adsc.200800797]
[16]
Prasad, B.A.B.; Pandey, G.; Singh, V.K. Synthesis of substituted imidazolines via [3+2]-cycloaddition of aziridines with nitriles. Tetrahedron Lett., 2004, 45, 1137-1141.
[http://dx.doi.org/10.1016/j.tetlet.2003.12.015]
[17]
Hong, S.S.; Bavadekar, S.A.; Lee, S.I.; Patil, P.N.; Lalchandani, S.G.; Feller, D.R.; Miller, D.D. Bioisosteric phentolamine analogs as potent alpha-adrenergic antagonists. Bioorg. Med. Chem. Lett., 2005, 15(21), 4691-4695.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.083] [PMID: 16153828]
[18]
Hodson, S.J.; Bigham, E.C.; Garrison, D.T.; Gobel, M.J.; Irving, P.E.; Liacos, J.A.; Navas, F., III; Saussy, D.L., Jr; Sherman, B.W.; Speake, J.D.; Bishop, M.J. α(1)-adrenoceptor activation: a comparison of 4-(anilinomethyl)imidazoles and 4-(phenoxymethyl)imidazoles to related 2-imidazolines. Bioorg. Med. Chem. Lett., 2002, 12(23), 3449-3452.
[http://dx.doi.org/10.1016/S0960-894X(02)00753-9] [PMID: 12419381]
[19]
Bousquet, P. Imidazoline receptors. Neurochem. Int., 1997, 30(1), 3-7.
[http://dx.doi.org/10.1016/S0197-0186(96)00039-3] [PMID: 9116584]
[20]
Greenhill, J.V.; Lue, P. Amidines and guanidines in medicinal chemistry. Prog. Med. Chem., 1993, 30, 203-326.
[http://dx.doi.org/10.1016/S0079-6468(08)70378-3] [PMID: 7905649]
[21]
Nikolic, K.; Filipic, S.; Agbaba, D. QSAR study of imidazoline antihypertensive drugs. Bioorg. Med. Chem., 2008, 16(15), 7134-7140.
[http://dx.doi.org/10.1016/j.bmc.2008.06.051] [PMID: 18621536]
[22]
Szabo, B. Imidazoline antihypertensive drugs: a critical review on their mechanism of action. Pharmacol. Ther., 2002, 93(1), 1-35.
[http://dx.doi.org/10.1016/S0163-7258(01)00170-X] [PMID: 11916539]
[23]
Head, G.A.; Mayorov, D.N. Imidazoline receptors, novel agents and therapeutic potential. Cardiovasc. Hematol. Agents Med. Chem., 2006, 4(1), 17-32.
[http://dx.doi.org/10.2174/187152506775268758] [PMID: 16529547]
[24]
Clarke, P.A.; Santosa, S.; Martin, W.H.C. Combining Pot, Atom and Step Economy (PASE) in organic synthesis. Synthesis of tetrahydropyran-4-ones. Green Chem., 2007, 9, 438-441.
[http://dx.doi.org/10.1039/b700923b]
[25]
Khurana, M.; Chaudhary, A.; Lumb, A.; Nand, B. An expedient four-component domino protocol for the synthesis of novel benzo[a]phenazine annulated heterocycles and their photophysical studies. Green Chem., 2012, 14, 2321-2327.
[http://dx.doi.org/10.1039/c2gc35644a]
[26]
Vaxelaire, C.; Winter, P.; Christmann, M. One-pot reactions accelerate the synthesis of active pharmaceutical ingredients. Angew. Chem. Int. Ed. Engl., 2011, 50(16), 3605-3607.
[http://dx.doi.org/10.1002/anie.201100059] [PMID: 21374777]
[27]
Shiri, M. Indoles in multicomponent processes (MCPs). Chem. Rev., 2012, 112(6), 3508-3549.
[http://dx.doi.org/10.1021/cr2003954] [PMID: 22390139]
[28]
Zhao, W.; Chen, F.E. One-pot synthesis and its practical application in pharmaceutical industry. Curr. Org. Synth., 2012, 9, 873-897.
[http://dx.doi.org/10.2174/157017912803901619]
[29]
Atkinson, M.B.J.; Reynoso, S.O.; Luna, R.E.; Bwambok, D.K.; Thuo, M.M. Pot-in-pot reactions: a simple and green approach to efficient organic synthesis. RSC Advances, 2015, 5, 597-607.
