Abstract
Background: Pyranoid spirofused sugar derivatives represent a class of compounds with a significant
impact in the literature. From the structural point of view, the rigidity inferred by the spirofused entity has made
these compounds object of interest mainly as enzymatic inhibitors, in particular, carbohydrate processing enzymes.
Among them glycogen phosphorylase and sodium glucose co-transporter 2 are important target enzymes
for diverse pathological states. Most of the developed compounds present the spirofused entity at the C1 position
of the sugar moiety; nevertheless, spirofused entities can also be found at other sugar ring positions. The main
spirofused entities encountered are spiroacetals/thioacetals, spiro-hydantoin and derivatives, spiro-isoxazolines,
spiro-aminals, spiro-lactams, spiro-oxathiazole and spiro-oxazinanone, but also others are present.
Objectives: The present review focuses on the most explored synthetic strategies for the preparation of this class
of compounds, classified according to the position and structure of the spirofused moiety on the pyranoid scaffold.
Moreover, the structures are correlated to their main biological activities or to their role as chiral auxiliaries.
Conclusion: It is clear from the review that, among the different derivatives, the spirofused structures at position
C1 of the pyranoid scaffold are the most represented and possess the most relevant enzymatic inhibitor activities.
Nevertheless, great efforts have been devoted to the introduction of the spirofused entity also in the other positions,
mainly for the preparation of biologically active compounds but also for the synthesis of chiral auxiliaries
useful in asymmetric reactions; examples of such auxiliaries are the spirofused chiral 1,3-oxazolidin-2-ones and
1,3-oxazolidine-2-thiones.
Keywords:
Glycomimetics, spirofused, enzyme inhibitors, pyranoid structure, sugar derivatives, spiro-isoxazolines.
Graphical Abstract
[1]
Sanofi.. Sanofi and regeneron to present alirocumab clinical data at american college of cardiology 63rd annual scientific session. Paris, France and
Tarrytown, NY, March 27, 2014.
[6]
Gougoutas, J.Z. WO 02/083066. Chem. Abstr., 2002, 137311199
[13]
Md. M. Ahmed; G. A. O Doherty. De novo enantioselective syntheses of galacto-sugars and deoxy sugars via the iterative dihydroxylation of dienoate. Tetrahedron Lett., 2005, 46, 4151-4155.
[27]
Takallasi, S.; Nakajima, M.; Kinoshita, T.; Harayama, T.; Sugai, S.; Honma, T.; Sato, S.; Haneishi, T. Hydantocidin and cornexistin. ACS Syrup. Ser., 1994, 551, 74.
[30]
Fuente, C. KruÈlle, T.M.; Watson, K.A.; Gregoriou, M.; Johnson, L.N.; Tsitsanou, K.E.; Zographos, S.E.; Oikonomakos, N.G.; Fleet, G W.J. Glucopyranose spirohydantoins: Specific inhibitors of glycogen phosphorylase. Synlett, 1997, 485-487.
[38]
Somsák, L. Nagy. A new, scalable preparation of a glucopyranosylidene-spiro-thiohydantoin: one of the best inhibitors of glycogen phosphorylases. Tetrahedron Asymmetry, 2000, 11, 1719-1727.
[45]
Pal, A.P.J.; Gupta, P.; Suman Reddy, Y.; Vankar, Y.D. Synthesis of dihydroxymethyl dihydroxypyrrolidines and steviamine analogues from c-2 formyl glycals. Eur. J. Org. Chem., 2010, 36, 6957-6966.
[70]
Lambu, M.R.; Hussain, A.; Sharma, D.K.; Yousuf, S.K.; Singh, B.; Tripathi, A.K.; Mukherjee, D. Synthesis of C-spiro-glycoconjugates from sugar lactones via zinc mediated Barbier reaction. RSC Advances, 2014, 4(22), 11023-11028.
[77]
Tardy, S.; Vicente, J.L.; Tatibouet, A.; Dujardin, G.; Rollin, P. Epoxides of d-fructose and l-sorbose: A convenient class of “click” functionality for the synthesis of a rare family of amino- and thio-sugars. Synthesis, 2008, 19, 3108-3120.
[82]
Merino-Montiel, P.; Lopez, O.; Fernandez-Bolanos, J.G. Spiranic d-gluco-configured N-substituted thiohydantoins as potential enzymatic inhibitors. RSC Advances, 2012, 2(30), 11326-11335.