Recent Development of Nanoparticle by Green-Conventional Methods and Applications for Corrosion and Fuel Cells

Page: [525 - 539] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Nowadays, numerous researches have focused on the field of green nanotechnology worldwide and their various applications. The main reason is the environmental and biologically safe applications of nanoparticles. Until now, various nanoparticles have been fabricated and tested for different purposes, such as energy conversion, storage, and corrosion prevention. However, conventional nanoparticle production, like physical or chemical methods, caused undesirable adverse effects on humans and the environment. Various biological materials have numerous advantages, such as environmentally friendly, non-toxic, and abundant availability. Thanks to these advantages, green synthesis methods may have a wider field of use in the future compared to traditional methods. Furthermore, the use of green materials provides significant advantages such as less usage of energy, economic and natural resources. Recently, considerable efforts have been carried out to develop novel green nanoparticles using various biological sources and methods such as the hydrothermal method, microwave-assisted method, ultra-sonication assisted method and mechano-mixing methods. In this review, we discuss the main properties of green and recent nanoparticles synthesized by green and conventional methods for using in corrosion preventions and fuel cells. In the paper, the fundamental sources of green nanoparticles and the fabrication process are addressed. The main reasons for the corrosion and the prevention of corrosion are explained. Also, the current analysis methods used to characterize the morphological and chemical properties of the recently synthesized nanoparticles are explained.

Keywords: Green synthesis, corrosion, fuel cells, energy, nanomaterials, biological sources.

Graphical Abstract

[1]
Kumar, S.S.; Kumar, V.; Malyan, S.K.; Sharma, J.; Mathimani, T.; Maskarenj, M.S.; Ghosh, P.C.; Pugazhendhi, A. Microbial Fuel Cells (MFCs) for bioelectrochemical treatment of different wastewater streams. Fuel, 2019, 254, 115526.
[http://dx.doi.org/10.1016/j.fuel.2019.05.109]
[2]
Al Lawati, M.J.; Jafary, T.; Baawain, M.S.; Al-Mamun, A. A mini review on biofouling on air cathode of single chamber microbial fuel cell; prevention and mitigation strategies. Biocatal. Agric. Biotechnol., 2019, 22, 101370.
[http://dx.doi.org/10.1016/j.bcab.2019.101370]
[3]
Martins, F.; Felgueiras, C.; Smitková, M. Fossil fuel energy consumption in European countries. Energy Procedia, 2018, 153, 107-111.
[http://dx.doi.org/10.1016/j.egypro.2018.10.050]
[4]
Zheng, X.; Zhou, W.; Wan, R.; Luo, J.; Su, Y.; Huang, H.; Chen, Y. Increasing municipal wastewater BNR by using the preferred carbon source derived from kitchen wastewater to enhance phosphorus uptake and short-cut nitrification-denitrification. Chem. Eng. J., 2018, 344, 556-564.
[http://dx.doi.org/10.1016/j.cej.2018.03.124]
[5]
Palanisamy, G.; Jung, H.Y.; Sadhasivam, T.; Kurkuri, M.D.; Kim, S.C.; Roh, S.H. A comprehensive review on microbial fuel cell technologies: Processes, utilization, and advanced developments in electrodes and membranes. J. Clean. Prod., 2019, 221, 598-621.
[http://dx.doi.org/10.1016/j.jclepro.2019.02.172]
[6]
Mogni, L.; Prado, F.; Jiménez, C.; Caneiro, A. Oxygen order-disorder phase transition in layered GdBaCo2O5+δ perovskite: Thermodynamic and transport properties. Solid State Ion., 2013, 240, 19-28.
[http://dx.doi.org/10.1016/j.ssi.2013.03.021]
[7]
Tsuchiya, M.; Lai, B.K.; Ramanathan, S. Scalable nanostructured membranes for solid-oxide fuel cells. Nat. Nanotechnol., 2011, 6(5), 282-286.
[http://dx.doi.org/10.1038/nnano.2011.43] [PMID: 21460827]
[8]
Sreedhar, I.; Agarwal, B.; Goyal, P.; Singh, S.A. Recent advances in material and performance aspects of solid oxide fuel cells. J. Electroanal. Chem. (Lausanne Switz.), 2019, 848, 113315.
[http://dx.doi.org/10.1016/j.jelechem.2019.113315]
[9]
Zhang, T.; Wang, P.; Chen, H.; Pei, P. A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition. Appl. Energy, 2018, 223, 249-262.
[http://dx.doi.org/10.1016/j.apenergy.2018.04.049]
[10]
Wilson, M.S.; Gottesfeld, S. High performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells. J. Electrochem. Soc., 1992, 139(2), L28-L30.
[http://dx.doi.org/10.1149/1.2069277]
[11]
Reiser, C.A.; Bregoli, L.; Patterson, T.W.; Yi, J.S.; Yang, J.D.; Perry, M.L.; Jarvi, T.D. A reverse-current decay mechanism for fuel cells. Electrochem. Solid-State Lett., 2005, 8(6), 273.
[http://dx.doi.org/10.1149/1.1896466]
[12]
Tang, H.; Qi, Z.; Ramani, M.; Elter, J.F. PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. J. Power Sources, 2006, 158, 1306-1312.
[http://dx.doi.org/10.1016/j.jpowsour.2005.10.059]
[13]
Hosseini, M.; Fotouhi, L.; Ehsani, A.; Naseri, M. Enhancement of corrosion resistance of polypyrrole using metal oxide nanoparticles: Potentiodynamic and electrochemical impedance spectroscopy study. J. Colloid Interface Sci., 2017, 505, 213-219.
[http://dx.doi.org/10.1016/j.jcis.2017.05.097] [PMID: 28578284]
[14]
Moutarlier, V.; Gigandet, M.P.; Normand, B.; Pagetti, J. EIS characterization of anodic films formed on 2024 aluminum alloy, in sulphuric acid containing molybdate or permanganate species. Corros. Sci., 2005, 47(4), 937-951.
[http://dx.doi.org/10.1016/j.corsci.2004.06.019]
[15]
Grilli, R.; Baker, M.A.; Castle, J.E.; Dunn, B.; Watts, J.F. Localized corrosion of a 2219 aluminum alloy exposed to a 3.5% NaCl solution. Corros. Sci., 2010, 52(9), 2855-2866.
[http://dx.doi.org/10.1016/j.corsci.2010.04.035]
[16]
Anshup, A.; Venkataraman, J.S.; Subramaniam, C.; Kumar, R.R.; Priya, S.; Kumar, T.R.; Omkumar, R.V.; John, A.; Pradeep, T. Growth of gold nanoparticles in human cells. Langmuir, 2005, 21(25), 11562-11567.
[http://dx.doi.org/10.1021/la0519249] [PMID: 16316080]
[17]
Kavyashree, D.; Kumari, R.A.; Nagabhushana, H.; Sharma, S.C.; Vidya, Y.S.; Anantharaju, K.S.; Prasad, B.D.; Prashantha, S.C.; Lingaraju, K.; Rajanaik, H. Orange red emitting Eu3+ doped zinc oxide nanophosphor material prepared using guizotia abyssinica seed extract: Structural and photoluminescence studies. J. Lumin., 2015, 167, 91-100.
[http://dx.doi.org/10.1016/j.jlumin.2015.06.013]
[18]
Dada, A.O.; Adekola, F.A.; Dada, F.E.; Adelani-Akande, A.T.; Bello, M.O.; Okonkwo, C.R.; Inyinbor, A.A.; Oluyori, A.P.; Olayanju, A.; Ajanaku, K.O.; Adetunji, C.O. Silver nanoparticle synthesis by Acalypha wilkesiana extract: phytochemical screening, characterization, influence of operational parameters, and preliminary antibacterial testing. Heliyon, 2019, 5(10), e02517.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02517] [PMID: 31667378]
[19]
Escárcega-González, C.E.; Garza-Cervantes, J.A.; Vázquez-Rodríguez, A.; Montelongo-Peralta, L.Z.; Treviño-González, M.T.; Díaz Barriga Castro, E.; Saucedo-Salazar, E.M.; Chávez Morales, R.M.; Regalado Soto, D.I.; Treviño González, F.M.; Carrazco Rosales, J.L.; Cruz, R.V.; Morones-Ramírez, J.R. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent. Int. J. Nanomedicine, 2018, 13, 2349-2363.