[http://dx.doi.org/10.1039/C4RA13506G]
[30]
Denard, C.A.; Hartwig, J.F.; Zhao, H. Multistep one-pot reactions combining biocatalysts and chemical catalysts for asymmetric synthesis. ACS Catal., 2013, 3, 2856-2864.
[http://dx.doi.org/10.1021/cs400633a]
[31]
Singh, M.S.; Raghuvanshi, K. Recent advances in InCl3-catalyzed one-pot organic synthesis. Tetrahedron, 2012, 68, 8683-8697.
[http://dx.doi.org/10.1016/j.tet.2012.06.099]
[32]
Hayashi, Y. Pot economy and one-pot synthesis. Chem. Sci. (Camb.), 2016, 7(2), 866-880.
[http://dx.doi.org/10.1039/C5SC02913A] [PMID: 28791118]
[33]
Climent, M.J.; Corma, A.; Iborra, S. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem. Rev., 2011, 111(2), 1072-1133.
[http://dx.doi.org/10.1021/cr1002084] [PMID: 21105733]
[34]
Lee, J.M.; Han, Y.; Na, H.; Chang, S. Cooperative multi-catalyst systems for one-pot organic transformations. Chem. Soc. Rev., 2004, 33, 302-312.
[http://dx.doi.org/10.1039/B309033G ]
[35]
Bruggink, A.; Schoevaart, R.; Kieboom, T. Concepts of nature in organic synthesis: cascade catalysis and multistep conversions in concert. Org. Process Res. Dev., 2003, 7, 622-640.
[http://dx.doi.org/10.1021/op0340311]
[36]
Broadwater, S.J.; Roth, S.L.; Price, K.E.; Kobaslija, M.; McQuade, D.T. One-pot multi-step synthesis: a challenge spawning innovation. Org. Biomol. Chem., 2005, 3(16), 2899-2906.
[http://dx.doi.org/10.1039/b506621m] [PMID: 16186917]
[37]
Tietze, L.F. Domino reactions in organic synthesis. Chem. Rev., 1996, 96(1), 115-136.
[http://dx.doi.org/10.1021/cr950027e] [PMID: 11848746]
[38]
Denmark, S.E.; Thorarensen, A. Tandem [4+2]/[3+2] cycloadditions of nitroalkenes. Chem. Rev., 1996, 96, 137-166.
[http://dx.doi.org/10.1021/cr940277f ]
[39]
Fogg, D.E.; Santos, E.N.D. Tandem catalysis: a taxonomy and illustrative review. Coord. Chem. Rev., 2004, 248, 2365.
[http://dx.doi.org/10.1016/j.ccr.2004.05.012]
[40]
Hai, X.L.; Jing, L. Juan, Song, Rong, Y. C. Spirocyclic Aromatic Hydrocarbons (SAHs) and their synthetic methodologies. Curr. Org. Chem., 2010, 14, 2169-2195.
[http://dx.doi.org/10.2174/138527210793351599]
[41]
Doug, V.; Ajay, B.N.; Amitabh, J. One-pot annulation of 2-naphthol analogs to heterocycle. Curr. Org. Synth., 2012, 9, 613-649.
[http://dx.doi.org/10.2174/157017912803251747]
[42]
Indu, S.; Kalippan, K.P. A new and informative [a,b,c,d] nomenclature for one-pot multistep transformations: a simple tool to measure synthetic efficiency. RSC Advances, 2018, 8(38), 21292-21305.
[http://dx.doi.org/10.1039/C8RA03338B ]
[43]
Mara, A.; Phillips, F. Organocatalytic asymmetric nitro-Michael reactions. Curr. Org. Synth., 2016, 13, 687-725.
[http://dx.doi.org/10.2174/1570179412666150914200843]
[44]
Nematpoura, M. Koohib, S. R.; Abedic, E.; Lotfid, M. A green, one-pot formation of imidazolone and pyrimidinone derivatives containing a sulfonyl group. J. Chem. Res., 2016, 40, 652-654.
[http://dx.doi.org/10.3184/030823516X14755061428199]
[45]
Crouch, R.D. Synthetic routes toward 2-substituted 2-imidazolines. Tetrahedron, 2009, 65, 2387-2397.
