A Rapid and Specific HPLC Method to Determine Chemical and Radiochemical Purity of [68Ga]Ga-DOTA-Pentixafor (PET) Tracer: Development and Validation

Page: [121 - 130] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Due to its overexpression in a variety of tumor types, the chemokine receptor 4 (CXCR4) represents a highly relevant diagnostic and therapeutic target in nuclear oncology. Recently, [68Ga]Ga-DOTA-Pentixafor has emerged as an excellent imaging agent for positron emission tomography (PET) of CXCR4 expression in vivo.

Preparation conditions may influence the quality and in vivo behaviour of this tracer and no standard procedure for the quality controls (QCs) is available.

Objective: The developed analytical test method was validated because a specific monograph in the Pharmacopoeia is not available for [68Ga]Ga-DOTA-Pentixafor.

Method: A stepwise approach was used based on the quality by design (QbD) concept of the ICH Q2 (R1) and Q8 (Pharmaceutical Development) guidelines in accordance with the regulations and requirements of EANM, SNM, IAEA and WHO.

Results: The purity and quality of the radiopharmaceutical obtained according to the proposed method were found to be high enough to safely administrate it to patients. Excellent linearity was found between 0.5 and 4 μg/mL, with a correlation coefficient (r2) for calibration curves being equal to 0.999, the average coefficient of variation (CV%) < 2% and average bias% that did not deviate more than 5% for all concentrations.

Conclusion: This study developed a new rapid and simple HPLC method of analysis for the routine QCs of [68Ga]Ga-DOTA-Pentixafor to guarantee the high quality of the finished product before release.

Keywords: [68Ga]Ga-DOTA-Pentixafor, validation of HPLC method, CXCR4 expression, CXCR4-directed imaging agent, PET radiotracer, PET imaging.