[http://dx.doi.org/10.2147/IJN.S160605] [PMID: 29713166]
[20]
Vijayakumar, S.; Vaseeharan, B.; Malaikozhundan, B.; Gopi, N.; Ekambaram, P.; Pachaiappan, R.; Velusamy, P.; Murugan, K.; Benelli, G.; Suresh Kumar, R.; Suriyanarayanamoorthy, M. Therapeutic effects of gold nanoparticles synthesized using Musa paradisiaca peel extract against multiple antibiotic resistant Enterococcus faecalis biofilms and human lung cancer cells (A549). Microb. Pathog., 2017, 102, 173-183.
[http://dx.doi.org/10.1016/j.micpath.2016.11.029 ] [PMID: 27916691]
[21]
Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B, 2006, 110(14), 7238-7248.
[http://dx.doi.org/10.1021/jp057170o] [PMID: 16599493]
[22]
Wang, C.; Yuan, R.; Chai, Y.; Chen, S.; Hu, F.; Zhang, M. Simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan on gold nanoparticles/overoxidized-polyimidazole composite modified glassy carbon electrode. Anal. Chim. Acta, 2012, 741, 15-20.
[http://dx.doi.org/10.1016/j.aca.2012.06.045] [PMID: 22840700]
[23]
Xu, T.Q.; Zhang, Q.L.; Zheng, J.N.; Lv, Z.Y.; Wei, J.; Wang, A.J.; Feng, J.J. Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide. Electrochim. Acta, 2014, 115, 109-115.
[http://dx.doi.org/10.1016/j.electacta.2013.10.147]
[24]
Daniel, M.C.; Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 2004, 104(1), 293-346.
[http://dx.doi.org/10.1021/cr030698+] [PMID: 14719978]
[25]
Bocchetta, P.; Santamaria, M.; Di Quarto, F. One-step electrochemical synthesis and physico-chemical characterization of CdSe nanotubes. Electrochim. Acta, 2013, 88, 340-346.
[http://dx.doi.org/10.1016/j.electacta.2012.09.112]
[26]
Aygün, A.; Özdemir, S.; Gülcan, M.; Cellat, K.; Şen, F. Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications. J. Pharm. Biomed. Anal., 2020, 178, 112970.
[http://dx.doi.org/10.1016/j.jpba.2019.112970] [PMID: 31722822]
[27]
Farhadi, S.; Siadatnasab, F.; Khataee, A. Ultrasound-assisted degradation of organic dyes over magnetic CoFe2O4@ZnS core-shell nanocomposite. Ultrason. Sonochem., 2017, 37, 298-309.
[http://dx.doi.org/10.1016/j.ultsonch.2017.01.019] [PMID: 28427637]
[28]
Neto, S.A.; Moreira, T.F.M.; Olivi, P. Preparation and characterization of active and cost-effective nickel/platinum electrocatalysts for hydrogen evolution electrocatalysis. Int. J. Hydrogen Energy, 2019, 44(16), 8079-8088.
[http://dx.doi.org/10.1016/j.ijhydene.2019.02.083]
[29]
Göksu, H.; Yıldız, Y.; Çelik, B.; Yazıcı, M.; Kılbaş, B.; Şen, F. Highly efficient and monodisperse graphene oxide furnished Ru/Pd nanoparticles for the dehalogenation of aryl halides via ammonia borane. Chem. Select, 2016, 1(5), 953-958.
[http://dx.doi.org/10.1002/slct.201600207]
[30]
Liu, C.; Zhang, L.; Chen, X.; Li, S.; Han, Q.; Li, L.; Wang, C. Biomolecules-assisted synthesis of degradable bismuth nanoparticles for dual-modal imaging-guided chemo-photothermal therapy. Chem. Eng. J., 2020, 382, 122720.
[http://dx.doi.org/10.1016/j.cej.2019.122720]
[31]
Jeyarani, S.; Vinita, N.M.; Puja, P.; Senthamilselvi, S.; Devan, U.; Velangani, A.J.; Biruntha, M.; Pugazhendhi, A.; Kumar, P. Biomimetic gold nanoparticles for its cytotoxicity and biocompatibility evidenced by fluorescence-based assays in cancer (MDA-MB-231) and non-cancerous (HEK-293) cells. J. Photochem. Photobiol. B, 2020, 202, 111715.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111715] [PMID: 31790882]
[32]
Tąta, A.; Gralec, B.; Proniewicz, E. Unsupported platinum nanoparticles as effective sensors of neurotransmitters and possible drug curriers. Appl. Surf. Sci., 2018, 435, 256-264.
[http://dx.doi.org/10.1016/j.apsusc.2017.11.100]
[33]
Lee, J.; Woo, J.; Nguyen-Huy, C.; Lee, M.S.; Joo, S.H.; An, K. Highly dispersed Pd catalysts supported on various carbons for furfural hydrogenation. Catal. Today, 2020, 350(15), 71-79.
[http://dx.doi.org/10.1016/j.cattod.2019.06.032]
[34]
Nandhini, N.T.; Rajeshkumar, S.; Mythili, S. The possible mechanism of eco-friendly synthesized nanoparticles on hazardous dyes degradation. Biocatal. Agric. Biotechnol., 2019, 19, 101138.
[http://dx.doi.org/10.1016/j.bcab.2019.101138]
[35]
Martínez-Rodríguez, N.L.; Tavárez, S.; González-Sánchez, Z.I. In vitro toxicity assessment of zinc and nickel ferrite nanoparticles in human erythrocytes and peripheral blood mononuclear cell. Toxicol. In Vitro, 2019, 57, 54-61.
[http://dx.doi.org/10.1016/j.tiv.2019.02.011] [PMID: 30771471]
[36]
Madhubala, V.; Kalaivani, T.; Kirubha, A.; Prakash, J.S.; Manigandan, V.; Dara, H.K. Study of structural and magnetic properties of hydro/solvothermally synthesized α-Fe2O3 nanoparticles and its toxicity assessment in zebrafish embryos. Appl. Surf. Sci., 2019, 494, 391-400.
[http://dx.doi.org/10.1016/j.apsusc.2019.07.090]
[37]
Ahamed, M.; Akhtar, M.J.; Alhadlaq, H.A. Preventive effect of TiO2 nanoparticles on heavy metal Pb-induced toxicity in human lung epithelial (A549) cells. Toxicol. In Vitro, 2019, 57, 18-27.
[http://dx.doi.org/10.1016/j.tiv.2019.02.004] [PMID: 30738203]
[38]
Manikandakrishnan, M.; Palanisamy, S.; Vinosha, M.; Kalanjiaraja, B.; Mohandoss, S.; Manikandan, R.; Tabarsa, M.; You, S.G.; Prabhu, N.M. Facile green route synthesis of gold nanoparticles using caulerpa racemosa for biomedical applications. J. Drug Deliv. Sci. Technol., 2019, 54, 101345.
[http://dx.doi.org/10.1016/j.jddst.2019.101345]
[39]
Ravichandran, V.; Vasanthi, S.; Shalini, S.; Shah, S.A.A.; Tripathy, M.; Paliwal, N. Green synthesis, characterization, antibacterial, antioxidant and photocatalytic activity of Parkia speciosa leaves extract mediated silver nanoparticles. Results Phys., 2019, 15, 102565.
[http://dx.doi.org/10.1016/j.rinp.2019.102565]
[40]
Satpathy, S.; Patra, A.; Ahirwar, B.; Hussain, M.D. Process optimization for green synthesis of gold nanoparticles mediated by extract of Hygrophila spinosa T. anders and their biological applications. Phys. E Low Dimens. Syst. Nanostruct., 2019, 121, 113830.
[http://dx.doi.org/10.1016/j.physe.2019.113830]
[41]
Phan, T.T.V.; Nguyen, V.T.; Ahn, S.H.; Oh, J. Chitosan-mediated facile green synthesis of size-controllable gold nanostars for effective photothermal therapy and photoacoustic imaging. Eur. Polym. J., 2019, 118, 492-501.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.06.023]
[42]
Iqbal, J.; Abbasi, B.A.; Ahmad, R.; Shahbaz, A.; Zahra, S.A.; Kanwal, S.; Munir, A.; Rabbani, A.; Mahmood, T. Biogenic synthesis of green and cost effective iron nanoparticles and evaluation of their potential biomedical properties. J. Mol. Struct., 2020, 1199, 126979.