[http://dx.doi.org/10.1016/j.tet.2008.12.022]
[46]
Tlahuext-Aca, A.; Hernández-Fajardo, O.; Arévalo, A.; García, J.J. Synthesis of tetra-substituted imidazoles and 2-imidazolines by Ni(0)-catalyzed dehydrogenation of benzylic-type imines. Dalton Trans., 2014, 43(42), 15997-16005.
[http://dx.doi.org/10.1039/C4DT02313G] [PMID: 25232889]
[47]
Kamal, A.; Ramakrishna, G.; Raju, P.; Viswanath, A.; Ramaiah, M.J.; Balakishan, G.; Bhadra, M.P. Synthesis and anti-cancer activity of chalcone linked imidazolones. Bioorg. Med. Chem., 2010, 20, 4865-4869.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.097]
[48]
Gust, R.; Keilitz, R.; Schmidt, K.; von Rauch, M. (4R,5S)/(4S,5R)-4,5-Bis(4-hydroxyphenyl)-2-imidazolines: ligands for the estrogen receptor with a novel binding mode. J. Med. Chem., 2002, 45(16), 3356-3365.
[http://dx.doi.org/10.1021/jm020809h] [PMID: 12139447]
[49]
(a) Corey, E.J.; Grogan, M.J. Enantioselective synthesis of alpha-amino nitriles from N-benzhydryl imines and HCN with a chiral bicyclic guanidine as catalyst. Org. Lett 1999, 1(1), 157-160.
[http://dx.doi.org/10.1021/ol990623l ] [PMID: 10822552]
(b) Isobe, T.; Fukuda, K.; Araki, Y.; Ishikawa, T. Modified guanidines as chiral superbases: the first example of asymmetric silylation of secondary alcohols. Chem. Commun. (Camb.), 2001, 243, 243-244.
[http://dx.doi.org/10.1039/b009173l]
[50]
(a) Jones, R. C. F.; Turner, I.; Howard, K. J. A new route to homochiral piperidines. Tetrahedron Lett, 1993, 34, 6329-6332.
[http://dx.doi.org/10.1016/S0040-4039(00)73744-0]
(b) Jones, R.; Howard, K.J.; Snaith, J.S. Cycloaddition of homochiral imidazolinium ylides: a route to optically active pyrroloimidazoles. Tetrahedron Lett., 1996, 34, 1707-1710.
[http://dx.doi.org/10.1016/0040-4039(96)00113-X]
(c) Langlois, Y.; Dalko, P.I.J. Stereoselective synthesis of quaternary benzylic carbons using C2 symmetric imidazolines and tetrahydrofuran as electrophile. Org. Chem., 1998, 63(23), 8107-8117.
[http://dx.doi.org/10.1021/jo980289r]
[51]
Bronson, J.J.; DenBleyker, K.L.; Falk, P.J.; Mate, R.A.; Ho, H.T.; Pucci, M.J.; Snyder, L.B. Discovery of the first antibacterial small molecule inhibitors of MurB. Bioorg. Med. Chem. Lett., 2003, 13(5), 873-875.
[http://dx.doi.org/10.1016/S0960-894X(02)01076-4] [PMID: 12617911]
[52]
Watanabe, K.; Morinaka, Y.; Hayashi, Y.; Shinoda, M.; Nishi, H.; Fukushima, N.; Watanabe, T.; Ishibashi, A.; Yuki, S.; Tanaka, M. 5-Aryl-imidazolin-2-ones as a scaffold for potent antioxidant and memory-improving activity. Bioorg. Med. Chem. Lett., 2008, 18(4), 1478-1483.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.064] [PMID: 18191397]
[53]
Congiu, C.; Cocco, M.T.; Onnis, V. Design, synthesis, and in vitro antitumor activity of new 1,4-diarylimidazole-2-ones and their 2-thione analogues. Bioorg. Med. Chem. Lett., 2008, 18(3), 989-993.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.023] [PMID: 18164978]
[54]
Hu, J.; Li, Z.; Zhang, X.; Han, Y.; Liu, Y.; Zhao, Y.; Liu, Y.; Gong, P. Palladium-catalyzed cyclization reaction of oxime acetates and aryl iodides: syntheses of 2-imidazolines. Org. Lett., 2018, 20(7), 2116-2119.