Graphical Abstract

[1]
Schopf, E.; Waldmann, C.M.; Collins, J.; Drake, C.; Slavik, R.; van Dam, R.M. Automation of positron-emission tomography (PET) radiotracer synthesis protocol for clinical production. J. Vis. Exp., 2018, (140), 1-12.
[http://dx.doi.org/10.3791/58428] [PMID: 30417868]
[2]
Balkwill, F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin. Cancer Biol., 2004, 14(3), 171-179.
[http://dx.doi.org/10.1016/j.semcancer.2003.10.003] [PMID: 15246052]
[3]
Balkwill, F. Cancer and the chemokine network. Nat. Rev. Cancer, 2004, 4(7), 540-550.
[http://dx.doi.org/10.1038/nrc1388] [PMID: 15229479]
[4]
Cojoc, M.; Peitzsch, C.; Trautmann, F.; Polishchuk, L.; Telegeev, G.D.; Dubrovska, A. Emerging targets in cancer management: role of the CXCL12/CXCR4 axis. OncoTargets Ther., 2013, 6, 1347-1361.
[PMID: 24124379]
[5]
Teicher, B.A.; Fricker, S.P. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin. Cancer Res., 2010, 16(11), 2927-2931.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2329] [PMID: 20484021]
[6]
Burger, J.A.; Kipps, T.J. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood, 2006, 107(5), 1761-1767.
[http://dx.doi.org/10.1182/blood-2005-08-3182] [PMID: 16269611]
[7]
Müller, A.; Homey, B.; Soto, H.; Ge, N.; Catron, D.; Buchanan, M.E.; McClanahan, T.; Murphy, E.; Yuan, W.; Wagner, S.N.; Barrera, J.L.; Mohar, A.; Verástegui, E.; Zlotnik, A. Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001, 410(6824), 50-56.
[http://dx.doi.org/10.1038/35065016] [PMID: 11242036]
[8]
Burger, J.A.; Peled, A. CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia, 2009, 23(1), 43-52.
[http://dx.doi.org/10.1038/leu.2008.299] [PMID: 18987663]
[9]
Wu, T.; Dai, Y. Tumor microenvironment and therapeutic response. Cancer Lett., 2017, 387, 61-68.
[http://dx.doi.org/10.1016/j.canlet.2016.01.043] [PMID: 26845449]
[10]
Woodard, L.E.; Nimmagadda, S. CXCR4-based imaging agents. J. Nucl. Med., 2011, 52(11), 1665-1669.
[http://dx.doi.org/10.2967/jnumed.111.097733] [PMID: 22045705]
[11]
Zhu, L.; Zhao, Q.; Wu, B. Structure-based studies of chemokine receptors. Curr. Opin. Struct. Biol., 2013, 23(4), 539-546.
[http://dx.doi.org/10.1016/j.sbi.2013.05.003] [PMID: 23706951]
[12]
Wu, B.; Chien, E.Y.T.; Mol, C.D.; Fenalti, G.; Liu, W.; Katritch, V.; Abagyan, R.; Brooun, A.; Wells, P.; Bi, F.C.; Hamel, D.J.; Kuhn, P.; Handel, T.M.; Cherezov, V.; Stevens, R.C. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science, 2010, 330(6007), 1066-1071.
[http://dx.doi.org/10.1126/science.1194396] [PMID: 20929726]
[13]
Fujii, N.; Oishi, S.; Hiramatsu, K.; Araki, T.; Ueda, S.; Tamamura, H.; Otaka, A.; Kusano, S.; Terakubo, S.; Nakashima, H.; Broach, J.A.; Trent, J.O.; Wang, Z.X.; Peiper, S.C. Molecular-size reduction of a potent CXCR4-chemokine antagonist using orthogonal combination of conformation- and sequence-based libraries. Angew. Chem. Int. Ed. Engl., 2003, 42(28), 3251-3253.
[http://dx.doi.org/10.1002/anie.200351024] [PMID: 12876735]
[14]
Mungalpara, J; Thiele, S; Eriksen, Ø; Eksteen, J; Rosenkilde, MM; Våbenø, J Rational Design of Conformationally Constrained Cyclopentapeptide Antagonists for C-X-C Chemokine Receptor 4 (CXCR4). J Med Chem. American Chemical Society., 2012, 55(22), 10287-10291..
[15]
Mungalpara, J.; Zachariassen, Z.G.; Thiele, S.; Rosenkilde, M.M.; Våbenø, J. Structure-activity relationship studies of the aromatic positions in cyclopentapeptide CXCR4 antagonists. Org. Biomol. Chem., 2013, 11(47), 8202-8208.
[http://dx.doi.org/10.1039/c3ob41941j] [PMID: 24150741]
[16]
Demmer, O.; Gourni, E.; Schumacher, U.; Kessler, H.; Wester, H-J. PET imaging of CXCR4 receptors in cancer by a new optimized ligand. ChemMedChem, 2011, 6(10), 1789-1791.
[http://dx.doi.org/10.1002/cmdc.201100320] [PMID: 21780290]
[17]
Gourni, E.; Demmer, O.; Schottelius, M.; D’Alessandria, C.; Schulz, S.; Dijkgraaf, I.; Schumacher, U.; Schwaiger, M.; Kessler, H.; Wester, H.J. PET of CXCR4 expression by a (68)Ga-labeled highly specific targeted contrast agent. J. Nucl. Med., 2011, 52(11), 1803-1810.