[http://dx.doi.org/10.1016/j.molstruc.2019.126979]
[43]
Tripathi, D.; Modi, A.; Narayan, G.; Rai, S.P. Green and cost effective synthesis of silver nanoparticles from endangered medicinal plant Withania coagulans and their potential biomedical properties. Mater. Sci. Eng. C, 2019, 100, 152-164.
[http://dx.doi.org/10.1016/j.msec.2019.02.113] [PMID: 30948049]
[44]
Song, Y.; Kirkwood, N.; Maksimović, Č.; Zheng, X.; O’Connor, D.; Jin, Y.; Hou, D. Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: A review. Sci. Total Environ., 2019, 663, 568-579.
[http://dx.doi.org/10.1016/j.scitotenv.2019.01.347 PMID: 30726765]
[45]
Bafana, A.; Kumar, S.V.; Temizel-Sekeryan, S.; Dahoumane, S.A.; Haselbach, L.; Jeffryes, C.S. Evaluating microwave-synthesized silver nanoparticles from silver nitrate with life cycle assessment techniques. Sci. Total Environ., 2018, 636, 936-943.
[http://dx.doi.org/10.1016/j.scitotenv.2018.04.345] [PMID: 29729511]
[46]
Martins, F.; Machado, S.; Albergaria, T.; Delerue-Matos, C. LCA applied to nano scale zero valent iron synthesis. Int. J. Life Cycle Assess., 2017, 22(5), 707-714.
[http://dx.doi.org/10.1007/s11367-016-1258-7]
[47]
Zayed, M.F.; Eisa, W.H.; El-Kousy, S.M.; Mleha, W.K.; Kamal, N. Ficus retusa-stabilized gold and silver nanoparticles: Controlled synthesis, spectroscopic characterization, and sensing properties. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 214, 496-512.
[http://dx.doi.org/10.1016/j.saa.2019.02.042] [PMID: 30812012]
[48]
Ahmad, T.; Bustam, M.A.; Irfan, M.; Moniruzzaman, M.; Anwaar Asghar, H.M.; Bhattacharjee, S. Green synthesis of stabilized spherical shaped gold nanoparticles using novel aqueous Elaeis guineensis (oil palm) leaves extract. J. Mol. Struct., 2018, 1159, 167-173.
[http://dx.doi.org/10.1016/j.molstruc.2017.11.095]
[49]
Kumar, D.; Arora, S. Abdullah; Danish, M. Plant based synthesis of silver nanoparticles from Ougeinia oojeinensis leaves extract and their membrane stabilizing, antioxidant and antimicrobial activities. Mater. Today Proc, 2019, 17, 313-320.
[http://dx.doi.org/10.1016/j.matpr.2019.06.435]
[50]
Bolade, O.P.; Akinsiku, A.A.; Adeyemi, A.O.; Williams, A.B.; Benson, N.U. Dataset on phytochemical screening, FTIR and GC-MS characterisation of Azadirachta indica and Cymbopogon citratus as reducing and stabilising agents for nanoparticles synthesis. Data Brief, 2018, 20, 917-926.
[http://dx.doi.org/10.1016/j.dib.2018.08.133] [PMID: 30225302]
[51]
Roopan, S.M.; Elango, G.; Priya, D.D.; Asharani, I.V.; Kishore, B.; Vinayprabhakar, S.; Pragatheshwaran, N.; Mohanraj, K.; Harshpriya, R.; Shanavas, S.; Acevedo, R. Sunlight mediated photocatalytic degradation of organic pollutants by statistical optimization of green synthesized NiO NPs as catalyst. J. Mol. Liq., 2019, 293, 111509.
[http://dx.doi.org/10.1016/j.molliq.2019.111509]
[52]
Srinivasan, M.; Venkatesan, M.; Arumugam, V.; Natesan, G.; Saravanan, N.; Murugesan, S.; Ramachandran, S.; Ayyasamy, R.; Pugazhendhi, A. Green synthesis and characterization of titanium dioxide nanoparticles (TiO2 NPs) using Sesbania grandiflora and evaluation of toxicity in zebrafish embryos. Process Biochem., 2019, 80, 197-202.
[http://dx.doi.org/10.1016/j.procbio.2019.02.010]
[53]
Lingaraju, K.; Naika, H.R.; Nagabhushana, H.; Nagaraju, G. Euphorbia heterophylla (L.) mediated fabrication of ZnO NPs: Characterization and evaluation of antibacterial and anticancer properties. Biocatal. Agric. Biotechnol., 2019, 18, 100894.
[http://dx.doi.org/10.1016/j.bcab.2018.10.011]
[54]
Siddiquee, M.A.; Parray, M.; Mehdi, S.H.; Alzahrani, K.A.; Alshehri, A.A.; Malik, M.A.; Patel, R. Green synthesis of silver nanoparticles from Delonix regia leaf extracts: In-vitro cytotoxicity and interaction studies with bovine serum albumin. Mater. Chem. Phys., 2020, 242, 122493.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122493]
[55]
Kurt, B.Z.; Durmus, Z.; Sevgi, E. In situ reduction of graphene oxide by different plant extracts as a green catalyst for selective hydrogenation of nitroarenes. Int. J. Hydrogen Energy, 2019, 44(48), 26322-26337.
[http://dx.doi.org/10.1016/j.ijhydene.2019.08.090]
[56]
Gomathi, M.; Prakasam, A.; Rajkumar, P.V.; Rajeshkumar, S.; Chandrasekaran, R.; Anbarasan, P.M. Green synthesis of silver nanoparticles using Gymnema sylvestre leaf extract and evaluation of its antibacterial activity. South African J. Chem. Eng., 2020, 32, 1-4.
[http://dx.doi.org/10.1016/j.sajce.2019.11.005]
[57]
Pandiyan, N.; Murugesan, B.; Arumugam, M.; Sonamuthu, J.; Samayanan, S.; Mahalingam, S. Ionic liquid - A greener templating agent with Justicia adhatoda plant extract assisted green synthesis of morphologically improved Ag-Au/ZnO nanostructure and it’s antibacterial and anticancer activities. J. Photochem. Photobiol. B, 2019, 198, 111559.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111559] [PMID: 31344503]
[58]
Sattari, R.; Khayati, G.R.; Hoshyar, R. Biosynthesis and characterization of silver nanoparticles capped by biomolecules by Fumaria parviflora extract as green approach and evaluation of their cytotoxicity against human breast cancer MDA-MB-468 cell lines. Mater. Chem. Phys., 2020, 241, 122438.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122438]
[59]
Karade, V.C.; Parit, S.B.; Dawkar, V.V.; Devan, R.S.; Choudhary, R.J.; Kedge, V.V.; Pawar, N.V.; Kim, J.H.; Chougale, A.D. A green approach for the synthesis of α-Fe2O3 nanoparticles from Gardenia resinifera plant and it’s In vitro hyperthermia application. Heliyon, 2019, 5(7), e02044.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02044] [PMID: 31338465]
[60]
Suresh, J.; Pradheesh, G.; Alexramani, V.; Sundrarajan, M.; Hong, S.I. Green synthesis and characterization of hexagonal shaped MgO nanoparticles using insulin plant (Costus pictus D. Don) leave extract and its antimicrobial as well as anticancer activity. Adv. Powder Technol., 2018, 29(7), 1685-1694.
[http://dx.doi.org/10.1016/j.apt.2018.04.003]
[61]
Khatami, M.; Alijani, H.Q.; Fakheri, B.; Mobasseri, M.M.; Heydarpour, M.; Farahani, Z.K.; Khan, A.U. Super-paramagnetic iron oxide nanoparticles (SPIONs): Greener synthesis using stevia plant and evaluation of its antioxidant properties. J. Clean. Prod., 2019, 208, 1171-1177.