[http://dx.doi.org/10.1021/acs.orglett.8b00696] [PMID: 29553756]
[55]
Zhou, X.T.; Lin, Y.R.; Dai, L.X.; Sun, J.; Xia, L.J.; Tang, M.H. A catalytic enantioselective access to optically active 2-imidazoline from N-sulfonylimines and isocyano-acetates. J. Org. Chem., 1999, 64, 1331-1334.
[http://dx.doi.org/10.1021/jo980949s]
[56]
Edwards, A.; Osborne, C.; Webster, S.; Klenerman, D.; Joseph, M.; Ostovar, P.; Doyle, M. Mechanistic studies of the corrosion inhibitor oleic imidazoline. Corros. Sci., 1994, 36, 315-325.
[http://dx.doi.org/10.1016/0010-938X(94)90160-0]
[57]
Bastero, A.; Ruiz, A.; Claver, C.; Milani, B.; Zangrando, E. Influence of pyridine-imidazoline ligands on the reactivity of palladium-methyl complexes with carbon monoxide. Organometallics, 2002, 21, 5820-5829.
[http://dx.doi.org/10.1021/om020568b]
[58]
Yokoyama, N.; Arai, T. Asymmetric Friedel-Crafts reaction of N-heterocycles and nitroalkenes catalyzed by imidazoline-aminophenol-Cu complex. Chem. Commun. (Camb.), 2009, 14(22), 3285-3287.
[http://dx.doi.org/10.1039/b904275j] [PMID: 19587941]
[59]
Rondu, F.; Bihan, G.L.; Wang, X.; Lamouri, A.; Touboul, E.; Dive, G.; Bellahsene, T.; Pfeiffer, B.; Renard, P.; Lemaitre, B.G.; Manechez, D.; Penicaud, L.; Ktorza, A.; Godfroid, J.J. Design and synthesis of imidazoline derivatives active on glucose homeostasis in a rat model of type II diabetes. 1. Synthesis and biological activities of N-benzyl-N ‘-(arylalkyl)-2-(4‘,5‘-dihydro-1‘H-imidazol-2’-yl)piperazines. J. Med. Chem., 1997, 40, 3793-3803.
[http://dx.doi.org/10.1021/jm9608624] [PMID: 9371245]
[60]
Vizi, E.S. Compounds acting on alpha1‐ and alpha2‐ adrenoceptors: agonists and antagonists. Med. Res. Rev., 1986, 6(4), 431-449.
[http://dx.doi.org/10.1002/med.2610060403 ]
[61]
Behbahani, F.K.; Daloee, T.S.; Ziaei, P. Solvent-free and water mediated synthesis of 2-substituted imidazolines using iron (III) phosphate. Curr. Org. Chem., 2013, 17(3), 296-303.
[http://dx.doi.org/110.2174/1385272811317030010 ]
[62]
Vassilev, L.T.; Vu, B.T.; Graves, B.; Carvajal, D.; Podlaski, F.; Filipovic, Z.; Kong, N.; Kammlott, U.; Lukacs, C.; Klein, C.; Fotouhi, N.; Liu, E.A. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science, 2004, 303(5659), 844-848.
[http://dx.doi.org/10.1126/science.1092472] [PMID: 14704432]
[63]
Mosey, R.A.; Ellsworth, A.A.; Magyar, C.L.; Hubbell, G.E.; Theisen, C.C.; Holmes, D. One-pot triflic anhydride-mediated synthesis of 1,2-disubstituted 2-imidazolines from N-(2-haloethyl)amides and amines. Tetrahedron, 2016, 72, 6380-6389.
[http://dx.doi.org/10.1016/j.tet.2016.08.040]
[64]
Janssen, G.V.; Slobbe, P.; Mooijman, M.; Kruithof, A.; Ehlers, A.W.; Guerra, C.F.; Bickelhaupt, F.M.; Slootweg, J.C.; Ruijter, E.; Lammertsma, K.; Orru, R.V. Diastere-oselective one-pot synthesis of tetrafunctionalized 2-imidazolines. J. Org. Chem., 2014, 79(11), 5219-5226.