[http://dx.doi.org/10.2967/jnumed.111.098798] [PMID: 22045709]
[18]
Guidelines on current good Radiopharmacy Practice (cGRPP) in the Preparation of Radiopharmaceuticals. European Association of Nuclear Medicine., 2007, Version 2.
[19]
Elsinga, P.; Todde, S.; Penuelas, I.; Meyer, G.; Farstad, B.; Faivre-Chauvet, A.; Mikolajczak, R.; Westera, G.; Gmeiner-Stopar, T.; Decristoforo, C. Radiopharmacy Committee of the EANM. Guidance on current good radiopharmacy practice (cGRPP) for the small-scale preparation of radiopharmaceuticals. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37(5), 1049-1062.
[http://dx.doi.org/10.1007/s00259-010-1407-3] [PMID: 20306035]
[20]
World Health Organization. WHO Expert Committee on Specifications for Pharmaceutical Preparations-WHO Technical Report Series, 908-Thirtyseventh Report., 2003.http:// whqlibdoc.who.int/trs/who_trs_908.pdf
[21]
Quality by Design and Risk Assessment for Radiopharmaceutical Manufacturing and Clinical Imaging,
[http://dx.doi.org/10.5772/51112 285]
[22]
Barbet, J.; Kraeber-Bodéré, F.; Chatal, J.F. What can be expected from nuclear medicine tomorrow? Cancer Biother. Radiopharm., 2008, 23(4), 483-504.
[http://dx.doi.org/10.1089/cbr.2008.010-U] [PMID: 18771353]
[23]
Quality Control in the Production of Radiopharmaceuticals. IAEA-TECDOC series, 1856, 18561011–4289
[24]
Sammartano, A.; Migliari, S.; Scarlattei, M.; Baldari, G.; Ruffini, L. Synthesis, validation and quality controls of [68Ga]-Pentixafor for PET imaging of CXCR4 expression. Acta Bio Medica Atenei Parmensis, 2020.
[25]
Gillings, N.; Todde, S.; Behe, M.; Decristoforo, C.; Elsinga, P.; Ferrari, V.; Hjelstuen, O.; Peitl, P.K.; Koziorowski, J.; Laverman, P.; Mindt, T.L.; Ocak, M.; Patt, M. EANM guideline on the validation of analytical methods for radiopharmaceuticals. EJNMMI Radiopharm Chem, 2020, 5(1), 7.
[http://dx.doi.org/10.1186/s41181-019-0086-z] [PMID: 32052212]
[26]
Lapa, C.; Lückerath, K.; Kleinlein, I.; Monoranu, C.M.; Linsenmann, T.; Kessler, A.F.; Rudelius, M.; Kropf, S.; Buck, A.K.; Ernestus, R.I.; Wester, H.J.; Löhr, M.; Herrmann, K. 68Ga-Pentixafor-PET/CT for imaging of chemokine receptor 4 expression in glioblastoma. Theranostics, 2016, 6(3), 428-434.
[http://dx.doi.org/10.7150/thno.13986] [PMID: 26909116]
[27]
Herrmann, K; Lapa, C; Wester, HJ; Schottelius, M; Schiepers, C; Eberlein, U. Biodistribution and radiation dosimetry for the chemokine receptor CXCR4-targeting probe 68Ga-pentixafor. J. Nucl. Med., 2015, 56, 410-416.
[28]
Martin, R.; Jüttler, S.; Müller, M.; Wester, H.J. Cationic eluate pretreatment for automated synthesis of [⁶⁸Ga]CPCR4.2. Nucl. Med. Biol., 2014, 41(1), 84-89.
[http://dx.doi.org/10.1016/j.nucmedbio.2013.09.002] [PMID: 24120219]
[29]
Mueller, D.; Klette, I.; Baum, R.P.; Gottschaldt, M.; Schultz, M.K.; Breeman, W.A. Simplified NaCl based (68)Ga concentration and labeling procedure for rapid synthesis of (68)Ga radiopharmaceuticals in high radiochemical purity. Bioconjug. Chem., 2012, 23(8), 1712-1717.
[http://dx.doi.org/10.1021/bc300103t] [PMID: 22755505]
[30]
Annex 15 (EU) of Good Manufacturing Practice (GMP) guidelines, 2018.
[31]
EDQM Guidelines: Guide for the elaboration of monographs on RADIOPHARMACEUTICAL PREPARATIONS European Pharmacopoeia Edition; , 2018.
[32]
Levin, S. High Performance Liquid Chromatography (HPLC) in the Pharmaceutical Analysis; Analysis and Pharmaceutical Quality, 2010, pp. 1-34.
[http://dx.doi.org/10.1002/9780470571224.pse407]
[33]
Zarghi, A.; Foroutan, S.M.; Shafaati, A.; Khoddam, A. A rapid HPLC method for the determination of losartan in human plasma using a monolithic column. Arzneimittelforschung, 2005, 55(10), 569-572.
[PMID: 16294502]
[34]
Velikyan, I. 68Ga-Based radiopharmaceuticals: production and application relationship. Molecules, 2015, 20(7), 12913-12943.
[http://dx.doi.org/10.3390/molecules200712913] [PMID: 26193247]
[35]
Good practice for introducing radiopharmaceuticals for clinical use. European Association of Nuclear Medicine, inis.iaea.org