[http://dx.doi.org/10.1016/j.jclepro.2018.10.182]
[62]
Pereira, T.M.; Polez, V.L.P.; Sousa, M.H.; Silva, L.P. Modulating physical, chemical, and biological properties of silver nanoparticles obtained by green synthesis using different parts of the tree Handroanthus heptaphyllus (Vell.) mattos. Colloid Interface Sci. Commun., 2020, 34, 100224.
[http://dx.doi.org/10.1016/j.colcom.2019.100224]
[63]
da Silva, A.F.V.; Fagundes, A.P.; Macuvele, D.L.P.; de Carvalho, E.F.U.; Durazzo, M.; Padoin, N.; Soares, C.; Riella, H.G. Green synthesis of zirconia nanoparticles based on Euclea natalensis plant extract: Optimization of reaction conditions and evaluation of adsorptive properties. Colloids Surf. A Physicochem. Eng. Asp., 2019, 583, 123915.
[http://dx.doi.org/10.1016/j.colsurfa.2019.123915]
[64]
Puente, C.; Gómez, I.; Kharisov, B.; López, I. Selective colorimetric sensing of Zn(II) ions using green-synthesized silver nanoparticles: Ficus benjamina extract as reducing and stabilizing agent. Mater. Res. Bull., 2019, 112, 1-8.
[http://dx.doi.org/10.1016/j.materresbull.2018.11.045]
[65]
Massironi, A.; Morelli, A.; Grassi, L.; Puppi, D.; Braccini, S.; Maisetta, G.; Esin, S.; Batoni, G.; Della Pina, C.; Chiellini, F. Ulvan as novel reducing and stabilizing agent from renewable algal biomass: Application to green synthesis of silver nanoparticles. Carbohydr. Polym., 2019, 203, 310-321.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.066] [PMID: 30318218]
[66]
Mongalo, N.I.; Dikhoba, P.M.; Soyingbe, S.O.; Makhafola, T.J. Antifungal, anti-oxidant activity and cytotoxicity of South African medicinal plants against mycotoxigenic fungi. Heliyon, 2018, 4(11), e00973.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00973] [PMID: 30761368]
[67]
Wu, S.; Wu, H.; Button, M.; Konnerup, D.; Brix, H. Impact of engineered nanoparticles on microbial transformations of carbon, nitrogen, and phosphorus in wastewater treatment processes - A review. Sci. Total Environ., 2019, 660, 1144-1154.
[http://dx.doi.org/10.1016/j.scitotenv.2019.01.106] [PMID: 30743910]
[68]
Suriyaraj, S.P.; Ramadoss, G.; Chandraraj, K.; Selvakumar, R. One pot facile green synthesis of crystalline bio-ZrO2 nanoparticles using Acinetobacter sp. KCSI1 under room temperature. Mater. Sci. Eng. C, 2019, 105, 110021.
[http://dx.doi.org/10.1016/j.msec.2019.110021] [PMID: 31546379]
[69]
Mariadoss, A.V.A.; Ramachandran, V.; Shalini, V.; Agilan, B.; Franklin, J.H.; Sanjay, K.; Alaa, Y.G.; Tawfiq, M.A.A.; Ernest, D. Green synthesis, characterization and antibacterial activity of silver nanoparticles by Malus domestica and its cytotoxic effect on (MCF-7) cell line. Microb. Pathog., 2019, 135, 103609.
[http://dx.doi.org/10.1016/j.micpath.2019.103609] [PMID: 31247255]
[70]
Prabakaran, K.; Ragavendran, C.; Natarajan, D. Mycosynthesis of silver nanoparticles from: Beauveria bassiana and its larvicidal, antibacterial, and cytotoxic effect on human cervical cancer (HeLa) cells. RSC Advances, 2016, 6(51), 44972-44986.
[http://dx.doi.org/10.1039/C6RA08593H]
[71]
Cheng, S.; Li, N.; Jiang, L.; Li, Y.; Xu, B.; Zhou, W. Biodegradation of metal complex Naphthol Green B and formation of iron-sulfur nanoparticles by marine bacterium Pseudoalteromonas sp CF10-13. Bioresour. Technol., 2019, 273, 49-55.
[http://dx.doi.org/10.1016/j.biortech.2018.10.082] [PMID: 30408643]
[72]
Patil, M.P.; Jin, X.; Simeon, N.C.; Palma, J.; Kim, D.; Ngabire, D.; Kim, N.H.; Tarte, N.H.; Kim, G.D. Anticancer activity of Sasa borealis leaf extract-mediated gold nanoparticles. Artif. Cells Nanomed. Biotechnol., 2018, 46(1), 82-88.
[http://dx.doi.org/10.1080/21691401.2017.1293675] [PMID: 28278576]
[73]
Patil, M.P.; Kim, G.D. Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications. Colloids Surf. B Biointerfaces, 2018, 172, 487-495.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.007] [PMID: 30205339]
[74]
Dahoumane, S.A.; Jeffryes, C.; Mechouet, M.; Agathos, S.N. Biosynthesis of inorganic nanoparticles: A fresh look at the control of shape, size and composition. Bioengineering (Basel), 2017, 4(1), 14.
[http://dx.doi.org/10.3390/bioengineering4010014] [PMID: 28952493]
[75]
Velusamy, P.; Kumar, G.V.; Jeyanthi, V.; Das, J.; Pachaiappan, R. Bio-inspired green nanoparticles: Synthesis, mechanism, and antibacterial application. Toxicol. Res., 2016, 32(2), 95-102.
[http://dx.doi.org/10.5487/TR.2016.32.2.095] [PMID: 27123159]
[76]
Patil, M.P.; Bayaraa, E.; Subedi, P.; Piad, L.L.A.; Tarte, N.H.; Do Kim, G. Biogenic synthesis, characterization of gold nanoparticles using Lonicera japonica and their anticancer activity on HeLa cells. J. Drug Deliv. Sci. Technol., 2019, 51, 83-90.
[http://dx.doi.org/10.1016/j.jddst.2019.02.021]
[77]
Hulikere, M.M.; Joshi, C.G. Characterization, antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus- Cladosporium cladosporioides. Process Biochem., 2019, 82, 199-204.
[http://dx.doi.org/10.1016/j.procbio.2019.04.011]
[78]
Vijayanandan, A.S.; Balakrishnan, R.M. Biosynthesis of cobalt oxide nanoparticles using endophytic fungus Aspergillus nidulans. J. Environ. Manage., 2018, 218, 442-450.
[http://dx.doi.org/10.1016/j.jenvman.2018.04.032] [PMID: 29709813]
[79]
Öztürk, B.Y.; Gürsu, B.Y.; Dağ, İ. Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochem., 2020, 89, 208-219.
[http://dx.doi.org/10.1016/j.procbio.2019.10.027]
[80]
Ghiuță, I.; Cristea, D.; Croitoru, C.; Kost, J.; Wenkert, R.; Vyrides, I.; Anayiotos, A.; Munteanu, D. Characterization and antimicrobial activity of silver nanoparticles, biosynthesized using Bacillus species. Appl. Surf. Sci., 2018, 438, 66-73.
[http://dx.doi.org/10.1016/j.apsusc.2017.09.163]
[81]
Zhang, H.; Hu, X. Biosynthesis of Pd and Au as nanoparticles by a marine bacterium Bacillus sp. GP and their enhanced catalytic performance using metal oxides for 4-nitrophenol reduction. Enzyme Microb. Technol., 2018, 113, 59-66.
[http://dx.doi.org/10.1016/j.enzmictec.2018.03.002] [PMID: 29602388]
[82]
Patil, M.P.; Kang, M.J.; Niyonizigiye, I.; Singh, A.; Kim, J.O.; Seo, Y.B.; Kim, G.D. Extracellular synthesis of gold nanoparticles using the marine bacterium Paracoccus haeundaensis BC74171T and evaluation of their antioxidant activity and antiproliferative effect on normal and cancer cell lines. Colloids Surf. B Biointerfaces, 2019, 183, 110455.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110455] [PMID: 31493630]
[83]
Jayabalan, J.; Mani, G.; Krishnan, N.; Pernabas, J.; Devadoss, J.M.; Jang, H.T. Green biogenic synthesis of zinc oxide nanoparticles using Pseudomonas putida culture and its in vitro antibacterial and anti-biofilm activity. Biocatal. Agric. Biotechnol., 2019, 21, 101327.