[http://dx.doi.org/10.1021/jo500790n] [PMID: 24820129]
[65]
Puranik, R.; Gautam, V.; Kagita, V.B.; Phaneendra, G.; Manjunatha, S.G.; Ramasubramanian, S.; Babu, M.S.; Keshwan, J.; Bhagat, S.; Prakash, R. Novel approach towards one pot stereospecific synthesis of carbohydrate derived substituted imidazolines. Tetrahedron Lett., 2014, 55, 4943-4247.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.030]
[66]
Esfahani, M.N.; Montazerozohori, M.; Mehrizi, S. Efficient and one-pot catalytic synthesis of 2-imidazolines and bis-imidazolines with p-toluenesulfonic acid under solvent free conditions. J. Heterocycl. Chem., 2011, 48, 249-254.
[http://dx.doi.org/10.1002/jhet.516]
[67]
Sun, M.; Wei, H.T.; Li, D.; Zheng, Y.G.; Cai, J.; Ji, M. Mild and efficient one-pot synthesis of 2-imidazolines from nitriles using sodium hydrosulfide as catalyst. Synth. Commun., 2008, 38, 3151-3158.
[http://dx.doi.org/10.1080/00397910802109232]
[68]
Fujioka, H.; Murai, K.; Kubo, O.; Obha, Y.; Kita, Y. One-pot synthesis of imidazolines from aldehydes: detailed study about solvents and substrates. Tetrahedron, 2007, 63, 638-643.
[http://dx.doi.org/10.1016/j.tet.2006.11.007]
[69]
Fujioka, H.; Murai, K.; Obha, Y.; Hiramatsu, A.; Kita, Y. A mild and efficient one-pot synthesis of 2-dihydroimidazoles from aldehydes. Tetrahedron Lett., 2005, 46, 2197-2199.
[http://dx.doi.org/10.1016/j.tetlet.2005.02.025]
[70]
Kuszpit, M.R.; Wulff, W.D.; Tepe, J.J. One-pot synthesis of 2-imidazolines via the ring expansion of imidoyl chlorides with aziridines. J. Org. Chem., 2011, 76(8), 2913-2919.
[http://dx.doi.org/10.1021/jo200101q] [PMID: 21401025]
[71]
Poliakoff, M. Licence, P. Green chemistry. Nature, 2007, 450, 810-812.
[http://dx.doi.org/10.1038/450810a] [PMID: 18064000]
[72]
Sanderson, K. Chemistry: it’s not easy being green. Nature, 2011, 469(7328), 18-20.
[http://dx.doi.org/10.1038/469018a] [PMID: 21209638]
[73]
Jessop, P.G. Searching for green solvents. Green Chem., 2011, 13, 1391-1398.
[http://dx.doi.org/10.1039/c0gc00797h]
[74]
Eilks, I.; Rauch, F. Sustainable development and green chemistry in chemistry education. Chem. Educ. Res. Pract., 2012, 13, 57-58.
[http://dx.doi.org/10.1039/C2RP90003C]
[75]
Simon, M.O.; Li, C.J. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev., 2012, 41(4), 1415-1427.
[http://dx.doi.org/10.1039/C1CS15222J] [PMID: 22048162]
[76]
Noyori, R. Pursuing practical elegance in chemical synthesis. Chem. Commun. , 2005, 2005(14), 1807-1811.
[http://dx.doi.org/10.1039/b502713f]
[77]
Szekely, G.; Phuong, H.A.L.; Cseri, L.; Whitehead, G.F.S.; Garforth, A.; Budd, P. Environmentally benign and diastereoselective synthesis of 2,4,5-trisubstituted-2-imidazolines. RSC Advances, 2017, 7, 53278-53289.
[http://dx.doi.org/10.1039/C7RA11827A ]
[78]
Chen, G.F.; Li, H.Y.; Xiao, N.; Chen, B.H.; Song, Y.L.; Li, J.T.; Li, Z.W. Efficient synthesis of 2-imidazolines in the presence of molecular iodine under ultrasound irradiation. Aust. J. Chem., 2014, 67, 1516-1521.
[http://dx.doi.org/10.1071/CH13700]
[79]
Konwar, D.; Gogoi, P. An efficient and one-pot synthesis of imidazolines and benzimidazoles via anaerobic oxidation of carbon-nitrogen bonds in water. Tetrahedron Lett., 2006, 47, 79-82.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.134]
[80]
Nakamura, S.; Tsuno, N.; Yamashita, M.; Ohta, S. Synthesis of a regio-isomer of kealiiquinone, a marine benzimidazole alkaloid. J. Chem. Soc., Perkin Trans. 1, 2001, 2001, 429-436.