[http://dx.doi.org/10.1016/j.bcab.2019.101327]
[84]
Khan, S.A.; Ahmad, A. Fungus mediated synthesis of biomedically important cerium oxide nanoparticles. Mater. Res. Bull., 2013, 48(10), 4134-4138.
[http://dx.doi.org/10.1016/j.materresbull.2013.06.038]
[85]
Órdenes-Aenishanslins, N.A.; Saona, L.A.; Durán-Toro, V.M.; Monrás, J.P.; Bravo, D.M.; Pérez-Donoso, J.M. Use of titanium dioxide nanoparticles biosynthesized by Bacillus mycoides in quantum dot sensitized solar cells. Microb. Cell Fact., 2014, 13(1), 90.
[http://dx.doi.org/10.1186/s12934-014-0090-7] [PMID: 25027643]
[86]
Mahdavi, M.; Namvar, F.; Ahmad, M.B.; Mohamad, R. Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules, 2013, 18(5), 5954-5964.
[http://dx.doi.org/10.3390/molecules18055954] [PMID: 23698048]
[87]
Valverde-Alva, M.A.; García-Fernández, T.; Villagrán-Muniz, M.; Sánchez-Aké, C.; Castañeda-Guzmán, R.; Esparza-Alegría, E.; Sánchez-Valdés, C.F.; Llamazares, J.L.S.; Herrera, C.E.M. Synthesis of silver nanoparticles by laser ablation in ethanol: A pulsed photoacoustic study. Appl. Surf. Sci., 2015, 355, 341-349.
[http://dx.doi.org/10.1016/j.apsusc.2015.07.133]
[88]
Chang, T.L.; Sun, P.K.; Zhou, X.; Besser, R.S.; Liang, J. Preparation and electrochemical performances of silver (alloy) nanoparticles decorated on reduced graphene oxide, using self-polymerization of dopamine in an acidic environment. Mater. Today Chem., 2020, 17, 100312.
[http://dx.doi.org/10.1016/j.mtchem.2020.100312]
[89]
Al-Thabaiti, A.S.; Malik, M.A.; Al-Youbi, A.A.O.; Khan, Z.; Hussain, J.I. Effects of surfactant and polymer on the morphology of advanced nanomaterials in aqueous solution. Int. J. Electrochem. Sci., 2013, 8, 204-218.
[90]
Malassis, L.; Dreyfus, R.; Murphy, R.J.; Hough, L.A.; Donnio, B.; Murray, C.B. One-step green synthesis of gold and silver nanoparticles with ascorbic acid and their versatile surface post-functionalization. RSC Advances, 2016, 6(39), 33092-33100.
[http://dx.doi.org/10.1039/C6RA00194G]
[91]
Buazar, F.; Baghlani-Nejazd, M.H.; Badri, M.; Kashisaz, M.; Khaledi-Nasab, A.; Kroushawi, F. Facile one-pot phytosynthesis of magnetic nanoparticles using potato extract and their catalytic activity. Starke, 2016, 68(7-8), 796-804.
[http://dx.doi.org/10.1002/star.201500347]
[92]
Duan, H.; Wang, D.; Li, Y. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev., 2015, 44(16), 5778-5792.
[http://dx.doi.org/10.1039/C4CS00363B PMID: 25615873]
[93]
Aguilar, N.M.; Arteaga-Cardona, F.; Estévez, J.O.; Silva-González, N.R.; Benítez-Serrano, J.C.; Salazar-Kuri, U. Controlled biosynthesis of silver nanoparticles using sugar industry waste, and its antimicrobial activity. J. Environ. Chem. Eng., 2018, 6(5), 6275-6281.
[http://dx.doi.org/10.1016/j.jece.2018.09.056]
[94]
Gavade, M.S.J.; Nikam, G.H.; Sabale, S.R.; Tamhankar, B.V. Green synthesis of fluorescent silver nanoparticles using Acacia nilotica gum extract for kinetic studies of 4-nitrophenol reduction. Mater. Today Proc, 2016, 3, 4109-4114.
[http://dx.doi.org/10.1016/j.matpr.2016.11.082]
[95]
Ahmed, S.W.; Anwar, H. Shama; Siddiqui, A.; Shah, M.R.; Ahmed, A.; Ali, S. A. Synthesis and chemosensing of nitrofurazone using olive oil based silver nanoparticles (O-AgNPs). Sens. Actuators B Chem., 2018, 256, 429-439.
[http://dx.doi.org/10.1016/j.snb.2017.10.111]
[96]
Dong, C.; Cai, H.; Zhang, X.; Cao, C. Synthesis and characterization of monodisperse copper nanoparticles using gum acacia. Phys. E Low Dimens. Syst. Nanostruct., 2014, 57, 12-20.
[http://dx.doi.org/10.1016/j.physe.2013.10.025]
[97]
Sreedhar, B.; Reddy, P.S.; Devi, D.K. Direct one-pot reductive amination of aldehydes with nitroarenes in a domino fashion: catalysis by gum-acacia-stabilized palladium nanoparticles. J. Org. Chem., 2009, 74(22), 8806-8809.
[http://dx.doi.org/10.1021/jo901787t PMID: 19842684]
[98]
Reddy, G.B.; Madhusudhan, A.; Ramakrishna, D.; Ayodhya, D.; Venkatesham, M.; Veerabhadram, G. Green chemistry approach for the synthesis of gold nanoparticles with gum kondagogu: Characterization, catalytic and antibacterial activity. J. Nanostruct. Chem., 2015, 5(2), 185-193.
[http://dx.doi.org/10.1007/s40097-015-0149-y]
[99]
Sinha, T.; Ahmaruzzaman, M. A novel green and template free approach for the synthesis of gold nanorice and its utilization as a catalyst for the degradation of hazardous dye. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 142, 266-270.
[http://dx.doi.org/10.1016/j.saa.2015.02.020] [PMID: 25706595]
[100]
Alsohaimi, I.H.; Nassar, A.M.; Seaf Elnasr, T.A.; Cheba, B. A novel composite silver nanoparticles loaded calcium oxide stemming from egg shell recycling: A potent photocatalytic and antibacterial activities. J. Clean. Prod., 2019, 248, 119274.
[http://dx.doi.org/10.1016/j.jclepro.2019.119274]
[101]
Suriyaprabha, R.; Balu, K.S.; Karthik, S.; Prabhu, M.; Rajendran, V.; Aicher, W.K.; Maaza, M. A sensitive refining of in vitro and in vivo toxicological behavior of green synthesized ZnO nanoparticles from the shells of Jatropha curcas for multifunctional biomaterials development. Ecotoxicol. Environ. Saf., 2019, 184, 109621.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109621] [PMID: 31520953]
[102]
Sreedhar, B.; Devi, D.K.; Yada, D. Selective hydrogenation of nitroarenes using gum acacia supported Pt colloid an effective reusable catalyst in aqueous medium. Catal. Commun., 2011, 12(11), 1009-1014.
[http://dx.doi.org/10.1016/j.catcom.2011.02.027]
[103]
Velusamy, P.; Das, J.; Pachaiappan, R.; Vaseeharan, B.; Pandian, K. Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachta indica L.). Ind. Crops Prod., 2015, 66(1), 103-109.
[http://dx.doi.org/10.1016/j.indcrop.2014.12.042]
[104]
Roy, K.; Sarkar, C.K.; Ghosh, C.K. Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 146, 286-291.
[http://dx.doi.org/10.1016/j.saa.2015.02.058] [PMID: 25819317]
[105]
Tiwari, A.; Sherpa, Y.L.; Pathak, A.P.; Singh, L.S.; Gupta, A.; Tripathi, A. One-pot green synthesis of highly luminescent silicon nanoparticles using Citrus limon (L.) and their applications in luminescent cell imaging and antimicrobial efficacy. Mater. Today Commun., 2019, 19, 62-67.
[http://dx.doi.org/10.1016/j.mtcomm.2018.12.005]
[106]
Alfuraydi, A.A.; Devanesan, S.; Al-Ansari, M.; AlSalhi, M.S.; Ranjitsingh, A.J. Eco-friendly green synthesis of silver nanoparticles from the sesame oil cake and its potential anticancer and antimicrobial activities. J. Photochem. Photobiol. B, 2019, 192, 83-89.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.01.011] [PMID: 30710829]
[107]
Suárez-Cerda, J.; Espinoza-Gómez, H.; Alonso-Núñez, G.; Rivero, I.A.; Gochi-Ponce, Y.; Flores-López, L.Z. A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents. J. Saudi Chem. Soc., 2017, 21(3), 341-348.
[http://dx.doi.org/10.1016/j.jscs.2016.10.005]
[108]
Ullah, S.; Ahmad, A.; Khan, A.; Zhang, J.; Raza, M.; Rahman, A.U.; Tariq, M.; Ali Khan, U.; Zada, S.; Yuan, Q. Palladium nanoparticles synthesis, characterization using glucosamine as the reductant and stabilizing agent to explore their antibacterial & catalytic applications. Microb. Pathog., 2018, 125, 150-157.
[http://dx.doi.org/10.1016/j.micpath.2018.09.020] [PMID: 30217515]
[109]
Parveen, R.; Ullah, S.; Sgarbi, R.; Tremiliosi-Filho, G. One-pot ligand-free synthesis of gold nanoparticles: The Role of glycerol as reducing-cum-stabilizing agent. Colloids Surf. A Physicochem. Eng. Asp., 2019, 565, 162-171.
[http://dx.doi.org/10.1016/j.colsurfa.2019.01.005]
[110]
Liang, Q.; Zhao, D. Immobilization of arsenate in a sandy loam soil using starch-stabilized magnetite nanoparticles. J. Hazard. Mater., 2014, 271, 16-23.
[http://dx.doi.org/10.1016/j.jhazmat.2014.01.055] [PMID: 24584068]
[111]
Sharma, S.; Pollet, B.G. Support materials for PEMFC and DMFC electrocatalysts - a review. J. Power Sources, 2012, 208, 96-119.
[http://dx.doi.org/10.1016/j.jpowsour.2012.02.011]
[112]
Kuyuldar, E.; Burhan, H.; Şavk, A.; Güven, B.; Özdemir, C.; Şahin, S.; Khan, A.; Şen, F. Enhanced electrocatalytic activity, and durability of PtRu nanoparticles decorated on RGO material for ethanol oxidation reaction.Graphene Functionalization Strategies. Carbon Nanostructures; Khan, A.; Jawaid, M.; Neppolian, B; Asiri, A., Ed.; Springer: Singapore, 2019, pp. 389-398.
[http://dx.doi.org/10.1007/978-981-32-9057-0_16]
[113]
Pourbeyram, S.; Abdollahpour, J.; Soltanpour, M. Green synthesis of copper oxide nanoparticles decorated reduced graphene oxide for high sensitive detection of glucose. Mater. Sci. Eng. C, 2019, 94, 850-857.
[http://dx.doi.org/10.1016/j.msec.2018.10.034] [PMID: 30423771]
[114]
Faramarzi, M.A.; Sadighi, A. Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv. Colloid Interface Sci., 2013, 189-190, 1-20.
[http://dx.doi.org/10.1016/j.cis.2012.12.001] [PMID: 23332127]
[115]
Abu-Zied, B.M.; Alamry, K.A. Green synthesis of 3D hierarchical nanostructured Co3O4/carbon catalysts for the application in sodium borohydride hydrolysis. J. Alloys Compd., 2019, 798, 820-831.
[http://dx.doi.org/10.1016/j.jallcom.2019.05.249]
[116]
Wu, Z.G.; Munoz, M.; Montero, O. The synthesis of nickel nanoparticles by hydrazine reduction. Adv. Powder Technol., 2010, 21(2), 165-168.
[http://dx.doi.org/10.1016/j.apt.2009.10.012]
[117]
Narayanan, K.B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci., 2010, 156(1-2), 1-13.
[http://dx.doi.org/10.1016/j.cis.2010.02.001] [PMID: 20181326]
[118]
Narayanan, K.B.; Sakthivel, N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv. Colloid Interface Sci., 2011, 169(2), 59-79.
[http://dx.doi.org/10.1016/j.cis.2011.08.004] [PMID: 21981929]
[119]
Seralathan, J.; Stevenson, P.; Subramaniam, S.; Raghavan, R.; Pemaiah, B.; Sivasubramanian, A.; Veerappan, A. Spectroscopy investigation on chemo-catalytic, free radical scavenging and bactericidal properties of biogenic silver nanoparticles synthesized using Salicornia brachiata aqueous extract. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 118, 349-355.
[http://dx.doi.org/10.1016/j.saa.2013.08.114] [PMID: 24056313]
[120]
Reddy, N.J.; Nagoor Vali, D.; Rani, M.; Rani, S.S. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Mater. Sci. Eng. C, 2014, 34(1), 115-122.
[http://dx.doi.org/10.1016/j.msec.2013.08.039] [PMID: 24268240]
[121]
Mystrioti, C.; Xanthopoulou, T.D.; Tsakiridis, P.; Papassiopi, N.; Xenidis, A. Comparative evaluation of five plant extracts and juices for nanoiron synthesis and application for hexavalent chromium reduction. Sci. Total Environ., 2016, 539, 105-113.
[http://dx.doi.org/10.1016/j.scitotenv.2015.08.091] [PMID: 26356183]
[122]
Alves, I.A.B.S.; Miranda, H.M.; Soares, L.A.L.; Randau, K.P. Simaroubaceae family: Botany, chemical composition and biological activities. Rev. Bras. Farmacogn., 2014, 24, 481-501.
[http://dx.doi.org/10.1016/j.bjp.2014.07.021]
[123]
Thangamani, N.; Bhuvaneshwari, N. Green synthesis of gold nanoparticles using Simarouba glauca leaf extract and their biological activity of micro-organism. Chem. Phys. Lett., 2019, 732, 136587.
[http://dx.doi.org/10.1016/j.cplett.2019.07.015]
[124]
Yi, Y.; Tu, G.; Tsang, P.E.; Xiao, S.; Fang, Z. Green synthesis of iron-based nanoparticles from extracts of Nephrolepis auriculata and applications for Cr(VI) removal. Mater. Lett., 2019, 234, 388-391.
[http://dx.doi.org/10.1016/j.matlet.2018.09.137]
[125]
Akbarzadeh, R.; Fung, C.S.L.; Rather, R.A.; Lo, I.M.C. One-pot hydrothermal synthesis of g-C3N4/Ag/AgCl/BiVO4 micro-flower composite for the visible light degradation of Ibuprofen. Chem. Eng. J., 2018, 341, 248-261.
[http://dx.doi.org/10.1016/j.cej.2018.02.042]
[126]
López-Miranda, J.L.; Vázquez, M.; Fletes, N.; Esparza, R.; Rosas, G. Biosynthesis of silver nanoparticles using a Tamarix gallica leaf extract and their antibacterial activity. Mater. Lett., 2016, 176, 285-289.
[http://dx.doi.org/10.1016/j.matlet.2016.04.126]
[127]
Ahmmad, B.; Leonard, K.; Shariful Islam, M.; Kurawaki, J.; Muruganandham, M.; Ohkubo, T.; Kuroda, Y. Green synthesis of mesoporous hematite (α-Fe2O3) nanoparticles and their photocatalytic activity. Adv. Powder Technol., 2013, 24(1), 160-167.
[http://dx.doi.org/10.1016/j.apt.2012.04.005]
[128]
Madhubala, V.; Kalaivani, T. Phyto and hydrothermal synthesis of Fe3O4 @ZnO core-shell nanoparticles using Azadirachta indica and its cytotoxicity studies. Appl. Surf. Sci., 2018, 449, 584-590.
[http://dx.doi.org/10.1016/j.apsusc.2017.12.105]
[129]
Su, D.l.; Li, P.j.; Ning, M.; Li, G.y.; Shan, Y. Microwave assisted green synthesis of pectin based silver nanoparticles and their antibacterial and antifungal activities. Mater. Lett., 2019, 244, 35-38.