[http://dx.doi.org/10.1039/b007560o]
[81]
Das, R.; Banerjee, M.; Rai, R.K.; Karri, R.; Roy, G. Metal-free C(sp2)-H functionalization of azoles: K2CO3/I2-mediated oxidation, imination, and amination. Org. Biomol. Chem., 2018, 16(23), 4243-4260.
[http://dx.doi.org/10.1039/C8OB00535D] [PMID: 29651477]
[82]
Alnashef, I.M.; Hashim, M.A.; Mjalli, F.S.; Ali, M.Q.A.; Hayyan, M. A novel method for the synthesis of 2-imidazolones. Tetrahedron Lett., 2010, 51, 1976-1978.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.030]
[83]
(a) Lima, H.M.; Lovely, C.J. Synthesis of 2-imidazolones and 2-iminoimidazoles. Org. Lett., 2011, 13(21), 5736-5739.
[http://dx.doi.org/10.1021/ol2022438] [PMID: 21992702]
(b) Li, D.; Ollevier, T. Synthesis of imidazolidinone, imidazolone, and benzimidazolone derivatives through oxidation using copper and air. Org. Lett., 2019, 21(10), 3572-3575.
[http://dx.doi.org/10.1021/acs.orglett.9b00973] [PMID: 31058508]
[84]
Khan, K.M.; Mughal, U.R.; Khan, S.; Khan, S.; Perveen, S.; Choudhary, M.I. Synthesis and antibacterial and antifungal activity of 5-substituted imidazolones. Lett. Drug Des. Discov., 2009, 6(1), 69-77.
[http://dx.doi.org/10.2174/157018009787158553 ]
[85]
Peshkov, V.A.; Pereshivko, O.P.; Sharma, S.; Meganathan, T.; Parmar, V.S.; Ermolat’ev, D.S.; Eyken, E.V.V. Post-Ugi gold-catalyzed diastereoselective domino cycliza-tion for the synthesis of diversely substituted spiroindolines. J. Org. Chem., 2011, 76, 5867-5872.
[http://dx.doi.org/10.1021/jo200789t] [PMID: 21639124]
[86]
Zhang, H.; Huang, D.; Wang, K.H.; Li, J.; Su, Y.; Hu, Y. Synthesis of benzimidazolones via one-pot reaction of hydroxylamines, aldehydes, and trimethylsilyl cyanide promoted by diacetoxyiodobenzene. J. Org. Chem., 2017, 82(3), 1600-1609.
[http://dx.doi.org/10.1021/acs.joc.6b02781] [PMID: 28055212]
[87]
Sun, C.M.; Haung, J.Y.; Barve, I. One-pot synthesis of 4-arylidene imidazolin-5-ones by reaction of amino acid esters with isocyanates and α-bromoketones. J. Org. Biomol. Chem., 2019, 17, 2839-2849.
[http://dx.doi.org/10.1039/C8OB03111H ]
[88]
Ye, P.; Sargent, K.; Stewart, E.; Liu, J.F.; Yohannes, D.; Yu, L. Novel and expeditious microwave-assisted three-component reactions for the synthesis of spiroimidazolin-4-ones. J. Org. Chem., 2006, 71(8), 3137-3140.
[http://dx.doi.org/10.1021/jo060228q] [PMID: 16599610]
[89]
Hu, Y.; Cheng, Y. One-pot facile synthesis of 1,3,4-trisubstituted imidazolin-2-ones. J. Chem. Res., 2004, 2004(4), 292-293.
[http://dx.doi.org/10.3184/0308234041209112]
[90]
Balalaiea, S.; Beigia, M.S.; Romingerb, F. Novel one-pot synthesis of new derivatives of dihydropyrimidinones and unusual polysubstituted imidazolin-2-ones: X-ray crystallographic structure. J. Iran. Chem. Soc., 2005, 2, 319-329.
[http://dx.doi.org/10.1007/BF03245937]
[91]
Friedman, J.E.; Ishizuka, T.; Liu, S.; Farrell, C.J.; Koletsky, R.J.; Bedol, D.; Ernsberger, P. Anti-hyperglycemic activity of moxonidine: metabolic and molecular effects in obese spontaneously hypertensive rats. Blood Press. Suppl., 1998, 3, 32-39.