[http://dx.doi.org/10.1016/j.matlet.2019.02.059]
[130]
Tiwary, K.P.; Sharma, K.; Bala, N.; Ali, F. Microwave assisted synthesis of undoped and Cu doped CdS Nanoparticles and their structural, morphological and optical characterization. Mater. Today Proc., 2019, 8, 1380-1387.
[http://dx.doi.org/10.1016/j.matpr.2019.06.604]
[131]
Khan, A.; El-Toni, A.M.; Alrokayan, S.; Alsalhi, M.; Alhoshan, M.; Aldwayyan, A.S. Microwave-assisted synthesis of silver nanoparticles using poly-N-isopropylacrylamide/acrylic acid microgel particles. Colloids Surf. A Physicochem. Eng. Asp., 2011, 377(1-3), 356-360.
[http://dx.doi.org/10.1016/j.colsurfa.2011.01.042]
[132]
Achary, L.S.K.; Nayak, P.S.; Barik, B.; Kumar, A.; Dash, P. Ultrasonic-assisted green synthesis of β-amino carbonyl compounds by copper oxide nanoparticles decorated phosphate functionalized graphene oxide via Mannich reaction. Catal. Today, 2019, 348, 137-147.
[http://dx.doi.org/10.1016/j.cattod.2019.07.050]
[133]
Karadirek, Ş.; Okkay, H. Ultrasound Assisted green synthesis of silver nanoparticle attached activated carbon for levofloxacin adsorption. J. Taiwan Inst. Chem. Eng., 2019, 105, 39-49.
[http://dx.doi.org/10.1016/j.jtice.2019.10.007]
[134]
Gautam, S.; Dubey, P.; Gupta, M.N. A facile and green ultrasonic-assisted synthesis of BSA conjugated silver nanoparticles. Colloids Surf. B Biointerfaces, 2013, 102, 879-883.
[http://dx.doi.org/10.1016/j.colsurfb.2012.10.007] [PMID: 23124018]
[135]
Veisi, H.; Ghorbani, M.; Hemmati, S. Sonochemical in situ immobilization of Pd nanoparticles on green tea extract coated Fe3O4 nanoparticles: An efficient and magnetically recyclable nanocatalyst for synthesis of biphenyl compounds under ultrasound irradiations. Mater. Sci. Eng. C, 2019, 98, 584-593.
[http://dx.doi.org/10.1016/j.msec.2019.01.009] [PMID: 30813061]
[136]
El-Gendy, N.S.; El-Salamony, R.A.; Younis, S.A. Green synthesis of fluorapatite from waste animal bones and the photo-catalytic degradation activity of a new ZnO/green biocatalyst nano-composite for removal of chlorophenols. J. Water Process Eng., 2016, 12, 8-19.
[http://dx.doi.org/10.1016/j.jwpe.2016.05.007]
[137]
Chen, H.; Guo, N.; Zhang, Z.; Liu, C.; Zhou, L.; Wang, G. A novel strategy for metal transfer controlling in underwater wet welding using ultrasonic-assisted method. Mater. Lett., 2020, 270, 127692.
[http://dx.doi.org/10.1016/j.matlet.2020.127692]
[138]
Yin, X.; Long, Z.; Wang, C.; Li, Z.; Zhao, M.; Yang, S. A time- and cost-effective synthesis of CHA zeolite with small size using ultrasonic-assisted method. Ultrason. Sonochem., 2019, 58, 104679.
[http://dx.doi.org/10.1016/j.ultsonch.2019.104679] [PMID: 31450340]
[139]
Huy, N.N.; Thanh Thuy, V.T.; Thang, N.H.; Thuy, N.T.; Quynh, L.T.; Khoi, T.T.; Van Thanh, D. Facile one-step synthesis of zinc oxide nanoparticles by ultrasonic-assisted precipitation method and its application for H2S adsorption in air. J. Phys. Chem. Solids, 2019, 132, 99-103.
[http://dx.doi.org/10.1016/j.jpcs.2019.04.018]
[140]
Mahmoud, H.R. Bismuth silicate (Bi4Si3O12 and Bi2SiO5) prepared by ultrasonic-assisted hydrothermal method as novel catalysts for biodiesel production via oleic acid esterification with methanol. Fuel, 2019, 256, 115979.
[http://dx.doi.org/10.1016/j.fuel.2019.115979]
[141]
Wang, J.; Hou, H.; Hu, J.; Wu, X.; Hu, Y.; Li, M.; Yu, W.; Zhang, P.; Liang, S.; Xiao, K.; Kumar, R.V.; Yang, J. Mechano-chemical synthesis of high-stable PbO@C composite for enhanced performance of lead-carbon battery. Electrochim. Acta, 2019, 299, 682-691.
[http://dx.doi.org/10.1016/j.electacta.2019.01.063]
[142]
Goswami, S.; dos Santos, A.; Nandy, S.; Igreja, R.; Barquinha, P.; Martins, R.; Fortunato, E. Human-motion interactive energy harvester based on polyaniline functionalized textile fibers following metal/polymer mechano-responsive charge transfer mechanism. Nano Energy, 2019, 60, 794-801.
[http://dx.doi.org/10.1016/j.nanoen.2019.04.012]
[143]
Esmaili, H.; Sheibani, S.; Rashchi, F. Mechano-thermal synthesis and characterization of nano-structured Fe/FeS for application in photocatalysis. Particuology, 2018, 37, 72-80.
[http://dx.doi.org/10.1016/j.partic.2017.07.005]
[144]
Jin, X.; Yu, B.; Lin, J.; Chen, Z. Integration of biodegradation and nano-oxidation for removal of PAHs from aqueous solution. ACS Sustain. Chem.& Eng., 2016, 4(9), 4717-4723.
[http://dx.doi.org/10.1021/acssuschemeng.6b00933]
[145]
O’Connor, D.; Peng, T.; Li, G.; Wang, S.; Duan, L.; Mulder, J.; Cornelissen, G.; Cheng, Z.; Yang, S.; Hou, D. Sulfur-modified rice husk biochar: A green method for the remediation of mercury contaminated soil. Sci. Total Environ., 2018, 621, 819-826.
[http://dx.doi.org/10.1016/j.scitotenv.2017.11.213] [PMID: 29202293]
[146]
Wang, Y.; O’Connor, D.; Shen, Z.; Lo, I.M.C.; Tsang, D.C.W.; Pehkonen, S.; Pu, S.; Hou, D. Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors. J. Clean. Prod., 2019, 226, 540-549.
[http://dx.doi.org/10.1016/j.jclepro.2019.04.128]
[147]
Arumai Selvan, D.; Mahendiran, D.; Senthil Kumar, R.; Kalilur Rahiman, A. Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies. J. Photochem. Photobiol. B, 2018, 180, 243-252.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.02.014] [PMID: 29476965]
[148]
AL-Shnani F.; Al-Haddad, T.; Karabet, F.; Allaf, A.W. Chitosan loaded with silver nanoparticles, CS-AgNPs, using thymus syriacus, wild mint, and rosemary essential oil extracts as reducing and capping agents. J. Phys. Org. Chem., 2017, 30(11), e3680.
[http://dx.doi.org/10.1002/poc.3680]
[149]
Yang, Z.; Li, Z.; Lu, X.; He, F.; Zhu, X.; Ma, Y.; He, R.; Gao, F.; Ni, W.; Yi, Y. Controllable biosynthesis and properties of gold nanoplates using yeast extract. Nano-Micro Lett., 2017, 9(1), 5.
[http://dx.doi.org/10.1007/s40820-016-0102-8] [PMID: 30460302]
[150]
Yang, Z.; Li, Z.; Xu, M.; Ma, Y.; Zhang, J.; Su, Y.; Gao, F.; Wei, H.; Zhang, L. Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes. Nano-Micro Lett., 2013, 5(4), 247-259.
[http://dx.doi.org/10.1007/BF03353756]
[151]
Xu, M.; Xu, S.; Yang, Z.; Shu, M.; He, G.; Huang, D.; Zhang, L.; Li, L.; Cui, D.; Zhang, Y. Hydrophilic and blue fluorescent N-doped carbon dots from tartaric acid and various alkylol amines under microwave irradiation. Nanoscale, 2015, 7(38), 15915-15923.