[PMID: 10321453]
[92]
Ammar, Y.A.; El-Sharief, M.A.M.S.; Ghorab, M.M.; Mohamed, Y.A. New Imidazolidineiminothione, Imidazolidin-2-one and Imidazoquinoxaline Derivatives: synthesis and evaluation of antibacterial and antifungal activities. Curr. Org. Synth., 2016, 13(3), 466-475.
[http://dx.doi.org/10.2174/1570179412666150817221755 ]
[93]
Krasavin, M. Biologically active compounds based on the privileged 2-imidazoline scaffold: the world beyond adrenergic/imidazoline receptor modulators. Eur. J. Med. Chem., 2015, 97, 525-537.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.028] [PMID: 25466925]
[94]
Haneda, S.; Ueba, C.; Eda, K.; Hayashi, M. Imidazole and imidazoline derivatives as N-donor ligands for palladium-catalyzed Mizoroki-Heck reaction. Adv. Synth. Catal., 2007, 349, 833-835.
[http://dx.doi.org/10.1002/adsc.200600364]
[95]
Tyagi, R.; Tyagi, V.K.; Pandey, S.K. Imidazoline and its derivatives: an overview. J. Oleo Sci., 2007, 56(5), 211-222.
[http://dx.doi.org/10.5650/jos.56.211] [PMID: 17898484]
[96]
Joullie, M.M.; Slusarczuk, G.M.; Dey, A.S.; Ventuo, P.B.; Yocum, R.H. Synthesis and properties of fluorine-containing heterocyclic compounds. IV. N,N-Unsubstituted imidazolidine. J. Org. Chem., 1967, 32, 4103-4105.
[http://dx.doi.org/10.1021/jo01287a100]
[97]
Li, K.; Shi, D.Q. Synthesis and herbicidal activity of 3-aryl-1-[2-(aryloxy)propanoyl]imidazolidine-2,4-diones. J. Heterocycl. Chem., 2009, 40, 259-269.
[http://dx.doi.org/10.1002/jhet.114]
[98]
Huang, Y.Q.; Zhao, Y.; Wang, P.; Okamura, T.A.; Laforteza, B.N.; Lu, Y.; Sun, W.Y.; Yu, J.Q. One-pot synthesis of imidazolinium salts via the ring opening of tetrahydrofuran. Dalton Trans., 2017, 46(37), 12430-12433.
[http://dx.doi.org/10.1039/C7DT02883K] [PMID: 28891566]
[99]
Hao, J.; Jiang, H.; Sun, L.; Yuan, S.; Lu, W.; Wan, W.; Zhu, S. A facile one-pot synthesis of 2-fluoroalkyl 1,3-imidazolines and 1,3-oxazolines through imidoyl halide intermediates. Tetrahedron, 2012, 68, 2858-2863.
[http://dx.doi.org/10.1016/j.tet.2012.01.086 ]
[100]
Yeung, Y.Y.; Zhou, L.; Chen, J.; Zhou, J. N-bromosuccinimide initiated one-pot synthesis of imidazoline. Org. Lett., 2011, 13, 5804-5807.
[http://dx.doi.org/10.1021/ol202402y] [PMID: 21988188]
[101]
Hulme, C.; Ma, L.; Romano, J.; Morissette, M. Remarkable three-step-one-pot solution phase preparation of novel imidazolines utilizing a UDC (Ugi/deBoc/cyclize) strategy. Tetrahedron Lett., 1999, 40, 7925-7928.
[http://dx.doi.org/10.1016/S0040-4039(99)01580-4]
[102]
Periasamy, M.; Reddy, M.R.; Kanth, J.V.B. Low valent titanium induced one-pot syntheses of imidazolines. Tetrahedron Lett., 1996, 37, 4767-4770.
[http://dx.doi.org/10.1016/0040-4039(96)00930-6]
[103]
Guven, O.O. Synthesis and characterization of some novel 4-(furyl-substituted) 3- imidazoline 3-oxides. ARKIVOC, 2007, 15, 142-147.
[http://dx.doi.org/10.3998/ark.5550190.0008.f14]