[http://dx.doi.org/10.1039/C5NR04209G] [PMID: 26364977]
[152]
Masten, D.A.; Bosco, A.D. System design for vehicle applications - GM/Opel.Handbook of fuel cells-fundamentals, technology and applications; Vielstich, W.; Lamm, A; Gasteiger, H.A., Ed.; Wiley: Chichester, 2003, Vol. 4, pp. 714-724.
[153]
Gittleman, C.S.; Kongkanand, A.; Masten, D.; Gu, W. Materials research and development focus areas for low cost automotive proton-exchange membrane fuel cells. Curr. Opin. Electrochem., 2019, 18, 81-89.
[http://dx.doi.org/10.1016/j.coelec.2019.10.009]
[154]
Jo, Y.Y.; Cho, E.; Kim, J.H.; Lim, T.H.; Oh, I.H.; Kim, S.K.; Kim, H.J.; Jang, J.H. Degradation of polymer electrolyte membrane fuel cells repetitively exposed to reverse current condition under different temperature. J. Power Sources, 2011, 196(23), 9906-9915.
[http://dx.doi.org/10.1016/j.jpowsour.2011.08.035]
[155]
Yu, Q.S.; Yasuda, H.K. Protection of aluminum alloys from filiform corrosion by low-temperature plasma interface engineering. Prog. Org. Coat., 2005, 52(3), 217-226.
[http://dx.doi.org/10.1016/j.porgcoat.2004.12.004]
[156]
Ferreira, E.S.; Giacomelli, C.; Giacomelli, F.C.; Spinelli, A. Evaluation of the inhibitor effect of L-ascorbic acid on the corrosion of mild steel. Mater. Chem. Phys., 2004, 83(1), 129-134.
[http://dx.doi.org/10.1016/j.matchemphys.2003.09.020]
[157]
Nmai, C.K. Multi-functional organic corrosion inhibitor. Cement Concr. Compos., 2004, 26(3), 199-207.
[http://dx.doi.org/10.1016/S0958-9465(03)00039-8]
[158]
Amiril, S.A.S.; Rahim, E.A.; Syahrullail, S. A Review on ionic liquids as sustainable lubricants in manufacturing and engineering: Recent research, performance, and applications. J. Clean. Prod., 2017, 168, 1571-1589.
[http://dx.doi.org/10.1016/j.jclepro.2017.03.197]
[159]
Olajire, A.A. Recent advances on organic coating system technologies for corrosion protection of offshore metallic structures. J. Mol. Liq., 2018, 269, 572-606.
[http://dx.doi.org/10.1016/j.molliq.2018.08.053]
[160]
Hosseini, M.G.; Aboutalebi, K. Enhancement the anticorrosive resistance of epoxy coatings by incorporation of CeO2 @ polyaniline @ 2-mercaptobenzotiazole nanocomposite. Synth. Met., 2019, 250, 63-72.
[http://dx.doi.org/10.1016/j.synthmet.2019.03.001]
[161]
Cai, Q.; Li, S.; Pu, J.; Bai, X.; Wang, H.; Cai, Z.; Wang, X. Corrosion resistance and antifouling activities of silver-doped CrN coatings deposited by magnetron sputtering. Surf. Coat. Tech., 2018, 354, 194-202.
[http://dx.doi.org/10.1016/j.surfcoat.2018.09.006]
[162]
Shanmugasamy, S.; Balakrishnan, K.; Subasri, A.; Ramalingam, S.; Subramania, A. Development of CeO2 nanorods reinforced electrodeposited nickel nanocomposite coating and its tribological and corrosion resistance properties. J. Rare Earths, 2018, 36(12), 1319-1325.
[http://dx.doi.org/10.1016/j.jre.2018.06.004]
[163]
Celorrio, V.; Sebastián, D.; Calvillo, L.; García, A.B.; Fermin, D.J.; Lázaro, M.J. Influence of thermal treatments on the stability of Pd Nanoparticles supported on graphitised ordered mesoporous carbons. Int. J. Hydrogen Energy, 2016, 41(43), 19570-19578.
[http://dx.doi.org/10.1016/j.ijhydene.2016.05.271]
[164]
Abdel Hameed, R.M.; Fahim, A.E.; Allam, N.K. Tin oxide as a promoter for copper@palladium nanoparticles on graphene sheets during ethanol electro-oxidation in NaOH solution. J. Mol. Liq., 2019, 297, 111816.
[http://dx.doi.org/10.1016/j.molliq.2019.111816]
[165]
Wang, F.; Qiao, J.; Wang, J.; Wu, H.; Yue, X.; Wang, Z.; Sun, W.; Sun, K. Reduced graphene oxide supported Ni@Au@Pd core@bishell nanoparticles as highly active electrocatalysts for ethanol oxidation reactions and alkaline direct bioethanol fuel cells applications. Electrochim. Acta, 2018, 271, 1-9.
[http://dx.doi.org/10.1016/j.electacta.2018.03.013]
[166]
Wang, Y.; Zhang, S.; Wang, P.; Chen, S.; Lu, Z.; Li, W. Electropolymerization and corrosion protection performance of the Nb:TiO2 nanofibers/polyaniline composite coating. J. Taiwan Inst. Chem. Eng., 2019, 103, 190-198.
[http://dx.doi.org/10.1016/j.jtice.2019.07.015]
[167]
Asaad, M.A.; Ismail, M.; Tahir, M.M.; Huseien, G.F.; Raja, P.B.; Asmara, Y.P. Enhanced corrosion resistance of reinforced concrete: Role of emerging eco-friendly elaeis guineensis/silver nanoparticles inhibitor. Constr. Build. Mater., 2018, 188, 555-568.
[http://dx.doi.org/10.1016/j.conbuildmat.2018.08.140]
[168]
Daş, E.; Kaplan, B.Y.; Gürsel, S.A.; Yurtcan, A.B. Graphene nanoplatelets-carbon black hybrids as an efficient catalyst support for Pt nanoparticles for polymer electrolyte membrane fuel cells. Renew. Energy, 2019, 139, 1099-1110.
[http://dx.doi.org/10.1016/j.renene.2019.02.137]
[169]
Kim, J.; Kim, S-I.; Jo, S.G.; Hong, N.E.; Ye, B.; Lee, S.; Dow, H.S.; Lee, D.H.; Lee, J.W. Enhanced activity and durability of Pt Nanoparticles supported on reduced graphene oxide for oxygen reduction catalysts of proton exchange membrane fuel cells. Catal. Today, 2020, 352, 10-17.
[http://dx.doi.org/10.1016/j.cattod.2019.11.016]
[170]
Tang, X.; Fang, D.; Qu, L.; Xu, D.; Qin, X.; Qin, B.; Song, W.; Shao, Z.; Yi, B. Carbon-supported ultrafine Pt nanoparticles modified with trace amounts of cobalt as enhanced oxygen reduction reaction catalysts for proton exchange membrane fuel cells. Chin. J. Catal., 2019, 40(4), 504-514.
[http://dx.doi.org/10.1016/S1872-2067(19)63304-8]
[171]
Nechiyil, D.; Garapati, M.S.; Shende, R.C.; Joulié, S.; Neumeyer, D.; Bacsa, R.; Puech, P.; Ramaprabhu, S.; Bacsa, W. Optimizing metal-support interphase for efficient fuel cell oxygen reduction reaction catalyst. J. Colloid Interface Sci., 2020, 561, 439-448.
[http://dx.doi.org/10.1016/j.jcis.2019.11.015] [PMID: 31735416]
[172]
Yezerska, K.; Liu, F.; Dushina, A.; Sergeev, O.; Wagner, P.; Dyck, A.; Wark, M. Analysis of the regeneration behavior of high temperature polymer electrolyte membrane fuel cells after hydrogen starvation. J. Power Sources, 2020, 449, 227562.
[http://dx.doi.org/10.1016/j.jpowsour.2019.227562]
[173]
Puthusseri, D.; Ramaprabhu, S. Oxygen reduction reaction activity of platinum nanoparticles decorated nitrogen doped carbon in proton exchange membrane fuel cell under real operating conditions. Int. J. Hydrogen Energy, 2016, 41(30), 13163-13170.
[http://dx.doi.org/10.1016/j.ijhydene.2016.05.146]